Compare commits

..

8 commits

175 changed files with 1499 additions and 4413 deletions

View file

@ -811,8 +811,7 @@ jobs:
- run: python ./tests/code_coverage_tests/router_code_coverage.py
- run: python ./tests/code_coverage_tests/test_router_strategy_async.py
- run: python ./tests/code_coverage_tests/litellm_logging_code_coverage.py
- run: python ./tests/documentation_tests/test_env_keys.py
- run: python ./tests/documentation_tests/test_router_settings.py
# - run: python ./tests/documentation_tests/test_env_keys.py
- run: python ./tests/documentation_tests/test_api_docs.py
- run: python ./tests/code_coverage_tests/ensure_async_clients_test.py
- run: helm lint ./deploy/charts/litellm-helm
@ -1408,7 +1407,7 @@ jobs:
command: |
docker run -d \
-p 4000:4000 \
-e DATABASE_URL=$PROXY_DATABASE_URL_2 \
-e DATABASE_URL=$PROXY_DATABASE_URL \
-e LITELLM_MASTER_KEY="sk-1234" \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
-e UI_USERNAME="admin" \

View file

@ -1,135 +0,0 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Moderation
### Usage
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python
from litellm import moderation
response = moderation(
input="hello from litellm",
model="text-moderation-stable"
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy Server">
For `/moderations` endpoint, there is **no need to specify `model` in the request or on the litellm config.yaml**
Start litellm proxy server
```
litellm
```
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.moderations.create(
input="hello from litellm",
model="text-moderation-stable" # optional, defaults to `omni-moderation-latest`
)
print(response)
```
</TabItem>
<TabItem value="curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/moderations' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{"input": "Sample text goes here", "model": "text-moderation-stable"}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Input Params
LiteLLM accepts and translates the [OpenAI Moderation params](https://platform.openai.com/docs/api-reference/moderations) across all supported providers.
### Required Fields
- `input`: *string or array* - Input (or inputs) to classify. Can be a single string, an array of strings, or an array of multi-modal input objects similar to other models.
- If string: A string of text to classify for moderation
- If array of strings: An array of strings to classify for moderation
- If array of objects: An array of multi-modal inputs to the moderation model, where each object can be:
- An object describing an image to classify with:
- `type`: *string, required* - Always `image_url`
- `image_url`: *object, required* - Contains either an image URL or a data URL for a base64 encoded image
- An object describing text to classify with:
- `type`: *string, required* - Always `text`
- `text`: *string, required* - A string of text to classify
### Optional Fields
- `model`: *string (optional)* - The moderation model to use. Defaults to `omni-moderation-latest`.
## Output Format
Here's the exact json output and type you can expect from all moderation calls:
[**LiteLLM follows OpenAI's output format**](https://platform.openai.com/docs/api-reference/moderations/object)
```python
{
"id": "modr-AB8CjOTu2jiq12hp1AQPfeqFWaORR",
"model": "text-moderation-007",
"results": [
{
"flagged": true,
"categories": {
"sexual": false,
"hate": false,
"harassment": true,
"self-harm": false,
"sexual/minors": false,
"hate/threatening": false,
"violence/graphic": false,
"self-harm/intent": false,
"self-harm/instructions": false,
"harassment/threatening": true,
"violence": true
},
"category_scores": {
"sexual": 0.000011726012417057063,
"hate": 0.22706663608551025,
"harassment": 0.5215635299682617,
"self-harm": 2.227119921371923e-6,
"sexual/minors": 7.107352217872176e-8,
"hate/threatening": 0.023547329008579254,
"violence/graphic": 0.00003391829886822961,
"self-harm/intent": 1.646940972932498e-6,
"self-harm/instructions": 1.1198755256458526e-9,
"harassment/threatening": 0.5694745779037476,
"violence": 0.9971134662628174
}
}
]
}
```
## **Supported Providers**
| Provider |
|-------------|
| OpenAI |

View file

@ -4,63 +4,24 @@ import TabItem from '@theme/TabItem';
# Argilla
Argilla is a collaborative annotation tool for AI engineers and domain experts who need to build high-quality datasets for their projects.
Argilla is a tool for annotating datasets.
## Getting Started
To log the data to Argilla, first you need to deploy the Argilla server. If you have not deployed the Argilla server, please follow the instructions [here](https://docs.argilla.io/latest/getting_started/quickstart/).
Next, you will need to configure and create the Argilla dataset.
```python
import argilla as rg
client = rg.Argilla(api_url="<api_url>", api_key="<api_key>")
settings = rg.Settings(
guidelines="These are some guidelines.",
fields=[
rg.ChatField(
name="user_input",
),
rg.TextField(
name="llm_output",
),
],
questions=[
rg.RatingQuestion(
name="rating",
values=[1, 2, 3, 4, 5, 6, 7],
),
],
)
dataset = rg.Dataset(
name="my_first_dataset",
settings=settings,
)
dataset.create()
```
For further configuration, please refer to the [Argilla documentation](https://docs.argilla.io/latest/how_to_guides/dataset/).
## Usage
## Usage
<Tabs>
<Tab value="sdk" label="SDK">
```python
import os
import litellm
from litellm import completion
import litellm
import os
# add env vars
os.environ["ARGILLA_API_KEY"]="argilla.apikey"
os.environ["ARGILLA_BASE_URL"]="http://localhost:6900"
os.environ["ARGILLA_DATASET_NAME"]="my_first_dataset"
os.environ["ARGILLA_DATASET_NAME"]="my_second_dataset"
os.environ["OPENAI_API_KEY"]="sk-proj-..."
litellm.callbacks = ["argilla"]

View file

@ -1,59 +0,0 @@
# File Management
## `include` external YAML files in a config.yaml
You can use `include` to include external YAML files in a config.yaml.
**Quick Start Usage:**
To include a config file, use `include` with either a single file or a list of files.
Contents of `parent_config.yaml`:
```yaml
include:
- model_config.yaml # 👈 Key change, will include the contents of model_config.yaml
litellm_settings:
callbacks: ["prometheus"]
```
Contents of `model_config.yaml`:
```yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/
```
Start proxy server
This will start the proxy server with config `parent_config.yaml`. Since the `include` directive is used, the server will also include the contents of `model_config.yaml`.
```
litellm --config parent_config.yaml --detailed_debug
```
## Examples using `include`
Include a single file:
```yaml
include:
- model_config.yaml
```
Include multiple files:
```yaml
include:
- model_config.yaml
- another_config.yaml
```

View file

@ -279,31 +279,7 @@ router_settings:
| retry_policy | object | Specifies the number of retries for different types of exceptions. [More information here](reliability) |
| allowed_fails | integer | The number of failures allowed before cooling down a model. [More information here](reliability) |
| allowed_fails_policy | object | Specifies the number of allowed failures for different error types before cooling down a deployment. [More information here](reliability) |
| default_max_parallel_requests | Optional[int] | The default maximum number of parallel requests for a deployment. |
| default_priority | (Optional[int]) | The default priority for a request. Only for '.scheduler_acompletion()'. Default is None. |
| polling_interval | (Optional[float]) | frequency of polling queue. Only for '.scheduler_acompletion()'. Default is 3ms. |
| max_fallbacks | Optional[int] | The maximum number of fallbacks to try before exiting the call. Defaults to 5. |
| default_litellm_params | Optional[dict] | The default litellm parameters to add to all requests (e.g. `temperature`, `max_tokens`). |
| timeout | Optional[float] | The default timeout for a request. |
| debug_level | Literal["DEBUG", "INFO"] | The debug level for the logging library in the router. Defaults to "INFO". |
| client_ttl | int | Time-to-live for cached clients in seconds. Defaults to 3600. |
| cache_kwargs | dict | Additional keyword arguments for the cache initialization. |
| routing_strategy_args | dict | Additional keyword arguments for the routing strategy - e.g. lowest latency routing default ttl |
| model_group_alias | dict | Model group alias mapping. E.g. `{"claude-3-haiku": "claude-3-haiku-20240229"}` |
| num_retries | int | Number of retries for a request. Defaults to 3. |
| default_fallbacks | Optional[List[str]] | Fallbacks to try if no model group-specific fallbacks are defined. |
| caching_groups | Optional[List[tuple]] | List of model groups for caching across model groups. Defaults to None. - e.g. caching_groups=[("openai-gpt-3.5-turbo", "azure-gpt-3.5-turbo")]|
| alerting_config | AlertingConfig | [SDK-only arg] Slack alerting configuration. Defaults to None. [Further Docs](../routing.md#alerting-) |
| assistants_config | AssistantsConfig | Set on proxy via `assistant_settings`. [Further docs](../assistants.md) |
| set_verbose | boolean | [DEPRECATED PARAM - see debug docs](./debugging.md) If true, sets the logging level to verbose. |
| retry_after | int | Time to wait before retrying a request in seconds. Defaults to 0. If `x-retry-after` is received from LLM API, this value is overridden. |
| provider_budget_config | ProviderBudgetConfig | Provider budget configuration. Use this to set llm_provider budget limits. example $100/day to OpenAI, $100/day to Azure, etc. Defaults to None. [Further Docs](./provider_budget_routing.md) |
| enable_pre_call_checks | boolean | If true, checks if a call is within the model's context window before making the call. [More information here](reliability) |
| model_group_retry_policy | Dict[str, RetryPolicy] | [SDK-only arg] Set retry policy for model groups. |
| context_window_fallbacks | List[Dict[str, List[str]]] | Fallback models for context window violations. |
| redis_url | str | URL for Redis server. **Known performance issue with Redis URL.** |
| cache_responses | boolean | Flag to enable caching LLM Responses, if cache set under `router_settings`. If true, caches responses. Defaults to False. |
| router_general_settings | RouterGeneralSettings | [SDK-Only] Router general settings - contains optimizations like 'async_only_mode'. [Docs](../routing.md#router-general-settings) |
### environment variables - Reference
@ -359,8 +335,6 @@ router_settings:
| DD_SITE | Site URL for Datadog (e.g., datadoghq.com)
| DD_SOURCE | Source identifier for Datadog logs
| DD_ENV | Environment identifier for Datadog logs. Only supported for `datadog_llm_observability` callback
| DD_SERVICE | Service identifier for Datadog logs. Defaults to "litellm-server"
| DD_VERSION | Version identifier for Datadog logs. Defaults to "unknown"
| DEBUG_OTEL | Enable debug mode for OpenTelemetry
| DIRECT_URL | Direct URL for service endpoint
| DISABLE_ADMIN_UI | Toggle to disable the admin UI

