Compare commits

...
Sign in to create a new pull request.

4 commits

Author SHA1 Message Date
Ishaan Jaff
70bce12375 ci/cd run again 2024-11-19 20:27:23 -08:00
Ishaan Jaff
8509c544d1 test_spend_logs_payload 2024-11-19 16:11:37 -08:00
Ishaan Jaff
bc75e07e40 read custom_llm_provider from SLP 2024-11-19 15:50:02 -08:00
Ishaan Jaff
244152fa82 track custom_llm_provider in SpendLogs 2024-11-19 10:27:24 -08:00
7 changed files with 114 additions and 1 deletions

View file

@ -2359,6 +2359,7 @@ def _init_custom_logger_compatible_class( # noqa: PLR0915
_in_memory_loggers.append(_mlflow_logger)
return _mlflow_logger # type: ignore
def get_custom_logger_compatible_class(
logging_integration: litellm._custom_logger_compatible_callbacks_literal,
) -> Optional[CustomLogger]:
@ -2719,6 +2720,31 @@ class StandardLoggingPayloadSetup:
return clean_hidden_params
class StandardLoggingPayloadAccessors:
"""
Accessor methods for StandardLoggingPayload
Class that allows easily reading fields from StandardLoggingPayload
"""
@staticmethod
def get_custom_llm_provider_from_standard_logging_payload(
standard_logging_payload: Optional[StandardLoggingPayload],
) -> Optional[str]:
"""
Accessor method to safely get custom_llm_provider from standard_logging_payload
"""
if standard_logging_payload is None:
return None
model_map_information = (
standard_logging_payload.get("model_map_information") or {}
)
model_map_value = model_map_information.get("model_map_value") or {}
custom_llm_provider = model_map_value.get("litellm_provider")
return custom_llm_provider
def get_standard_logging_object_payload(
kwargs: Optional[dict],
init_response_obj: Union[Any, BaseModel, dict],

View file

@ -1773,6 +1773,7 @@ class SpendLogsPayload(TypedDict):
model_id: Optional[str]
model_group: Optional[str]
api_base: str
custom_llm_provider: Optional[str]
user: str
metadata: str # json str
cache_hit: str

View file

@ -192,6 +192,7 @@ model LiteLLM_SpendLogs {
model_id String? @default("") // the model id stored in proxy model db
model_group String? @default("") // public model_name / model_group
api_base String? @default("")
custom_llm_provider String? @default("") // openai, vertex_ai etc
user String? @default("")
metadata Json? @default("{}")
cache_hit String? @default("")

View file

@ -10,8 +10,10 @@ from pydantic import BaseModel
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.litellm_core_utils.litellm_logging import StandardLoggingPayloadAccessors
from litellm.proxy._types import SpendLogsMetadata, SpendLogsPayload
from litellm.proxy.utils import PrismaClient, hash_token
from litellm.types.utils import StandardLoggingPayload
def _is_master_key(api_key: str, _master_key: Optional[str]) -> bool:
@ -49,6 +51,10 @@ def get_logging_payload(
response_obj = {}
# standardize this function to be used across, s3, dynamoDB, langfuse logging
litellm_params = kwargs.get("litellm_params", {})
standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
@ -150,6 +156,9 @@ def get_logging_payload(
request_tags=request_tags,
end_user=end_user_id or "",
api_base=litellm_params.get("api_base", ""),
custom_llm_provider=StandardLoggingPayloadAccessors.get_custom_llm_provider_from_standard_logging_payload(
standard_logging_payload
),
model_group=_model_group,
model_id=_model_id,
requester_ip_address=clean_metadata.get("requester_ip_address", None),

View file

@ -192,6 +192,7 @@ model LiteLLM_SpendLogs {
model_id String? @default("") // the model id stored in proxy model db
model_group String? @default("") // public model_name / model_group
api_base String? @default("")
custom_llm_provider String? @default("") // openai, vertex_ai etc
user String? @default("")
metadata Json? @default("{}")
cache_hit String? @default("")

View file

@ -24,7 +24,7 @@ from litellm import RateLimitError, Timeout, completion, completion_cost, embedd
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.llms.prompt_templates.factory import anthropic_messages_pt
# litellm.num_retries=3
# litellm.num_retries = 3
litellm.cache = None
litellm.success_callback = []

View file

@ -28,12 +28,25 @@ import litellm
from litellm.proxy.spend_tracking.spend_tracking_utils import get_logging_payload
from litellm.proxy.utils import SpendLogsMetadata, SpendLogsPayload # noqa: E402
from litellm.types.utils import (
StandardLoggingPayload,
StandardLoggingModelInformation,
StandardLoggingMetadata,
StandardLoggingHiddenParams,
ModelInfo,
)
def test_spend_logs_payload():
"""
Ensure only expected values are logged in spend logs payload.
"""
standard_logging_payload = _create_standard_logging_payload()
standard_logging_payload["model_map_information"]["model_map_value"][
"litellm_provider"
] = "very-obscure-name"
input_args: dict = {
"kwargs": {
"model": "chatgpt-v-2",
@ -47,6 +60,7 @@ def test_spend_logs_payload():
"user": "116544810872468347480",
"extra_body": {},
},
"standard_logging_object": standard_logging_payload,
"litellm_params": {
"acompletion": True,
"api_key": "23c217a5b59f41b6b7a198017f4792f2",
@ -205,6 +219,9 @@ def test_spend_logs_payload():
assert (
payload["request_tags"] == '["model-anthropic-claude-v2.1", "app-ishaan-prod"]'
)
print("payload['custom_llm_provider']", payload["custom_llm_provider"])
# Ensures custom llm provider is logged + read from standard logging payload
assert payload["custom_llm_provider"] == "very-obscure-name"
def test_spend_logs_payload_whisper():
@ -292,3 +309,61 @@ def test_spend_logs_payload_whisper():
assert payload["call_type"] == "atranscription"
assert payload["spend"] == 0.00023398580000000003
def _create_standard_logging_payload() -> StandardLoggingPayload:
"""
helper function that creates a standard logging payload for testing
in the test you can edit the values in SLP that you would need
"""
return StandardLoggingPayload(
id="test_id",
type="test_id",
call_type="completion",
response_cost=0.1,
response_cost_failure_debug_info=None,
status="success",
total_tokens=30,
prompt_tokens=20,
completion_tokens=10,
startTime=1234567890.0,
endTime=1234567891.0,
completionStartTime=1234567890.5,
model_map_information=StandardLoggingModelInformation(
model_map_key="gpt-3.5-turbo",
model_map_value=ModelInfo(litellm_provider="azure"),
),
model="gpt-3.5-turbo",
model_id="model-123",
model_group="openai-gpt",
api_base="https://api.openai.com",
metadata=StandardLoggingMetadata(
user_api_key_hash="test_hash",
user_api_key_org_id=None,
user_api_key_alias="test_alias",
user_api_key_team_id="test_team",
user_api_key_user_id="test_user",
user_api_key_team_alias="test_team_alias",
spend_logs_metadata=None,
requester_ip_address="127.0.0.1",
requester_metadata=None,
),
cache_hit=False,
cache_key=None,
saved_cache_cost=0.0,
request_tags=[],
end_user=None,
requester_ip_address="127.0.0.1",
messages=[{"role": "user", "content": "Hello, world!"}],
response={"choices": [{"message": {"content": "Hi there!"}}]},
error_str=None,
model_parameters={"stream": True},
hidden_params=StandardLoggingHiddenParams(
model_id="model-123",
cache_key=None,
api_base="https://api.openai.com",
response_cost="0.1",
additional_headers=None,
),
)