Compare commits

...
Sign in to create a new pull request.

5 commits

Author SHA1 Message Date
Ishaan Jaff
06b3cfb5fb test test_create_json_tool_call_for_response_format 2024-11-12 18:09:06 -08:00
Ishaan Jaff
3ccbd5bb7b fix test_anthropic_function_call_with_no_schema 2024-11-12 18:02:24 -08:00
Ishaan Jaff
186a679243 fix test_litellm_anthropic_prompt_caching_tools 2024-11-12 15:01:03 -08:00
Ishaan Jaff
368959f9f3 add test_json_response_format to baseLLM ChatTest 2024-11-12 14:40:11 -08:00
Ishaan Jaff
7ef3b680a2 add support for response_format=json anthropic 2024-11-12 14:37:55 -08:00
4 changed files with 105 additions and 17 deletions

View file

@ -7,6 +7,7 @@ from litellm.types.llms.anthropic import (
AllAnthropicToolsValues,
AnthropicComputerTool,
AnthropicHostedTools,
AnthropicInputSchema,
AnthropicMessageRequestBase,
AnthropicMessagesRequest,
AnthropicMessagesTool,
@ -159,15 +160,17 @@ class AnthropicConfig:
returned_tool: Optional[AllAnthropicToolsValues] = None
if tool["type"] == "function" or tool["type"] == "custom":
_input_schema: dict = tool["function"].get(
"parameters",
{
"type": "object",
"properties": {},
},
)
input_schema: AnthropicInputSchema = AnthropicInputSchema(**_input_schema)
_tool = AnthropicMessagesTool(
name=tool["function"]["name"],
input_schema=tool["function"].get(
"parameters",
{
"type": "object",
"properties": {},
},
),
input_schema=input_schema,
)
_description = tool["function"].get("description")
@ -304,17 +307,10 @@ class AnthropicConfig:
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the models perspective.
"""
_tool_choice = None
_tool_choice = {"name": "json_tool_call", "type": "tool"}
_tool = AnthropicMessagesTool(
name="json_tool_call",
input_schema={
"type": "object",
"properties": {"values": json_schema}, # type: ignore
},
_tool = self._create_json_tool_call_for_response_format(
json_schema=json_schema,
)
optional_params["tools"] = [_tool]
optional_params["tool_choice"] = _tool_choice
optional_params["json_mode"] = True
@ -341,6 +337,34 @@ class AnthropicConfig:
return optional_params
def _create_json_tool_call_for_response_format(
self,
json_schema: Optional[dict] = None,
) -> AnthropicMessagesTool:
"""
Handles creating a tool call for getting responses in JSON format.
Args:
json_schema (Optional[dict]): The JSON schema the response should be in
Returns:
AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
"""
_input_schema: AnthropicInputSchema = AnthropicInputSchema(
type="object",
)
if json_schema is None:
# Anthropic raises a 400 BadRequest error if properties is passed as None
# see usage with additionalProperties (Example 5) https://github.com/anthropics/anthropic-cookbook/blob/main/tool_use/extracting_structured_json.ipynb
_input_schema["additionalProperties"] = True
_input_schema["properties"] = {}
else:
_input_schema["properties"] = json_schema
_tool = AnthropicMessagesTool(name="json_tool_call", input_schema=_input_schema)
return _tool
def is_cache_control_set(self, messages: List[AllMessageValues]) -> bool:
"""
Return if {"cache_control": ..} in message content block

View file

@ -12,10 +12,16 @@ class AnthropicMessagesToolChoice(TypedDict, total=False):
disable_parallel_tool_use: bool # default is false
class AnthropicInputSchema(TypedDict, total=False):
type: Optional[str]
properties: Optional[dict]
additionalProperties: Optional[bool]
class AnthropicMessagesTool(TypedDict, total=False):
name: Required[str]
description: str
input_schema: Required[dict]
input_schema: Optional[AnthropicInputSchema]
type: Literal["custom"]
cache_control: Optional[Union[dict, ChatCompletionCachedContent]]

View file

@ -53,6 +53,32 @@ class BaseLLMChatTest(ABC):
response = litellm.completion(**base_completion_call_args, messages=messages)
assert response is not None
def test_json_response_format(self):
"""
Test that the JSON response format is supported by the LLM API
"""
base_completion_call_args = self.get_base_completion_call_args()
litellm.set_verbose = True
messages = [
{
"role": "system",
"content": "Your output should be a JSON object with no additional properties. ",
},
{
"role": "user",
"content": "Respond with this in json. city=San Francisco, state=CA, weather=sunny, temp=60",
},
]
response = litellm.completion(
**base_completion_call_args,
messages=messages,
response_format={"type": "json_object"},
)
print(response)
@pytest.fixture
def pdf_messages(self):
import base64

View file

@ -627,6 +627,38 @@ def test_anthropic_tool_helper(cache_control_location):
assert tool["cache_control"] == {"type": "ephemeral"}
def test_create_json_tool_call_for_response_format():
"""
tests using response_format=json with anthropic
A tool call to anthropic is made when response_format=json is used.
"""
# Initialize AnthropicConfig
config = AnthropicConfig()
# Test case 1: No schema provided
# See Anthropics Example 5 on how to handle cases when no schema is provided https://github.com/anthropics/anthropic-cookbook/blob/main/tool_use/extracting_structured_json.ipynb
tool = config._create_json_tool_call_for_response_format()
assert tool["name"] == "json_tool_call"
_input_schema = tool.get("input_schema")
assert _input_schema is not None
assert _input_schema.get("type") == "object"
assert _input_schema.get("additionalProperties") is True
assert _input_schema.get("properties") == {}
# Test case 2: With custom schema
# reference: https://github.com/anthropics/anthropic-cookbook/blob/main/tool_use/extracting_structured_json.ipynb
custom_schema = {"name": {"type": "string"}, "age": {"type": "integer"}}
tool = config._create_json_tool_call_for_response_format(json_schema=custom_schema)
assert tool["name"] == "json_tool_call"
_input_schema = tool.get("input_schema")
assert _input_schema is not None
assert _input_schema.get("type") == "object"
assert _input_schema.get("properties") == custom_schema
assert "additionalProperties" not in _input_schema
from litellm import completion