View file

@ -2,7 +2,7 @@ import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Overview
# Proxy Config.yaml
Set model list, `api_base`, `api_key`, `temperature` & proxy server settings (`master-key`) on the config.yaml.
| Param Name | Description |
@ -357,6 +357,77 @@ curl --location 'http://0.0.0.0:4000/v1/model/info' \
--data ''
```
### Provider specific wildcard routing
**Proxy all models from a provider**
Use this if you want to **proxy all models from a specific provider without defining them on the config.yaml**
**Step 1** - define provider specific routing on config.yaml
```yaml
model_list:
# provider specific wildcard routing
- model_name: "anthropic/*"
litellm_params:
model: "anthropic/*"
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: "groq/*"
litellm_params:
model: "groq/*"
api_key: os.environ/GROQ_API_KEY
- model_name: "fo::*:static::*" # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
litellm_params:
model: "openai/fo::*:static::*"
api_key: os.environ/OPENAI_API_KEY
```
Step 2 - Run litellm proxy
```shell
$ litellm --config /path/to/config.yaml
```
Step 3 Test it
Test with `anthropic/` - all models with `anthropic/` prefix will get routed to `anthropic/*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "anthropic/claude-3-sonnet-20240229",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `groq/` - all models with `groq/` prefix will get routed to `groq/*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "groq/llama3-8b-8192",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `fo::*::static::*` - all requests matching this pattern will be routed to `openai/fo::*:static::*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "fo::hi::static::hi",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
### Load Balancing
:::info

View file

@ -50,22 +50,18 @@ You can see the full DB Schema [here](https://github.com/BerriAI/litellm/blob/ma
| LiteLLM_ErrorLogs | Captures failed requests and errors. Stores exception details and request information. Helps with debugging and monitoring. | **Medium - on errors only** |
| LiteLLM_AuditLog | Tracks changes to system configuration. Records who made changes and what was modified. Maintains history of updates to teams, users, and models. | **Off by default**, **High - when enabled** |
## Disable `LiteLLM_SpendLogs` & `LiteLLM_ErrorLogs`
## How to Disable `LiteLLM_SpendLogs`
You can disable spend_logs and error_logs by setting `disable_spend_logs` and `disable_error_logs` to `True` on the `general_settings` section of your proxy_config.yaml file.
You can disable spend_logs by setting `disable_spend_logs` to `True` on the `general_settings` section of your proxy_config.yaml file.
```yaml
general_settings:
disable_spend_logs: True # Disable writing spend logs to DB
disable_error_logs: True # Disable writing error logs to DB
disable_spend_logs: True
```
### What is the impact of disabling these logs?
When disabling spend logs (`disable_spend_logs: True`):
### What is the impact of disabling `LiteLLM_SpendLogs`?
- You **will not** be able to view Usage on the LiteLLM UI
- You **will** continue seeing cost metrics on s3, Prometheus, Langfuse (any other Logging integration you are using)
When disabling error logs (`disable_error_logs: True`):
- You **will not** be able to view Errors on the LiteLLM UI
- You **will** continue seeing error logs in your application logs and any other logging integrations you are using

View file

@ -23,7 +23,6 @@ general_settings:
# OPTIONAL Best Practices
disable_spend_logs: True # turn off writing each transaction to the db. We recommend doing this is you don't need to see Usage on the LiteLLM UI and are tracking metrics via Prometheus
disable_error_logs: True # turn off writing LLM Exceptions to DB
allow_requests_on_db_unavailable: True # Only USE when running LiteLLM on your VPC. Allow requests to still be processed even if the DB is unavailable. We recommend doing this if you're running LiteLLM on VPC that cannot be accessed from the public internet.
litellm_settings:
@ -103,22 +102,17 @@ general_settings:
allow_requests_on_db_unavailable: True
```
## 6. Disable spend_logs & error_logs if not using the LiteLLM UI
## 6. Disable spend_logs if you're not using the LiteLLM UI
By default, LiteLLM writes several types of logs to the database:
- Every LLM API request to the `LiteLLM_SpendLogs` table
- LLM Exceptions to the `LiteLLM_LogsErrors` table
By default LiteLLM will write every request to the `LiteLLM_SpendLogs` table. This is used for viewing Usage on the LiteLLM UI.
If you're not viewing these logs on the LiteLLM UI (most users use Prometheus for monitoring), you can disable them by setting the following flags to `True`:
If you're not viewing Usage on the LiteLLM UI (most users use Prometheus when this is disabled), you can disable spend_logs by setting `disable_spend_logs` to `True`.
```yaml
general_settings:
disable_spend_logs: True # Disable writing spend logs to DB
disable_error_logs: True # Disable writing error logs to DB
disable_spend_logs: True
```
[More information about what the Database is used for here](db_info)
## 7. Use Helm PreSync Hook for Database Migrations [BETA]
To ensure only one service manages database migrations, use our [Helm PreSync hook for Database Migrations](https://github.com/BerriAI/litellm/blob/main/deploy/charts/litellm-helm/templates/migrations-job.yaml). This ensures migrations are handled during `helm upgrade` or `helm install`, while LiteLLM pods explicitly disable migrations.

View file

@ -192,13 +192,3 @@ Here is a screenshot of the metrics you can monitor with the LiteLLM Grafana Das
|----------------------|--------------------------------------|
| `litellm_llm_api_failed_requests_metric` | **deprecated** use `litellm_proxy_failed_requests_metric` |
| `litellm_requests_metric` | **deprecated** use `litellm_proxy_total_requests_metric` |
## FAQ
### What are `_created` vs. `_total` metrics?
- `_created` metrics are metrics that are created when the proxy starts
- `_total` metrics are metrics that are incremented for each request
You should consume the `_total` metrics for your counting purposes

View file

@ -1891,22 +1891,3 @@ router = Router(
debug_level="DEBUG" # defaults to INFO
)
```
## Router General Settings
### Usage
```python
router = Router(model_list=..., router_general_settings=RouterGeneralSettings(async_only_mode=True))
```
### Spec
```python
class RouterGeneralSettings(BaseModel):
async_only_mode: bool = Field(
default=False
) # this will only initialize async clients. Good for memory utils
pass_through_all_models: bool = Field(
default=False
) # if passed a model not llm_router model list, pass through the request to litellm.acompletion/embedding
```

View file

@ -1,174 +0,0 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Text Completion
### Usage
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python
from litellm import text_completion
response = text_completion(
model="gpt-3.5-turbo-instruct",
prompt="Say this is a test",
max_tokens=7
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy Server">
1. Define models on config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo-instruct
litellm_params:
model: text-completion-openai/gpt-3.5-turbo-instruct # The `text-completion-openai/` prefix will call openai.completions.create
api_key: os.environ/OPENAI_API_KEY
- model_name: text-davinci-003
litellm_params:
model: text-completion-openai/text-davinci-003
api_key: os.environ/OPENAI_API_KEY
```
2. Start litellm proxy server
```
litellm --config config.yaml
```
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt="Say this is a test",
max_tokens=7
)
print(response)
```
</TabItem>
<TabItem value="curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{
"model": "gpt-3.5-turbo-instruct",
"prompt": "Say this is a test",
"max_tokens": 7
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Input Params
LiteLLM accepts and translates the [OpenAI Text Completion params](https://platform.openai.com/docs/api-reference/completions) across all supported providers.
### Required Fields
- `model`: *string* - ID of the model to use
- `prompt`: *string or array* - The prompt(s) to generate completions for
### Optional Fields
- `best_of`: *integer* - Generates best_of completions server-side and returns the "best" one
- `echo`: *boolean* - Echo back the prompt in addition to the completion.
- `frequency_penalty`: *number* - Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency.
- `logit_bias`: *map* - Modify the likelihood of specified tokens appearing in the completion
- `logprobs`: *integer* - Include the log probabilities on the logprobs most likely tokens. Max value of 5
- `max_tokens`: *integer* - The maximum number of tokens to generate.
- `n`: *integer* - How many completions to generate for each prompt.
- `presence_penalty`: *number* - Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far.
- `seed`: *integer* - If specified, system will attempt to make deterministic samples
- `stop`: *string or array* - Up to 4 sequences where the API will stop generating tokens
- `stream`: *boolean* - Whether to stream back partial progress. Defaults to false
- `suffix`: *string* - The suffix that comes after a completion of inserted text
- `temperature`: *number* - What sampling temperature to use, between 0 and 2.
- `top_p`: *number* - An alternative to sampling with temperature, called nucleus sampling.
- `user`: *string* - A unique identifier representing your end-user
## Output Format
Here's the exact JSON output format you can expect from completion calls:
[**Follows OpenAI's output format**](https://platform.openai.com/docs/api-reference/completions/object)
<Tabs>
<TabItem value="non-streaming" label="Non-Streaming Response">
```python
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "gpt-3.5-turbo-instruct",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
```
</TabItem>
<TabItem value="streaming" label="Streaming Response">
```python
{
"id": "cmpl-7iA7iJjj8V2zOkCGvWF2hAkDWBQZe",
"object": "text_completion",
"created": 1690759702,
"choices": [
{
"text": "This",
"index": 0,
"logprobs": null,
"finish_reason": null
}
],
"model": "gpt-3.5-turbo-instruct"
"system_fingerprint": "fp_44709d6fcb",
}
```
</TabItem>
</Tabs>
## **Supported Providers**
| Provider | Link to Usage |
|-------------|--------------------|
| OpenAI | [Usage](../docs/providers/text_completion_openai) |
| Azure OpenAI| [Usage](../docs/providers/azure) |

View file

@ -1,140 +0,0 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Provider specific Wildcard routing
**Proxy all models from a provider**
Use this if you want to **proxy all models from a specific provider without defining them on the config.yaml**
## Step 1. Define provider specific routing
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import Router
router = Router(
model_list=[
{
"model_name": "anthropic/*",
"litellm_params": {
"model": "anthropic/*",
"api_key": os.environ["ANTHROPIC_API_KEY"]
}
},
{
"model_name": "groq/*",
"litellm_params": {
"model": "groq/*",
"api_key": os.environ["GROQ_API_KEY"]
}
},
{
"model_name": "fo::*:static::*", # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
"litellm_params": {
"model": "openai/fo::*:static::*",
"api_key": os.environ["OPENAI_API_KEY"]
}
}
]
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
**Step 1** - define provider specific routing on config.yaml
```yaml
model_list:
# provider specific wildcard routing
- model_name: "anthropic/*"
litellm_params:
model: "anthropic/*"
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: "groq/*"
litellm_params:
model: "groq/*"
api_key: os.environ/GROQ_API_KEY
- model_name: "fo::*:static::*" # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
litellm_params:
model: "openai/fo::*:static::*"
api_key: os.environ/OPENAI_API_KEY
```
</TabItem>
</Tabs>
## [PROXY-Only] Step 2 - Run litellm proxy
```shell
$ litellm --config /path/to/config.yaml
```
## Step 3 - Test it
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import Router
router = Router(model_list=...)
# Test with `anthropic/` - all models with `anthropic/` prefix will get routed to `anthropic/*`
resp = completion(model="anthropic/claude-3-sonnet-20240229", messages=[{"role": "user", "content": "Hello, Claude!"}])
print(resp)
# Test with `groq/` - all models with `groq/` prefix will get routed to `groq/*`
resp = completion(model="groq/llama3-8b-8192", messages=[{"role": "user", "content": "Hello, Groq!"}])
print(resp)
# Test with `fo::*::static::*` - all requests matching this pattern will be routed to `openai/fo::*:static::*`
resp = completion(model="fo::hi::static::hi", messages=[{"role": "user", "content": "Hello, Claude!"}])
print(resp)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
Test with `anthropic/` - all models with `anthropic/` prefix will get routed to `anthropic/*`
```bash
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "anthropic/claude-3-sonnet-20240229",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `groq/` - all models with `groq/` prefix will get routed to `groq/*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "groq/llama3-8b-8192",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `fo::*::static::*` - all requests matching this pattern will be routed to `openai/fo::*:static::*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "fo::hi::static::hi",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
</TabItem>
</Tabs>

View file

@ -32,7 +32,7 @@ const sidebars = {
{
"type": "category",
"label": "Config.yaml",
"items": ["proxy/configs", "proxy/config_management", "proxy/config_settings"]
"items": ["proxy/configs", "proxy/config_settings"]
},
{
type: "category",
@ -246,7 +246,6 @@ const sidebars = {
"completion/usage",
],
},
"text_completion",
"embedding/supported_embedding",
"image_generation",
{
@ -262,7 +261,6 @@ const sidebars = {
"batches",
"realtime",
"fine_tuning",
"moderation",
{
type: "link",
label: "Use LiteLLM Proxy with Vertex, Bedrock SDK",
@ -279,7 +277,7 @@ const sidebars = {
description: "Learn how to load balance, route, and set fallbacks for your LLM requests",
slug: "/routing-load-balancing",
},
items: ["routing", "scheduler", "proxy/load_balancing", "proxy/reliability", "proxy/tag_routing", "proxy/provider_budget_routing", "proxy/team_based_routing", "proxy/customer_routing", "wildcard_routing"],
items: ["routing", "scheduler", "proxy/load_balancing", "proxy/reliability", "proxy/tag_routing", "proxy/provider_budget_routing", "proxy/team_based_routing", "proxy/customer_routing"],
},
{
type: "category",

View file

@ -2,9 +2,7 @@
from typing import Optional, List
from litellm._logging import verbose_logger
from litellm.proxy.proxy_server import PrismaClient, HTTPException
from litellm.llms.custom_httpx.http_handler import HTTPHandler
import collections
import httpx
from datetime import datetime
@ -116,6 +114,7 @@ async def ui_get_spend_by_tags(
def _forecast_daily_cost(data: list):
import requests # type: ignore
from datetime import datetime, timedelta
if len(data) == 0:
@ -137,17 +136,17 @@ def _forecast_daily_cost(data: list):
print("last entry date", last_entry_date)
# Assuming today_date is a datetime object
today_date = datetime.now()
# Calculate the last day of the month
last_day_of_todays_month = datetime(
today_date.year, today_date.month % 12 + 1, 1
) - timedelta(days=1)
print("last day of todays month", last_day_of_todays_month)
# Calculate the remaining days in the month
remaining_days = (last_day_of_todays_month - last_entry_date).days
print("remaining days", remaining_days)
current_spend_this_month = 0
series = {}
for entry in data:
@ -177,19 +176,13 @@ def _forecast_daily_cost(data: list):
"Content-Type": "application/json",
}
client = HTTPHandler()
try:
response = client.post(
url="https://trend-api-production.up.railway.app/forecast",
json=payload,
headers=headers,
)
except httpx.HTTPStatusError as e:
raise HTTPException(
status_code=500,
detail={"error": f"Error getting forecast: {e.response.text}"},
)
response = requests.post(
url="https://trend-api-production.up.railway.app/forecast",
json=payload,
headers=headers,
)
# check the status code
response.raise_for_status()
json_response = response.json()
forecast_data = json_response["forecast"]
@ -213,3 +206,13 @@ def _forecast_daily_cost(data: list):
f"Predicted Spend for { today_month } 2024, ${total_predicted_spend}"
)
return {"response": response_data, "predicted_spend": predicted_spend}
# print(f"Date: {entry['date']}, Spend: {entry['spend']}, Response: {response.text}")
# _forecast_daily_cost(
# [
# {"date": "2022-01-01", "spend": 100},
# ]
# )

View file

@ -68,7 +68,6 @@ callbacks: List[Union[Callable, _custom_logger_compatible_callbacks_literal]] =
langfuse_default_tags: Optional[List[str]] = None
langsmith_batch_size: Optional[int] = None
argilla_batch_size: Optional[int] = None
datadog_use_v1: Optional[bool] = False # if you want to use v1 datadog logged payload
argilla_transformation_object: Optional[Dict[str, Any]] = None
_async_input_callback: List[Callable] = (
[]

View file

@ -32,11 +32,9 @@ from litellm.llms.custom_httpx.http_handler import (
get_async_httpx_client,
httpxSpecialProvider,
)
from litellm.proxy._types import UserAPIKeyAuth
from litellm.types.integrations.datadog import *
from litellm.types.services import ServiceLoggerPayload
from litellm.types.utils import StandardLoggingPayload
from .types import DD_ERRORS, DatadogPayload, DataDogStatus
from .utils import make_json_serializable
DD_MAX_BATCH_SIZE = 1000 # max number of logs DD API can accept
@ -108,20 +106,20 @@ class DataDogLogger(CustomBatchLogger):
verbose_logger.debug(
"Datadog: Logging - Enters logging function for model %s", kwargs
)
await self._log_async_event(kwargs, response_obj, start_time, end_time)
except Exception as e:
verbose_logger.exception(
f"Datadog Layer Error - {str(e)}\n{traceback.format_exc()}"
dd_payload = self.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
pass
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
try:
self.log_queue.append(dd_payload)
verbose_logger.debug(
"Datadog: Logging - Enters logging function for model %s", kwargs
f"Datadog, event added to queue. Will flush in {self.flush_interval} seconds..."
)
await self._log_async_event(kwargs, response_obj, start_time, end_time)
if len(self.log_queue) >= self.batch_size:
await self.async_send_batch()
except Exception as e:
verbose_logger.exception(
@ -183,20 +181,12 @@ class DataDogLogger(CustomBatchLogger):
verbose_logger.debug(
"Datadog: Logging - Enters logging function for model %s", kwargs
)
if litellm.datadog_use_v1 is True:
dd_payload = self._create_v0_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
else:
dd_payload = self.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
dd_payload = self.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
response = self.sync_client.post(
url=self.intake_url,
@ -225,22 +215,6 @@ class DataDogLogger(CustomBatchLogger):
pass
pass
async def _log_async_event(self, kwargs, response_obj, start_time, end_time):
dd_payload = self.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
self.log_queue.append(dd_payload)
verbose_logger.debug(
f"Datadog, event added to queue. Will flush in {self.flush_interval} seconds..."
)
if len(self.log_queue) >= self.batch_size:
await self.async_send_batch()
def create_datadog_logging_payload(
self,
kwargs: Union[dict, Any],
@ -262,29 +236,73 @@ class DataDogLogger(CustomBatchLogger):
"""
import json
standard_logging_object: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
if standard_logging_object is None:
raise ValueError("standard_logging_object not found in kwargs")
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
messages = kwargs.get("messages")
optional_params = kwargs.get("optional_params", {})
call_type = kwargs.get("call_type", "litellm.completion")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj["usage"]
id = response_obj.get("id", str(uuid.uuid4()))
usage = dict(usage)
try:
response_time = (end_time - start_time).total_seconds() * 1000
except Exception:
response_time = None
status = DataDogStatus.INFO
if standard_logging_object.get("status") == "failure":
status = DataDogStatus.ERROR
try:
response_obj = dict(response_obj)
except Exception:
response_obj = response_obj
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# clean litellm metadata before logging
if key in [
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
# Build the initial payload
make_json_serializable(standard_logging_object)
json_payload = json.dumps(standard_logging_object)
payload = {
"id": id,
"call_type": call_type,
"cache_hit": cache_hit,
"start_time": start_time,
"end_time": end_time,
"response_time": response_time,
"model": kwargs.get("model", ""),
"user": kwargs.get("user", ""),
"model_parameters": optional_params,
"spend": kwargs.get("response_cost", 0),
"messages": messages,
"response": response_obj,
"usage": usage,
"metadata": clean_metadata,
}
make_json_serializable(payload)
json_payload = json.dumps(payload)
verbose_logger.debug("Datadog: Logger - Logging payload = %s", json_payload)
dd_payload = DatadogPayload(
ddsource=self._get_datadog_source(),
ddtags=self._get_datadog_tags(),
hostname=self._get_datadog_hostname(),
ddsource=os.getenv("DD_SOURCE", "litellm"),
ddtags="",
hostname="",
message=json_payload,
service=self._get_datadog_service(),
status=status,
service="litellm-server",
status=DataDogStatus.INFO,
)
return dd_payload
@ -364,140 +382,3 @@ class DataDogLogger(CustomBatchLogger):
No user has asked for this so far, this might be spammy on datatdog. If need arises we can implement this
"""
return
async def async_post_call_failure_hook(
self,
request_data: dict,
original_exception: Exception,
user_api_key_dict: UserAPIKeyAuth,
):
"""
Handles Proxy Errors (not-related to LLM API), ex: Authentication Errors
"""
import json
_exception_payload = DatadogProxyFailureHookJsonMessage(
exception=str(original_exception),
error_class=str(original_exception.__class__.__name__),
status_code=getattr(original_exception, "status_code", None),
traceback=traceback.format_exc(),
user_api_key_dict=user_api_key_dict.model_dump(),
)
json_payload = json.dumps(_exception_payload)
verbose_logger.debug("Datadog: Logger - Logging payload = %s", json_payload)
dd_payload = DatadogPayload(
ddsource=self._get_datadog_source(),
ddtags=self._get_datadog_tags(),
hostname=self._get_datadog_hostname(),
message=json_payload,
service=self._get_datadog_service(),
status=DataDogStatus.ERROR,
)
self.log_queue.append(dd_payload)
def _create_v0_logging_payload(
self,
kwargs: Union[dict, Any],
response_obj: Any,
start_time: datetime.datetime,
end_time: datetime.datetime,
) -> DatadogPayload:
"""
Note: This is our V1 Version of DataDog Logging Payload
(Not Recommended) If you want this to get logged set `litellm.datadog_use_v1 = True`
"""
import json
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
messages = kwargs.get("messages")
optional_params = kwargs.get("optional_params", {})
call_type = kwargs.get("call_type", "litellm.completion")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj["usage"]
id = response_obj.get("id", str(uuid.uuid4()))
usage = dict(usage)
try:
response_time = (end_time - start_time).total_seconds() * 1000
except Exception:
response_time = None
try:
response_obj = dict(response_obj)
except Exception:
response_obj = response_obj
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# clean litellm metadata before logging
if key in [
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
# Build the initial payload
payload = {
"id": id,
"call_type": call_type,
"cache_hit": cache_hit,
"start_time": start_time,
"end_time": end_time,
"response_time": response_time,
"model": kwargs.get("model", ""),
"user": kwargs.get("user", ""),
"model_parameters": optional_params,
"spend": kwargs.get("response_cost", 0),
"messages": messages,
"response": response_obj,
"usage": usage,
"metadata": clean_metadata,
}
make_json_serializable(payload)
json_payload = json.dumps(payload)
verbose_logger.debug("Datadog: Logger - Logging payload = %s", json_payload)
dd_payload = DatadogPayload(
ddsource=self._get_datadog_source(),
ddtags=self._get_datadog_tags(),
hostname=self._get_datadog_hostname(),
message=json_payload,
service=self._get_datadog_service(),
status=DataDogStatus.INFO,
)
return dd_payload
@staticmethod
def _get_datadog_tags():
return f"env:{os.getenv('DD_ENV', 'unknown')},service:{os.getenv('DD_SERVICE', 'litellm')},version:{os.getenv('DD_VERSION', 'unknown')}"
@staticmethod
def _get_datadog_source():
return os.getenv("DD_SOURCE", "litellm")
@staticmethod
def _get_datadog_service():
return os.getenv("DD_SERVICE", "litellm-server")
@staticmethod
def _get_datadog_hostname():
return ""
@staticmethod
def _get_datadog_env():
return os.getenv("DD_ENV", "unknown")

View file

@ -1,5 +1,5 @@
from enum import Enum
from typing import Optional, TypedDict
from typing import TypedDict
class DataDogStatus(str, Enum):
@ -19,11 +19,3 @@ class DatadogPayload(TypedDict, total=False):
class DD_ERRORS(Enum):
DATADOG_413_ERROR = "Datadog API Error - Payload too large (batch is above 5MB uncompressed). If you want this logged either disable request/response logging or set `DD_BATCH_SIZE=50`"
class DatadogProxyFailureHookJsonMessage(TypedDict, total=False):
exception: str
error_class: str
status_code: Optional[int]
traceback: str
user_api_key_dict: dict

View file

@ -458,7 +458,7 @@ class AmazonConverseConfig:
"""
Abbreviations of regions AWS Bedrock supports for cross region inference
"""
return ["us", "eu", "apac"]
return ["us", "eu"]
def _get_base_model(self, model: str) -> str:
"""

View file

@ -28,62 +28,6 @@ headers = {
_DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0)
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
import re
def mask_sensitive_info(error_message):
# Find the start of the key parameter
if isinstance(error_message, str):
key_index = error_message.find("key=")
else:
return error_message
# If key is found
if key_index != -1:
# Find the end of the key parameter (next & or end of string)
next_param = error_message.find("&", key_index)
if next_param == -1:
# If no more parameters, mask until the end of the string
masked_message = error_message[: key_index + 4] + "[REDACTED_API_KEY]"
else:
# Replace the key with redacted value, keeping other parameters
masked_message = (
error_message[: key_index + 4]
+ "[REDACTED_API_KEY]"
+ error_message[next_param:]
)
return masked_message
return error_message
class MaskedHTTPStatusError(httpx.HTTPStatusError):
def __init__(
self, original_error, message: Optional[str] = None, text: Optional[str] = None
):
# Create a new error with the masked URL
masked_url = mask_sensitive_info(str(original_error.request.url))
# Create a new error that looks like the original, but with a masked URL
super().__init__(
message=original_error.message,
request=httpx.Request(
method=original_error.request.method,
url=masked_url,
headers=original_error.request.headers,
content=original_error.request.content,
),
response=httpx.Response(
status_code=original_error.response.status_code,
content=original_error.response.content,
headers=original_error.response.headers,
),
)
self.message = message
self.text = text
class AsyncHTTPHandler:
def __init__(
@ -211,16 +155,13 @@ class AsyncHTTPHandler:
headers=headers,
)
except httpx.HTTPStatusError as e:
setattr(e, "status_code", e.response.status_code)
if stream is True:
setattr(e, "message", await e.response.aread())
setattr(e, "text", await e.response.aread())
else:
setattr(e, "message", mask_sensitive_info(e.response.text))
setattr(e, "text", mask_sensitive_info(e.response.text))
setattr(e, "status_code", e.response.status_code)
setattr(e, "message", e.response.text)
setattr(e, "text", e.response.text)
raise e
except Exception as e:
raise e
@ -458,17 +399,11 @@ class HTTPHandler:
llm_provider="litellm-httpx-handler",
)
except httpx.HTTPStatusError as e:
if stream is True:
setattr(e, "message", mask_sensitive_info(e.response.read()))
setattr(e, "text", mask_sensitive_info(e.response.read()))
else:
error_text = mask_sensitive_info(e.response.text)
setattr(e, "message", error_text)
setattr(e, "text", error_text)
setattr(e, "status_code", e.response.status_code)
if stream is True:
setattr(e, "message", e.response.read())
else:
setattr(e, "message", e.response.text)
raise e
except Exception as e:
raise e

View file

@ -1159,44 +1159,15 @@ def convert_to_anthropic_tool_result(
]
}
"""
anthropic_content: Union[
str,
List[Union[AnthropicMessagesToolResultContent, AnthropicMessagesImageParam]],
] = ""
content_str: str = ""
if isinstance(message["content"], str):
anthropic_content = message["content"]
content_str = message["content"]
elif isinstance(message["content"], List):
content_list = message["content"]
anthropic_content_list: List[
Union[AnthropicMessagesToolResultContent, AnthropicMessagesImageParam]
] = []
for content in content_list:
if content["type"] == "text":
anthropic_content_list.append(
AnthropicMessagesToolResultContent(
type="text",
text=content["text"],
)
)
elif content["type"] == "image_url":
if isinstance(content["image_url"], str):
image_chunk = convert_to_anthropic_image_obj(content["image_url"])
else:
image_chunk = convert_to_anthropic_image_obj(
content["image_url"]["url"]
)
anthropic_content_list.append(
AnthropicMessagesImageParam(
type="image",
source=AnthropicContentParamSource(
type="base64",
media_type=image_chunk["media_type"],
data=image_chunk["data"],
),
)
)
content_str += content["text"]
anthropic_content = anthropic_content_list
anthropic_tool_result: Optional[AnthropicMessagesToolResultParam] = None
## PROMPT CACHING CHECK ##
cache_control = message.get("cache_control", None)
@ -1207,14 +1178,14 @@ def convert_to_anthropic_tool_result(
# We can't determine from openai message format whether it's a successful or
# error call result so default to the successful result template
anthropic_tool_result = AnthropicMessagesToolResultParam(
type="tool_result", tool_use_id=tool_call_id, content=anthropic_content
type="tool_result", tool_use_id=tool_call_id, content=content_str
)
if message["role"] == "function":
function_message: ChatCompletionFunctionMessage = message
tool_call_id = function_message.get("tool_call_id") or str(uuid.uuid4())
anthropic_tool_result = AnthropicMessagesToolResultParam(
type="tool_result", tool_use_id=tool_call_id, content=anthropic_content
type="tool_result", tool_use_id=tool_call_id, content=content_str
)
if anthropic_tool_result is None:

View file

@ -107,10 +107,6 @@ def _get_image_mime_type_from_url(url: str) -> Optional[str]:
return "image/png"
elif url.endswith(".webp"):
return "image/webp"
elif url.endswith(".mp4"):
return "video/mp4"
elif url.endswith(".pdf"):
return "application/pdf"
return None

View file

@ -2032,6 +2032,7 @@
"tool_use_system_prompt_tokens": 264,
"supports_assistant_prefill": true,
"supports_prompt_caching": true,
"supports_pdf_input": true,
"supports_response_schema": true
},
"claude-3-opus-20240229": {
@ -2097,7 +2098,6 @@
"supports_vision": true,
"tool_use_system_prompt_tokens": 159,
"supports_assistant_prefill": true,
"supports_pdf_input": true,
"supports_prompt_caching": true,
"supports_response_schema": true
},
@ -3383,8 +3383,6 @@
"supports_vision": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-001": {
@ -3408,8 +3406,6 @@
"supports_vision": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash": {
@ -3432,8 +3428,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-latest": {
@ -3456,32 +3450,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b": {
"max_tokens": 8192,
"max_input_tokens": 1048576,
"max_output_tokens": 8192,
"max_images_per_prompt": 3000,
"max_videos_per_prompt": 10,
"max_video_length": 1,
"max_audio_length_hours": 8.4,
"max_audio_per_prompt": 1,
"max_pdf_size_mb": 30,
"input_cost_per_token": 0,
"input_cost_per_token_above_128k_tokens": 0,
"output_cost_per_token": 0,
"output_cost_per_token_above_128k_tokens": 0,
"litellm_provider": "gemini",
"mode": "chat",
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b-exp-0924": {
@ -3504,8 +3472,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-exp-1114": {
@ -3528,12 +3494,7 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing",
"metadata": {
"notes": "Rate limits not documented for gemini-exp-1114. Assuming same as gemini-1.5-pro."
}
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-exp-0827": {
"max_tokens": 8192,
@ -3555,8 +3516,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b-exp-0827": {
@ -3578,9 +3537,6 @@
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-pro": {
@ -3594,10 +3550,7 @@
"litellm_provider": "gemini",
"mode": "chat",
"supports_function_calling": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://ai.google.dev/gemini-api/docs/models/gemini"
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
},
"gemini/gemini-1.5-pro": {
"max_tokens": 8192,
@ -3614,8 +3567,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-002": {
@ -3634,8 +3585,6 @@
"supports_tool_choice": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-001": {
@ -3654,8 +3603,6 @@
"supports_tool_choice": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-exp-0801": {
@ -3673,8 +3620,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-exp-0827": {
@ -3692,8 +3637,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-latest": {
@ -3711,8 +3654,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-pro-vision": {
@ -3727,9 +3668,6 @@
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
},
"gemini/gemini-gemma-2-27b-it": {

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{11837:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_12bbc4', '__Inter_Fallback_12bbc4'",fontStyle:"normal"},className:"__className_12bbc4"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=11837)}),_N_E=n.O()}]);

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(e,n,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(e){e.exports={style:{fontFamily:"'__Inter_86ef86', '__Inter_Fallback_86ef86'",fontStyle:"normal"},className:"__className_86ef86"}}},function(e){e.O(0,[971,69,744],function(){return e(e.s=87421)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[461],{20723:function(e,s,t){Promise.resolve().then(t.bind(t,667))},667:function(e,s,t){"use strict";t.r(s),t.d(s,{default:function(){return g}});var l=t(57437),n=t(2265),a=t(47907),i=t(2179),r=t(18190),o=t(13810),c=t(10384),u=t(46453),d=t(71801),m=t(52273),h=t(42440),x=t(30953),f=t(777),p=t(37963),j=t(60620),_=t(13565);function g(){let[e]=j.Z.useForm(),s=(0,a.useSearchParams)();!function(e){console.log("COOKIES",document.cookie);let s=document.cookie.split("; ").find(s=>s.startsWith(e+"="));s&&s.split("=")[1]}("token");let t=s.get("invitation_id"),[g,Z]=(0,n.useState)(null),[k,w]=(0,n.useState)(""),[S,b]=(0,n.useState)(""),[N,v]=(0,n.useState)(null),[y,E]=(0,n.useState)(""),[I,O]=(0,n.useState)("");return(0,n.useEffect)(()=>{t&&(0,f.W_)(t).then(e=>{let s=e.login_url;console.log("login_url:",s),E(s);let t=e.token,l=(0,p.o)(t);O(t),console.log("decoded:",l),Z(l.key),console.log("decoded user email:",l.user_email),b(l.user_email),v(l.user_id)})},[t]),(0,l.jsx)("div",{className:"mx-auto w-full max-w-md mt-10",children:(0,l.jsxs)(o.Z,{children:[(0,l.jsx)(h.Z,{className:"text-sm mb-5 text-center",children:"\uD83D\uDE85 LiteLLM"}),(0,l.jsx)(h.Z,{className:"text-xl",children:"Sign up"}),(0,l.jsx)(d.Z,{children:"Claim your user account to login to Admin UI."}),(0,l.jsx)(r.Z,{className:"mt-4",title:"SSO",icon:x.GH$,color:"sky",children:(0,l.jsxs)(u.Z,{numItems:2,className:"flex justify-between items-center",children:[(0,l.jsx)(c.Z,{children:"SSO is under the Enterprise Tirer."}),(0,l.jsx)(c.Z,{children:(0,l.jsx)(i.Z,{variant:"primary",className:"mb-2",children:(0,l.jsx)("a",{href:"https://forms.gle/W3U4PZpJGFHWtHyA9",target:"_blank",children:"Get Free Trial"})})})]})}),(0,l.jsxs)(j.Z,{className:"mt-10 mb-5 mx-auto",layout:"vertical",onFinish:e=>{console.log("in handle submit. accessToken:",g,"token:",I,"formValues:",e),g&&I&&(e.user_email=S,N&&t&&(0,f.m_)(g,t,N,e.password).then(e=>{var s;let t="/ui/";t+="?userID="+((null===(s=e.data)||void 0===s?void 0:s.user_id)||e.user_id),document.cookie="token="+I,console.log("redirecting to:",t),window.location.href=t}))},children:[(0,l.jsxs)(l.Fragment,{children:[(0,l.jsx)(j.Z.Item,{label:"Email Address",name:"user_email",children:(0,l.jsx)(m.Z,{type:"email",disabled:!0,value:S,defaultValue:S,className:"max-w-md"})}),(0,l.jsx)(j.Z.Item,{label:"Password",name:"password",rules:[{required:!0,message:"password required to sign up"}],help:"Create a password for your account",children:(0,l.jsx)(m.Z,{placeholder:"",type:"password",className:"max-w-md"})})]}),(0,l.jsx)("div",{className:"mt-10",children:(0,l.jsx)(_.ZP,{htmlType:"submit",children:"Sign Up"})})]})]})})}}},function(e){e.O(0,[665,902,684,777,971,69,744],function(){return e(e.s=20723)}),_N_E=e.O()}]);
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[461],{61994:function(e,s,t){Promise.resolve().then(t.bind(t,667))},667:function(e,s,t){"use strict";t.r(s),t.d(s,{default:function(){return g}});var l=t(57437),n=t(2265),a=t(47907),i=t(2179),r=t(18190),o=t(13810),c=t(10384),u=t(46453),d=t(71801),m=t(52273),h=t(42440),x=t(30953),f=t(777),p=t(37963),j=t(60620),_=t(13565);function g(){let[e]=j.Z.useForm(),s=(0,a.useSearchParams)();!function(e){console.log("COOKIES",document.cookie);let s=document.cookie.split("; ").find(s=>s.startsWith(e+"="));s&&s.split("=")[1]}("token");let t=s.get("invitation_id"),[g,Z]=(0,n.useState)(null),[k,w]=(0,n.useState)(""),[S,b]=(0,n.useState)(""),[N,v]=(0,n.useState)(null),[y,E]=(0,n.useState)(""),[I,O]=(0,n.useState)("");return(0,n.useEffect)(()=>{t&&(0,f.W_)(t).then(e=>{let s=e.login_url;console.log("login_url:",s),E(s);let t=e.token,l=(0,p.o)(t);O(t),console.log("decoded:",l),Z(l.key),console.log("decoded user email:",l.user_email),b(l.user_email),v(l.user_id)})},[t]),(0,l.jsx)("div",{className:"mx-auto w-full max-w-md mt-10",children:(0,l.jsxs)(o.Z,{children:[(0,l.jsx)(h.Z,{className:"text-sm mb-5 text-center",children:"\uD83D\uDE85 LiteLLM"}),(0,l.jsx)(h.Z,{className:"text-xl",children:"Sign up"}),(0,l.jsx)(d.Z,{children:"Claim your user account to login to Admin UI."}),(0,l.jsx)(r.Z,{className:"mt-4",title:"SSO",icon:x.GH$,color:"sky",children:(0,l.jsxs)(u.Z,{numItems:2,className:"flex justify-between items-center",children:[(0,l.jsx)(c.Z,{children:"SSO is under the Enterprise Tirer."}),(0,l.jsx)(c.Z,{children:(0,l.jsx)(i.Z,{variant:"primary",className:"mb-2",children:(0,l.jsx)("a",{href:"https://forms.gle/W3U4PZpJGFHWtHyA9",target:"_blank",children:"Get Free Trial"})})})]})}),(0,l.jsxs)(j.Z,{className:"mt-10 mb-5 mx-auto",layout:"vertical",onFinish:e=>{console.log("in handle submit. accessToken:",g,"token:",I,"formValues:",e),g&&I&&(e.user_email=S,N&&t&&(0,f.m_)(g,t,N,e.password).then(e=>{var s;let t="/ui/";t+="?userID="+((null===(s=e.data)||void 0===s?void 0:s.user_id)||e.user_id),document.cookie="token="+I,console.log("redirecting to:",t),window.location.href=t}))},children:[(0,l.jsxs)(l.Fragment,{children:[(0,l.jsx)(j.Z.Item,{label:"Email Address",name:"user_email",children:(0,l.jsx)(m.Z,{type:"email",disabled:!0,value:S,defaultValue:S,className:"max-w-md"})}),(0,l.jsx)(j.Z.Item,{label:"Password",name:"password",rules:[{required:!0,message:"password required to sign up"}],help:"Create a password for your account",children:(0,l.jsx)(m.Z,{placeholder:"",type:"password",className:"max-w-md"})})]}),(0,l.jsx)("div",{className:"mt-10",children:(0,l.jsx)(_.ZP,{htmlType:"submit",children:"Sign Up"})})]})]})})}}},function(e){e.O(0,[665,902,684,777,971,69,744],function(){return e(e.s=61994)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{70377:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(70377)}),_N_E=e.O()}]);
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/ea3759ed931c00b2.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/00256a1984d35914.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

View file

@ -1,4 +1,4 @@
@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/ec159349637c90ad-s.woff2) format("woff2");unicode-range:u+0460-052f,u+1c80-1c88,u+20b4,u+2de0-2dff,u+a640-a69f,u+fe2e-fe2f}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/513657b02c5c193f-s.woff2) format("woff2");unicode-range:u+0301,u+0400-045f,u+0490-0491,u+04b0-04b1,u+2116}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/fd4db3eb5472fc27-s.woff2) format("woff2");unicode-range:u+1f??}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/51ed15f9841b9f9d-s.woff2) format("woff2");unicode-range:u+0370-0377,u+037a-037f,u+0384-038a,u+038c,u+038e-03a1,u+03a3-03ff}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/05a31a2ca4975f99-s.woff2) format("woff2");unicode-range:u+0102-0103,u+0110-0111,u+0128-0129,u+0168-0169,u+01a0-01a1,u+01af-01b0,u+0300-0301,u+0303-0304,u+0308-0309,u+0323,u+0329,u+1ea0-1ef9,u+20ab}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/d6b16ce4a6175f26-s.woff2) format("woff2");unicode-range:u+0100-02af,u+0304,u+0308,u+0329,u+1e00-1e9f,u+1ef2-1eff,u+2020,u+20a0-20ab,u+20ad-20c0,u+2113,u+2c60-2c7f,u+a720-a7ff}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2) format("woff2");unicode-range:u+00??,u+0131,u+0152-0153,u+02bb-02bc,u+02c6,u+02da,u+02dc,u+0304,u+0308,u+0329,u+2000-206f,u+2074,u+20ac,u+2122,u+2191,u+2193,u+2212,u+2215,u+feff,u+fffd}@font-face{font-family:__Inter_Fallback_12bbc4;src:local("Arial");ascent-override:90.20%;descent-override:22.48%;line-gap-override:0.00%;size-adjust:107.40%}.__className_12bbc4{font-family:__Inter_12bbc4,__Inter_Fallback_12bbc4;font-style:normal}
@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/55c55f0601d81cf3-s.woff2) format("woff2");unicode-range:u+0460-052f,u+1c80-1c88,u+20b4,u+2de0-2dff,u+a640-a69f,u+fe2e-fe2f}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/26a46d62cd723877-s.woff2) format("woff2");unicode-range:u+0301,u+0400-045f,u+0490-0491,u+04b0-04b1,u+2116}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/97e0cb1ae144a2a9-s.woff2) format("woff2");unicode-range:u+1f??}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/581909926a08bbc8-s.woff2) format("woff2");unicode-range:u+0370-0377,u+037a-037f,u+0384-038a,u+038c,u+038e-03a1,u+03a3-03ff}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/df0a9ae256c0569c-s.woff2) format("woff2");unicode-range:u+0102-0103,u+0110-0111,u+0128-0129,u+0168-0169,u+01a0-01a1,u+01af-01b0,u+0300-0301,u+0303-0304,u+0308-0309,u+0323,u+0329,u+1ea0-1ef9,u+20ab}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/6d93bde91c0c2823-s.woff2) format("woff2");unicode-range:u+0100-02af,u+0304,u+0308,u+0329,u+1e00-1e9f,u+1ef2-1eff,u+2020,u+20a0-20ab,u+20ad-20c0,u+2113,u+2c60-2c7f,u+a720-a7ff}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/a34f9d1faa5f3315-s.p.woff2) format("woff2");unicode-range:u+00??,u+0131,u+0152-0153,u+02bb-02bc,u+02c6,u+02da,u+02dc,u+0304,u+0308,u+0329,u+2000-206f,u+2074,u+20ac,u+2122,u+2191,u+2193,u+2212,u+2215,u+feff,u+fffd}@font-face{font-family:__Inter_Fallback_86ef86;src:local("Arial");ascent-override:90.20%;descent-override:22.48%;line-gap-override:0.00%;size-adjust:107.40%}.__className_86ef86{font-family:__Inter_86ef86,__Inter_Fallback_86ef86;font-style:normal}
/*
! tailwindcss v3.4.1 | MIT License | https://tailwindcss.com

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-f593049e31b05aeb.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-8316d07d1f41e39f.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[82989,[\"665\",\"static/chunks/3014691f-b24e8254c7593934.js\",\"936\",\"static/chunks/2f6dbc85-cac2949a76539886.js\",\"902\",\"static/chunks/902-292bb6a83427dbc7.js\",\"131\",\"static/chunks/131-4ee1d633e8928742.js\",\"684\",\"static/chunks/684-16b194c83a169f6d.js\",\"626\",\"static/chunks/626-0c564a21577c9c53.js\",\"777\",\"static/chunks/777-9d9df0b75010dbf9.js\",\"931\",\"static/chunks/app/page-a952da77e0730c7c.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"pDx3dChtj-paUmJExuV6u\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_12bbc4\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-e8ad0a25b0c46e0b.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-f593049e31b05aeb.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-8316d07d1f41e39f.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-e8ad0a25b0c46e0b.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/a34f9d1faa5f3315-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/00256a1984d35914.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[82989,[\"665\",\"static/chunks/3014691f-b24e8254c7593934.js\",\"936\",\"static/chunks/2f6dbc85-cac2949a76539886.js\",\"902\",\"static/chunks/902-58bf23027703b2e8.js\",\"131\",\"static/chunks/131-3d2257b0ff5aadb2.js\",\"684\",\"static/chunks/684-16b194c83a169f6d.js\",\"626\",\"static/chunks/626-4e8df4039ecf4386.js\",\"777\",\"static/chunks/777-9d9df0b75010dbf9.js\",\"931\",\"static/chunks/app/page-68b04cd7217f38ce.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/00256a1984d35914.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"WeMIGILYzOYN-R9DXbvCD\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_86ef86\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[82989,["665","static/chunks/3014691f-b24e8254c7593934.js","936","static/chunks/2f6dbc85-cac2949a76539886.js","902","static/chunks/902-292bb6a83427dbc7.js","131","static/chunks/131-4ee1d633e8928742.js","684","static/chunks/684-16b194c83a169f6d.js","626","static/chunks/626-0c564a21577c9c53.js","777","static/chunks/777-9d9df0b75010dbf9.js","931","static/chunks/app/page-a952da77e0730c7c.js"],""]
3:I[82989,["665","static/chunks/3014691f-b24e8254c7593934.js","936","static/chunks/2f6dbc85-cac2949a76539886.js","902","static/chunks/902-58bf23027703b2e8.js","131","static/chunks/131-3d2257b0ff5aadb2.js","684","static/chunks/684-16b194c83a169f6d.js","626","static/chunks/626-4e8df4039ecf4386.js","777","static/chunks/777-9d9df0b75010dbf9.js","931","static/chunks/app/page-68b04cd7217f38ce.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["pDx3dChtj-paUmJExuV6u",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["WeMIGILYzOYN-R9DXbvCD",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_86ef86","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00256a1984d35914.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

File diff suppressed because one or more lines are too long

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[87494,["902","static/chunks/902-292bb6a83427dbc7.js","131","static/chunks/131-4ee1d633e8928742.js","777","static/chunks/777-9d9df0b75010dbf9.js","418","static/chunks/app/model_hub/page-748a83a8e772a56b.js"],""]
3:I[87494,["902","static/chunks/902-58bf23027703b2e8.js","131","static/chunks/131-3d2257b0ff5aadb2.js","777","static/chunks/777-9d9df0b75010dbf9.js","418","static/chunks/app/model_hub/page-104cada6b5e5b14c.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["pDx3dChtj-paUmJExuV6u",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["WeMIGILYzOYN-R9DXbvCD",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_86ef86","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00256a1984d35914.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

File diff suppressed because one or more lines are too long

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[667,["665","static/chunks/3014691f-b24e8254c7593934.js","902","static/chunks/902-292bb6a83427dbc7.js","684","static/chunks/684-16b194c83a169f6d.js","777","static/chunks/777-9d9df0b75010dbf9.js","461","static/chunks/app/onboarding/page-884a15d08f8be397.js"],""]
3:I[667,["665","static/chunks/3014691f-b24e8254c7593934.js","902","static/chunks/902-58bf23027703b2e8.js","684","static/chunks/684-16b194c83a169f6d.js","777","static/chunks/777-9d9df0b75010dbf9.js","461","static/chunks/app/onboarding/page-bad6cfbe58b9d19c.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["pDx3dChtj-paUmJExuV6u",[[["",{"children":["onboarding",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["onboarding",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","onboarding","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["WeMIGILYzOYN-R9DXbvCD",[[["",{"children":["onboarding",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["onboarding",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","onboarding","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_86ef86","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00256a1984d35914.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -11,27 +11,7 @@ model_list:
model: vertex_ai/claude-3-5-sonnet-v2
vertex_ai_project: "adroit-crow-413218"
vertex_ai_location: "us-east5"
- model_name: openai-gpt-4o-realtime-audio
litellm_params:
model: openai/gpt-4o-realtime-preview-2024-10-01
api_key: os.environ/OPENAI_API_KEY
- model_name: openai/*
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
- model_name: openai/*
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
model_info:
access_groups: ["public-openai-models"]
- model_name: openai/gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
model_info:
access_groups: ["private-openai-models"]
router_settings:
routing_strategy: usage-based-routing-v2
#redis_url: "os.environ/REDIS_URL"

View file

@ -2183,11 +2183,3 @@ PassThroughEndpointLoggingResultValues = Union[
class PassThroughEndpointLoggingTypedDict(TypedDict):
result: Optional[PassThroughEndpointLoggingResultValues]
kwargs: dict
LiteLLM_ManagementEndpoint_MetadataFields = [
"model_rpm_limit",
"model_tpm_limit",
"guardrails",
"tags",
]

View file

@ -60,7 +60,6 @@ def common_checks( # noqa: PLR0915
global_proxy_spend: Optional[float],
general_settings: dict,
route: str,
llm_router: Optional[litellm.Router],
) -> bool:
"""
Common checks across jwt + key-based auth.
@ -98,12 +97,7 @@ def common_checks( # noqa: PLR0915
# this means the team has access to all models on the proxy
pass
# check if the team model is an access_group
elif (
model_in_access_group(
model=_model, team_models=team_object.models, llm_router=llm_router
)
is True
):
elif model_in_access_group(_model, team_object.models) is True:
pass
elif _model and "*" in _model:
pass
@ -379,33 +373,36 @@ async def get_end_user_object(
return None
def model_in_access_group(
model: str, team_models: Optional[List[str]], llm_router: Optional[litellm.Router]
) -> bool:
def model_in_access_group(model: str, team_models: Optional[List[str]]) -> bool:
from collections import defaultdict
from litellm.proxy.proxy_server import llm_router
if team_models is None:
return True
if model in team_models:
return True
access_groups: dict[str, list[str]] = defaultdict(list)
access_groups = defaultdict(list)
if llm_router:
access_groups = llm_router.get_model_access_groups(model_name=model)
access_groups = llm_router.get_model_access_groups()
models_in_current_access_groups = []
if len(access_groups) > 0: # check if token contains any model access groups
for idx, m in enumerate(
team_models
): # loop token models, if any of them are an access group add the access group
if m in access_groups:
return True
# if it is an access group we need to remove it from valid_token.models
models_in_group = access_groups[m]
models_in_current_access_groups.extend(models_in_group)
# Filter out models that are access_groups
filtered_models = [m for m in team_models if m not in access_groups]
filtered_models += models_in_current_access_groups
if model in filtered_models:
return True
return False
@ -526,6 +523,10 @@ async def _cache_management_object(
proxy_logging_obj: Optional[ProxyLogging],
):
await user_api_key_cache.async_set_cache(key=key, value=value)
if proxy_logging_obj is not None:
await proxy_logging_obj.internal_usage_cache.dual_cache.async_set_cache(
key=key, value=value
)
async def _cache_team_object(
@ -877,10 +878,7 @@ async def get_org_object(
async def can_key_call_model(
model: str,
llm_model_list: Optional[list],
valid_token: UserAPIKeyAuth,
llm_router: Optional[litellm.Router],
model: str, llm_model_list: Optional[list], valid_token: UserAPIKeyAuth
) -> Literal[True]:
"""
Checks if token can call a given model
@ -900,29 +898,35 @@ async def can_key_call_model(
)
from collections import defaultdict
from litellm.proxy.proxy_server import llm_router
access_groups = defaultdict(list)
if llm_router:
access_groups = llm_router.get_model_access_groups(model_name=model)
access_groups = llm_router.get_model_access_groups()
if (
len(access_groups) > 0 and llm_router is not None
): # check if token contains any model access groups
models_in_current_access_groups = []
if len(access_groups) > 0: # check if token contains any model access groups
for idx, m in enumerate(
valid_token.models
): # loop token models, if any of them are an access group add the access group
if m in access_groups:
return True
# if it is an access group we need to remove it from valid_token.models
models_in_group = access_groups[m]
models_in_current_access_groups.extend(models_in_group)
# Filter out models that are access_groups
filtered_models = [m for m in valid_token.models if m not in access_groups]
filtered_models += models_in_current_access_groups
verbose_proxy_logger.debug(f"model: {model}; allowed_models: {filtered_models}")
all_model_access: bool = False
if (
len(filtered_models) == 0 and len(valid_token.models) == 0
) or "*" in filtered_models:
len(filtered_models) == 0
or "*" in filtered_models
or "openai/*" in filtered_models
):
all_model_access = True
if model is not None and model not in filtered_models and all_model_access is False:

View file

@ -28,8 +28,6 @@ from fastapi import (
Request,
Response,
UploadFile,
WebSocket,
WebSocketDisconnect,
status,
)
from fastapi.middleware.cors import CORSMiddleware
@ -197,52 +195,6 @@ def _is_allowed_route(
)
async def user_api_key_auth_websocket(websocket: WebSocket):
# Accept the WebSocket connection
request = Request(scope={"type": "http"})
request._url = websocket.url
query_params = websocket.query_params
model = query_params.get("model")
async def return_body():
return_string = f'{{"model": "{model}"}}'
# return string as bytes
return return_string.encode()
request.body = return_body # type: ignore
# Extract the Authorization header
authorization = websocket.headers.get("authorization")
# If no Authorization header, try the api-key header
if not authorization:
api_key = websocket.headers.get("api-key")
if not api_key:
await websocket.close(code=status.WS_1008_POLICY_VIOLATION)
raise HTTPException(status_code=403, detail="No API key provided")
else:
# Extract the API key from the Bearer token
if not authorization.startswith("Bearer "):
await websocket.close(code=status.WS_1008_POLICY_VIOLATION)
raise HTTPException(
status_code=403, detail="Invalid Authorization header format"
)
api_key = authorization[len("Bearer ") :].strip()
# Call user_api_key_auth with the extracted API key
# Note: You'll need to modify this to work with WebSocket context if needed
try:
return await user_api_key_auth(request=request, api_key=f"Bearer {api_key}")
except Exception as e:
verbose_proxy_logger.exception(e)
await websocket.close(code=status.WS_1008_POLICY_VIOLATION)
raise HTTPException(status_code=403, detail=str(e))
async def user_api_key_auth( # noqa: PLR0915
request: Request,
api_key: str = fastapi.Security(api_key_header),
@ -259,7 +211,6 @@ async def user_api_key_auth( # noqa: PLR0915
jwt_handler,
litellm_proxy_admin_name,
llm_model_list,
llm_router,
master_key,
open_telemetry_logger,
prisma_client,
@ -543,7 +494,6 @@ async def user_api_key_auth( # noqa: PLR0915
general_settings=general_settings,
global_proxy_spend=global_proxy_spend,
route=route,
llm_router=llm_router,
)
# return UserAPIKeyAuth object
@ -907,7 +857,6 @@ async def user_api_key_auth( # noqa: PLR0915
model=model,
llm_model_list=llm_model_list,
valid_token=valid_token,
llm_router=llm_router,
)
if fallback_models is not None:
@ -916,7 +865,6 @@ async def user_api_key_auth( # noqa: PLR0915
model=m,
llm_model_list=llm_model_list,
valid_token=valid_token,
llm_router=llm_router,
)
# Check 2. If user_id for this token is in budget - done in common_checks()
@ -1177,7 +1125,6 @@ async def user_api_key_auth( # noqa: PLR0915
general_settings=general_settings,
global_proxy_spend=global_proxy_spend,
route=route,
llm_router=llm_router,
)
# Token passed all checks
if valid_token is None:
@ -1250,15 +1197,13 @@ async def user_api_key_auth( # noqa: PLR0915
extra={"requester_ip": requester_ip},
)
# Log this exception to OTEL, Datadog etc
asyncio.create_task(
proxy_logging_obj.async_log_proxy_authentication_errors(
# Log this exception to OTEL
if open_telemetry_logger is not None:
await open_telemetry_logger.async_post_call_failure_hook( # type: ignore
original_exception=e,
request=request,
parent_otel_span=parent_otel_span,
api_key=api_key,
request_data={},
user_api_key_dict=UserAPIKeyAuth(parent_otel_span=parent_otel_span),
)
)
if isinstance(e, litellm.BudgetExceededError):
raise ProxyException(

View file

@ -1,6 +1,6 @@
import ast
import json
from typing import Dict, List, Optional
from typing import List, Optional
from fastapi import Request, UploadFile, status
@ -8,43 +8,31 @@ from litellm._logging import verbose_proxy_logger
from litellm.types.router import Deployment
async def _read_request_body(request: Optional[Request]) -> Dict:
async def _read_request_body(request: Optional[Request]) -> dict:
"""
Safely read the request body and parse it as JSON.
Asynchronous function to read the request body and parse it as JSON or literal data.
Parameters:
- request: The request object to read the body from
Returns:
- dict: Parsed request data as a dictionary or an empty dictionary if parsing fails
- dict: Parsed request data as a dictionary
"""
try:
request_data: dict = {}
if request is None:
return {}
# Read the request body
return request_data
body = await request.body()
# Return empty dict if body is empty or None
if not body:
return {}
# Decode the body to a string
if body == b"" or body is None:
return request_data
body_str = body.decode()
# Attempt JSON parsing (safe for untrusted input)
return json.loads(body_str)
except json.JSONDecodeError:
# Log detailed information for debugging
verbose_proxy_logger.exception("Invalid JSON payload received.")
return {}
except Exception as e:
# Catch unexpected errors to avoid crashes
verbose_proxy_logger.exception(
"Unexpected error reading request body - {}".format(e)
)
try:
request_data = ast.literal_eval(body_str)
except Exception:
request_data = json.loads(body_str)
return request_data
except Exception:
return {}

View file

@ -214,10 +214,10 @@ class BedrockGuardrail(CustomGuardrail, BaseAWSLLM):
prepared_request.url,
prepared_request.headers,
)
_json_data = json.dumps(request_data) # type: ignore
response = await self.async_handler.post(
url=prepared_request.url,
data=prepared_request.body, # type: ignore
json=request_data, # type: ignore
headers=prepared_request.headers, # type: ignore
)
verbose_proxy_logger.debug("Bedrock AI response: %s", response.text)

View file

@ -1,87 +0,0 @@
"""
Runs when LLM Exceptions occur on LiteLLM Proxy
"""
import copy
import json
import uuid
import litellm
from litellm.proxy._types import LiteLLM_ErrorLogs
async def _PROXY_failure_handler(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time=None,
end_time=None, # start/end time for completion
):
"""
Async Failure Handler - runs when LLM Exceptions occur on LiteLLM Proxy.
This function logs the errors to the Prisma DB
Can be disabled by setting the following on proxy_config.yaml:
```yaml
general_settings:
disable_error_logs: True
```
"""
from litellm._logging import verbose_proxy_logger
from litellm.proxy.proxy_server import general_settings, prisma_client
if general_settings.get("disable_error_logs") is True:
return
if prisma_client is not None:
verbose_proxy_logger.debug(
"inside _PROXY_failure_handler kwargs=", extra=kwargs
)
_exception = kwargs.get("exception")
_exception_type = _exception.__class__.__name__
_model = kwargs.get("model", None)
_optional_params = kwargs.get("optional_params", {})
_optional_params = copy.deepcopy(_optional_params)
for k, v in _optional_params.items():
v = str(v)
v = v[:100]
_status_code = "500"
try:
_status_code = str(_exception.status_code)
except Exception:
# Don't let this fail logging the exception to the dB
pass
_litellm_params = kwargs.get("litellm_params", {}) or {}
_metadata = _litellm_params.get("metadata", {}) or {}
_model_id = _metadata.get("model_info", {}).get("id", "")
_model_group = _metadata.get("model_group", "")
api_base = litellm.get_api_base(model=_model, optional_params=_litellm_params)
_exception_string = str(_exception)
error_log = LiteLLM_ErrorLogs(
request_id=str(uuid.uuid4()),
model_group=_model_group,
model_id=_model_id,
litellm_model_name=kwargs.get("model"),
request_kwargs=_optional_params,
api_base=api_base,
exception_type=_exception_type,
status_code=_status_code,
exception_string=_exception_string,
startTime=kwargs.get("start_time"),
endTime=kwargs.get("end_time"),
)
error_log_dict = error_log.model_dump()
error_log_dict["request_kwargs"] = json.dumps(error_log_dict["request_kwargs"])
await prisma_client.db.litellm_errorlogs.create(
data=error_log_dict # type: ignore
)
pass

View file

@ -288,12 +288,12 @@ class LiteLLMProxyRequestSetup:
## KEY-LEVEL SPEND LOGS / TAGS
if "tags" in key_metadata and key_metadata["tags"] is not None:
data[_metadata_variable_name]["tags"] = (
LiteLLMProxyRequestSetup._merge_tags(
request_tags=data[_metadata_variable_name].get("tags"),
tags_to_add=key_metadata["tags"],
)
)
if "tags" in data[_metadata_variable_name] and isinstance(
data[_metadata_variable_name]["tags"], list
):
data[_metadata_variable_name]["tags"].extend(key_metadata["tags"])
else:
data[_metadata_variable_name]["tags"] = key_metadata["tags"]
if "spend_logs_metadata" in key_metadata and isinstance(
key_metadata["spend_logs_metadata"], dict
):
@ -319,30 +319,6 @@ class LiteLLMProxyRequestSetup:
data["disable_fallbacks"] = key_metadata["disable_fallbacks"]
return data
@staticmethod
def _merge_tags(request_tags: Optional[list], tags_to_add: Optional[list]) -> list:
"""
Helper function to merge two lists of tags, ensuring no duplicates.
Args:
request_tags (Optional[list]): List of tags from the original request
tags_to_add (Optional[list]): List of tags to add
Returns:
list: Combined list of unique tags
"""
final_tags = []
if request_tags and isinstance(request_tags, list):
final_tags.extend(request_tags)
if tags_to_add and isinstance(tags_to_add, list):
for tag in tags_to_add:
if tag not in final_tags:
final_tags.append(tag)
return final_tags
async def add_litellm_data_to_request( # noqa: PLR0915
data: dict,
@ -466,10 +442,12 @@ async def add_litellm_data_to_request( # noqa: PLR0915
## TEAM-LEVEL SPEND LOGS/TAGS
team_metadata = user_api_key_dict.team_metadata or {}
if "tags" in team_metadata and team_metadata["tags"] is not None:
data[_metadata_variable_name]["tags"] = LiteLLMProxyRequestSetup._merge_tags(
request_tags=data[_metadata_variable_name].get("tags"),
tags_to_add=team_metadata["tags"],
)
if "tags" in data[_metadata_variable_name] and isinstance(
data[_metadata_variable_name]["tags"], list
):
data[_metadata_variable_name]["tags"].extend(team_metadata["tags"])
else:
data[_metadata_variable_name]["tags"] = team_metadata["tags"]
if "spend_logs_metadata" in team_metadata and isinstance(
team_metadata["spend_logs_metadata"], dict
):

View file

@ -32,7 +32,6 @@ from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.management_endpoints.key_management_endpoints import (
duration_in_seconds,
generate_key_helper_fn,
prepare_metadata_fields,
)
from litellm.proxy.management_helpers.utils import (
add_new_member,
@ -43,7 +42,7 @@ from litellm.proxy.utils import handle_exception_on_proxy
router = APIRouter()
def _update_internal_new_user_params(data_json: dict, data: NewUserRequest) -> dict:
def _update_internal_user_params(data_json: dict, data: NewUserRequest) -> dict:
if "user_id" in data_json and data_json["user_id"] is None:
data_json["user_id"] = str(uuid.uuid4())
auto_create_key = data_json.pop("auto_create_key", True)
@ -146,7 +145,7 @@ async def new_user(
from litellm.proxy.proxy_server import general_settings, proxy_logging_obj
data_json = data.json() # type: ignore
data_json = _update_internal_new_user_params(data_json, data)
data_json = _update_internal_user_params(data_json, data)
response = await generate_key_helper_fn(request_type="user", **data_json)
# Admin UI Logic
@ -439,52 +438,6 @@ async def user_info( # noqa: PLR0915
raise handle_exception_on_proxy(e)
def _update_internal_user_params(data_json: dict, data: UpdateUserRequest) -> dict:
non_default_values = {}
for k, v in data_json.items():
if (
v is not None
and v
not in (
[],
{},
0,
)
and k not in LiteLLM_ManagementEndpoint_MetadataFields
): # models default to [], spend defaults to 0, we should not reset these values
non_default_values[k] = v
is_internal_user = False
if data.user_role == LitellmUserRoles.INTERNAL_USER:
is_internal_user = True
if "budget_duration" in non_default_values:
duration_s = duration_in_seconds(duration=non_default_values["budget_duration"])
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
if "max_budget" not in non_default_values:
if (
is_internal_user and litellm.max_internal_user_budget is not None
): # applies internal user limits, if user role updated
non_default_values["max_budget"] = litellm.max_internal_user_budget
if (
"budget_duration" not in non_default_values
): # applies internal user limits, if user role updated
if is_internal_user and litellm.internal_user_budget_duration is not None:
non_default_values["budget_duration"] = (
litellm.internal_user_budget_duration
)
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
return non_default_values
@router.post(
"/user/update",
tags=["Internal User management"],
@ -506,8 +459,7 @@ async def user_update(
"user_id": "test-litellm-user-4",
"user_role": "proxy_admin_viewer"
}'
```
Parameters:
- user_id: Optional[str] - Specify a user id. If not set, a unique id will be generated.
- user_email: Optional[str] - Specify a user email.
@ -539,7 +491,7 @@ async def user_update(
- duration: Optional[str] - [NOT IMPLEMENTED].
- key_alias: Optional[str] - [NOT IMPLEMENTED].
```
"""
from litellm.proxy.proxy_server import prisma_client
@ -550,21 +502,46 @@ async def user_update(
raise Exception("Not connected to DB!")
# get non default values for key
non_default_values = _update_internal_user_params(
data_json=data_json, data=data
)
non_default_values = {}
for k, v in data_json.items():
if v is not None and v not in (
[],
{},
0,
): # models default to [], spend defaults to 0, we should not reset these values
non_default_values[k] = v
existing_user_row = await prisma_client.get_data(
user_id=data.user_id, table_name="user", query_type="find_unique"
)
is_internal_user = False
if data.user_role == LitellmUserRoles.INTERNAL_USER:
is_internal_user = True
existing_metadata = existing_user_row.metadata if existing_user_row else {}
if "budget_duration" in non_default_values:
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
non_default_values = prepare_metadata_fields(
data=data,
non_default_values=non_default_values,
existing_metadata=existing_metadata or {},
)
if "max_budget" not in non_default_values:
if (
is_internal_user and litellm.max_internal_user_budget is not None
): # applies internal user limits, if user role updated
non_default_values["max_budget"] = litellm.max_internal_user_budget
if (
"budget_duration" not in non_default_values
): # applies internal user limits, if user role updated
if is_internal_user and litellm.internal_user_budget_duration is not None:
non_default_values["budget_duration"] = (
litellm.internal_user_budget_duration
)
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(
seconds=duration_s
)
non_default_values["budget_reset_at"] = user_reset_at
## ADD USER, IF NEW ##
verbose_proxy_logger.debug("/user/update: Received data = %s", data)

View file

@ -17,7 +17,7 @@ import secrets
import traceback
import uuid
from datetime import datetime, timedelta, timezone
from typing import List, Optional, Tuple, cast
from typing import List, Optional, Tuple
import fastapi
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Request, status
@ -394,8 +394,7 @@ async def generate_key_fn( # noqa: PLR0915
}
)
_budget_id = getattr(_budget, "budget_id", None)
data_json = data.model_dump(exclude_unset=True, exclude_none=True) # type: ignore
data_json = data.json() # type: ignore
# if we get max_budget passed to /key/generate, then use it as key_max_budget. Since generate_key_helper_fn is used to make new users
if "max_budget" in data_json:
data_json["key_max_budget"] = data_json.pop("max_budget", None)
@ -421,11 +420,6 @@ async def generate_key_fn( # noqa: PLR0915
data_json.pop("tags")
await _enforce_unique_key_alias(
key_alias=data_json.get("key_alias", None),
prisma_client=prisma_client,
)
response = await generate_key_helper_fn(
request_type="key", **data_json, table_name="key"
)
@ -453,52 +447,12 @@ async def generate_key_fn( # noqa: PLR0915
raise handle_exception_on_proxy(e)
def prepare_metadata_fields(
data: BaseModel, non_default_values: dict, existing_metadata: dict
) -> dict:
"""
Check LiteLLM_ManagementEndpoint_MetadataFields (proxy/_types.py) for fields that are allowed to be updated
"""
if "metadata" not in non_default_values: # allow user to set metadata to none
non_default_values["metadata"] = existing_metadata.copy()
casted_metadata = cast(dict, non_default_values["metadata"])
data_json = data.model_dump(exclude_unset=True, exclude_none=True)
try:
for k, v in data_json.items():
if k == "model_tpm_limit" or k == "model_rpm_limit":
if k not in casted_metadata or casted_metadata[k] is None:
casted_metadata[k] = {}
casted_metadata[k].update(v)
if k == "tags" or k == "guardrails":
if k not in casted_metadata or casted_metadata[k] is None:
casted_metadata[k] = []
seen = set(casted_metadata[k])
casted_metadata[k].extend(
x for x in v if x not in seen and not seen.add(x) # type: ignore
) # prevent duplicates from being added + maintain initial order
except Exception as e:
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.prepare_metadata_fields(): Exception occured - {}".format(
str(e)
)
)
non_default_values["metadata"] = casted_metadata
return non_default_values
def prepare_key_update_data(
data: Union[UpdateKeyRequest, RegenerateKeyRequest], existing_key_row
):
data_json: dict = data.model_dump(exclude_unset=True)
data_json.pop("key", None)
_metadata_fields = ["model_rpm_limit", "model_tpm_limit", "guardrails", "tags"]
_metadata_fields = ["model_rpm_limit", "model_tpm_limit", "guardrails"]
non_default_values = {}
for k, v in data_json.items():
if k in _metadata_fields:
@ -522,13 +476,24 @@ def prepare_key_update_data(
duration_s = duration_in_seconds(duration=budget_duration)
key_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = key_reset_at
non_default_values["budget_duration"] = budget_duration
_metadata = existing_key_row.metadata or {}
non_default_values = prepare_metadata_fields(
data=data, non_default_values=non_default_values, existing_metadata=_metadata
)
if data.model_tpm_limit:
if "model_tpm_limit" not in _metadata:
_metadata["model_tpm_limit"] = {}
_metadata["model_tpm_limit"].update(data.model_tpm_limit)
non_default_values["metadata"] = _metadata
if data.model_rpm_limit:
if "model_rpm_limit" not in _metadata:
_metadata["model_rpm_limit"] = {}
_metadata["model_rpm_limit"].update(data.model_rpm_limit)
non_default_values["metadata"] = _metadata
if data.guardrails:
_metadata["guardrails"] = data.guardrails
non_default_values["metadata"] = _metadata
return non_default_values
@ -620,12 +585,6 @@ async def update_key_fn(
data=data, existing_key_row=existing_key_row
)
await _enforce_unique_key_alias(
key_alias=non_default_values.get("key_alias", None),
prisma_client=prisma_client,
existing_key_token=existing_key_row.token,
)
response = await prisma_client.update_data(
token=key, data={**non_default_values, "token": key}
)
@ -953,11 +912,11 @@ async def generate_key_helper_fn( # noqa: PLR0915
request_type: Literal[
"user", "key"
], # identifies if this request is from /user/new or /key/generate
duration: Optional[str] = None,
models: list = [],
aliases: dict = {},
config: dict = {},
spend: float = 0.0,
duration: Optional[str],
models: list,
aliases: dict,
config: dict,
spend: float,
key_max_budget: Optional[float] = None, # key_max_budget is used to Budget Per key
key_budget_duration: Optional[str] = None,
budget_id: Optional[float] = None, # budget id <-> LiteLLM_BudgetTable
@ -986,8 +945,8 @@ async def generate_key_helper_fn( # noqa: PLR0915
allowed_cache_controls: Optional[list] = [],
permissions: Optional[dict] = {},
model_max_budget: Optional[dict] = {},
model_rpm_limit: Optional[dict] = None,
model_tpm_limit: Optional[dict] = None,
model_rpm_limit: Optional[dict] = {},
model_tpm_limit: Optional[dict] = {},
guardrails: Optional[list] = None,
teams: Optional[list] = None,
organization_id: Optional[str] = None,
@ -1924,38 +1883,3 @@ async def test_key_logging(
status="healthy",
details=f"No logger exceptions triggered, system is healthy. Manually check if logs were sent to {logging_callbacks} ",
)
async def _enforce_unique_key_alias(
key_alias: Optional[str],
prisma_client: Any,
existing_key_token: Optional[str] = None,
) -> None:
"""
Helper to enforce unique key aliases across all keys.
Args:
key_alias (Optional[str]): The key alias to check
prisma_client (Any): Prisma client instance
existing_key_token (Optional[str]): ID of existing key being updated, to exclude from uniqueness check
(The Admin UI passes key_alias, in all Edit key requests. So we need to be sure that if we find a key with the same alias, it's not the same key we're updating)
Raises:
ProxyException: If key alias already exists on a different key
"""
if key_alias is not None and prisma_client is not None:
where_clause: dict[str, Any] = {"key_alias": key_alias}
if existing_key_token:
# Exclude the current key from the uniqueness check
where_clause["NOT"] = {"token": existing_key_token}
existing_key = await prisma_client.db.litellm_verificationtoken.find_first(
where=where_clause
)
if existing_key is not None:
raise ProxyException(
message=f"Key with alias '{key_alias}' already exists. Unique key aliases across all keys are required.",
type=ProxyErrorTypes.bad_request_error,
param="key_alias",
code=status.HTTP_400_BAD_REQUEST,
)

View file

@ -1367,7 +1367,6 @@ async def list_team(
""".format(
team.team_id, team.model_dump(), str(e)
)
verbose_proxy_logger.exception(team_exception)
continue
raise HTTPException(status_code=400, detail={"error": team_exception})
return returned_responses

View file

@ -1,10 +0,0 @@
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/

View file

@ -56,7 +56,7 @@ def create_request_copy(request: Request):
@router.api_route(
"/gemini/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
methods=["GET", "POST", "PUT", "DELETE"],
tags=["Google AI Studio Pass-through", "pass-through"],
)
async def gemini_proxy_route(
@ -122,7 +122,7 @@ async def gemini_proxy_route(
@router.api_route(
"/cohere/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
methods=["GET", "POST", "PUT", "DELETE"],
tags=["Cohere Pass-through", "pass-through"],
)
async def cohere_proxy_route(
@ -171,7 +171,7 @@ async def cohere_proxy_route(
@router.api_route(
"/anthropic/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
methods=["GET", "POST", "PUT", "DELETE"],
tags=["Anthropic Pass-through", "pass-through"],
)
async def anthropic_proxy_route(
@ -224,7 +224,7 @@ async def anthropic_proxy_route(
@router.api_route(
"/bedrock/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
methods=["GET", "POST", "PUT", "DELETE"],
tags=["Bedrock Pass-through", "pass-through"],
)
async def bedrock_proxy_route(
@ -305,7 +305,7 @@ async def bedrock_proxy_route(
@router.api_route(
"/azure/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
methods=["GET", "POST", "PUT", "DELETE"],
tags=["Azure Pass-through", "pass-through"],
)
async def azure_proxy_route(

View file

@ -1,5 +1,25 @@
include:
- model_config.yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/
router_settings:
provider_budget_config:
openai:
budget_limit: 0.3 # float of $ value budget for time period
time_period: 1d # can be 1d, 2d, 30d
anthropic:
budget_limit: 5
time_period: 1d
redis_host: os.environ/REDIS_HOST
redis_port: os.environ/REDIS_PORT
redis_password: os.environ/REDIS_PASSWORD
litellm_settings:
callbacks: ["datadog"]
callbacks: ["prometheus"]
success_callback: ["langfuse"]

View file

@ -134,10 +134,7 @@ from litellm.proxy.auth.model_checks import (
get_key_models,
get_team_models,
)
from litellm.proxy.auth.user_api_key_auth import (
user_api_key_auth,
user_api_key_auth_websocket,
)
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
## Import All Misc routes here ##
from litellm.proxy.caching_routes import router as caching_router
@ -176,7 +173,6 @@ from litellm.proxy.health_endpoints._health_endpoints import router as health_ro
from litellm.proxy.hooks.prompt_injection_detection import (
_OPTIONAL_PromptInjectionDetection,
)
from litellm.proxy.hooks.proxy_failure_handler import _PROXY_failure_handler
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
from litellm.proxy.management_endpoints.customer_endpoints import (
router as customer_router,
@ -530,6 +526,14 @@ db_writer_client: Optional[HTTPHandler] = None
### logger ###
def _get_pydantic_json_dict(pydantic_obj: BaseModel) -> dict:
try:
return pydantic_obj.model_dump() # type: ignore
except Exception:
# if using pydantic v1
return pydantic_obj.dict()
def get_custom_headers(
*,
user_api_key_dict: UserAPIKeyAuth,
@ -683,6 +687,68 @@ def cost_tracking():
litellm._async_success_callback.append(_PROXY_track_cost_callback) # type: ignore
async def _PROXY_failure_handler(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time=None,
end_time=None, # start/end time for completion
):
global prisma_client
if prisma_client is not None:
verbose_proxy_logger.debug(
"inside _PROXY_failure_handler kwargs=", extra=kwargs
)
_exception = kwargs.get("exception")
_exception_type = _exception.__class__.__name__
_model = kwargs.get("model", None)
_optional_params = kwargs.get("optional_params", {})
_optional_params = copy.deepcopy(_optional_params)
for k, v in _optional_params.items():
v = str(v)
v = v[:100]
_status_code = "500"
try:
_status_code = str(_exception.status_code)
except Exception:
# Don't let this fail logging the exception to the dB
pass
_litellm_params = kwargs.get("litellm_params", {}) or {}
_metadata = _litellm_params.get("metadata", {}) or {}
_model_id = _metadata.get("model_info", {}).get("id", "")
_model_group = _metadata.get("model_group", "")
api_base = litellm.get_api_base(model=_model, optional_params=_litellm_params)
_exception_string = str(_exception)
error_log = LiteLLM_ErrorLogs(
request_id=str(uuid.uuid4()),
model_group=_model_group,
model_id=_model_id,
litellm_model_name=kwargs.get("model"),
request_kwargs=_optional_params,
api_base=api_base,
exception_type=_exception_type,
status_code=_status_code,
exception_string=_exception_string,
startTime=kwargs.get("start_time"),
endTime=kwargs.get("end_time"),
)
# helper function to convert to dict on pydantic v2 & v1
error_log_dict = _get_pydantic_json_dict(error_log)
error_log_dict["request_kwargs"] = json.dumps(error_log_dict["request_kwargs"])
await prisma_client.db.litellm_errorlogs.create(
data=error_log_dict # type: ignore
)
pass
@log_db_metrics
async def _PROXY_track_cost_callback(
kwargs, # kwargs to completion
@ -1311,16 +1377,6 @@ class ProxyConfig:
_, file_extension = os.path.splitext(config_file_path)
return file_extension.lower() == ".yaml" or file_extension.lower() == ".yml"
def _load_yaml_file(self, file_path: str) -> dict:
"""
Load and parse a YAML file
"""
try:
with open(file_path, "r") as file:
return yaml.safe_load(file) or {}
except Exception as e:
raise Exception(f"Error loading yaml file {file_path}: {str(e)}")
async def _get_config_from_file(
self, config_file_path: Optional[str] = None
) -> dict:
@ -1351,51 +1407,6 @@ class ProxyConfig:
"litellm_settings": {},
}
# Process includes
config = self._process_includes(
config=config, base_dir=os.path.dirname(os.path.abspath(file_path or ""))
)
verbose_proxy_logger.debug(f"loaded config={json.dumps(config, indent=4)}")
return config
def _process_includes(self, config: dict, base_dir: str) -> dict:
"""
Process includes by appending their contents to the main config
Handles nested config.yamls with `include` section
Example config: This will get the contents from files in `include` and append it
```yaml
include:
- model_config.yaml
litellm_settings:
callbacks: ["prometheus"]
```
"""
if "include" not in config:
return config
if not isinstance(config["include"], list):
raise ValueError("'include' must be a list of file paths")
# Load and append all included files
for include_file in config["include"]:
file_path = os.path.join(base_dir, include_file)
if not os.path.exists(file_path):
raise FileNotFoundError(f"Included file not found: {file_path}")
included_config = self._load_yaml_file(file_path)
# Simply update/extend the main config with included config
for key, value in included_config.items():
if isinstance(value, list) and key in config:
config[key].extend(value)
else:
config[key] = value
# Remove the include directive
del config["include"]
return config
async def save_config(self, new_config: dict):
@ -4328,11 +4339,7 @@ from litellm import _arealtime
@app.websocket("/v1/realtime")
async def websocket_endpoint(
websocket: WebSocket,
model: str,
user_api_key_dict=Depends(user_api_key_auth_websocket),
):
async def websocket_endpoint(websocket: WebSocket, model: str):
import websockets
await websocket.accept()

View file

@ -86,6 +86,7 @@ async def route_request(
else:
models = [model.strip() for model in data.pop("model").split(",")]
return llm_router.abatch_completion(models=models, **data)
elif llm_router is not None:
if (
data["model"] in router_model_names
@ -112,9 +113,6 @@ async def route_request(
or len(llm_router.pattern_router.patterns) > 0
):
return getattr(llm_router, f"{route_type}")(**data)
elif route_type == "amoderation":
# moderation endpoint does not require `model` parameter
return getattr(llm_router, f"{route_type}")(**data)
elif user_model is not None:
return getattr(litellm, f"{route_type}")(**data)

View file

@ -854,20 +854,6 @@ class ProxyLogging:
),
).start()
await self._run_post_call_failure_hook_custom_loggers(
original_exception=original_exception,
request_data=request_data,
user_api_key_dict=user_api_key_dict,
)
return
async def _run_post_call_failure_hook_custom_loggers(
self,
original_exception: Exception,
request_data: dict,
user_api_key_dict: UserAPIKeyAuth,
):
for callback in litellm.callbacks:
try:
_callback: Optional[CustomLogger] = None
@ -886,38 +872,7 @@ class ProxyLogging:
except Exception as e:
raise e
async def async_log_proxy_authentication_errors(
self,
original_exception: Exception,
request: Request,
parent_otel_span: Optional[Any],
api_key: Optional[str],
):
"""
Handler for Logging Authentication Errors on LiteLLM Proxy
Why not use post_call_failure_hook?
- `post_call_failure_hook` calls `litellm_logging_obj.async_failure_handler`. This led to the Exception being logged twice
What does this handler do?
- Logs Authentication Errors (like invalid API Key passed) to CustomLogger compatible classes (OTEL, Datadog etc)
- calls CustomLogger.async_post_call_failure_hook
"""
user_api_key_dict = UserAPIKeyAuth(
parent_otel_span=parent_otel_span,
token=_hash_token_if_needed(token=api_key or ""),
)
try:
request_data = await request.json()
except json.JSONDecodeError:
# For GET requests or requests without a JSON body
request_data = {}
await self._run_post_call_failure_hook_custom_loggers(
original_exception=original_exception,
request_data=request_data,
user_api_key_dict=user_api_key_dict,
)
pass
return
async def post_call_success_hook(
self,

View file

@ -60,7 +60,7 @@ def create_request_copy(request: Request):
@router.api_route(
"/langfuse/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
methods=["GET", "POST", "PUT", "DELETE"],
tags=["Langfuse Pass-through", "pass-through"],
)
async def langfuse_proxy_route(

View file

@ -143,14 +143,12 @@ def construct_target_url(
@router.api_route(
"/vertex-ai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
methods=["GET", "POST", "PUT", "DELETE"],
tags=["Vertex AI Pass-through", "pass-through"],
include_in_schema=False,
)
@router.api_route(
"/vertex_ai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Vertex AI Pass-through", "pass-through"],
"/vertex_ai/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"], tags=["Vertex AI Pass-through", "pass-through"]
)
async def vertex_proxy_route(
endpoint: str,

View file

@ -41,7 +41,6 @@ from typing import (
import httpx
import openai
from openai import AsyncOpenAI
from pydantic import BaseModel
from typing_extensions import overload
import litellm
@ -123,7 +122,6 @@ from litellm.types.router import (
ModelInfo,
ProviderBudgetConfigType,
RetryPolicy,
RouterCacheEnum,
RouterErrors,
RouterGeneralSettings,
RouterModelGroupAliasItem,
@ -241,6 +239,7 @@ class Router:
] = "simple-shuffle",
routing_strategy_args: dict = {}, # just for latency-based
provider_budget_config: Optional[ProviderBudgetConfigType] = None,
semaphore: Optional[asyncio.Semaphore] = None,
alerting_config: Optional[AlertingConfig] = None,
router_general_settings: Optional[
RouterGeneralSettings
@ -316,6 +315,8 @@ class Router:
from litellm._service_logger import ServiceLogging
if semaphore:
self.semaphore = semaphore
self.set_verbose = set_verbose
self.debug_level = debug_level
self.enable_pre_call_checks = enable_pre_call_checks
@ -505,14 +506,6 @@ class Router:
litellm.success_callback.append(self.sync_deployment_callback_on_success)
else:
litellm.success_callback = [self.sync_deployment_callback_on_success]
if isinstance(litellm._async_failure_callback, list):
litellm._async_failure_callback.append(
self.async_deployment_callback_on_failure
)
else:
litellm._async_failure_callback = [
self.async_deployment_callback_on_failure
]
## COOLDOWNS ##
if isinstance(litellm.failure_callback, list):
litellm.failure_callback.append(self.deployment_callback_on_failure)
@ -2563,7 +2556,10 @@ class Router:
original_function: Callable,
**kwargs,
):
if kwargs.get("model") and self.get_model_list(model_name=kwargs["model"]):
if (
"model" in kwargs
and self.get_model_list(model_name=kwargs["model"]) is not None
):
deployment = await self.async_get_available_deployment(
model=kwargs["model"]
)
@ -3295,14 +3291,13 @@ class Router:
):
"""
Track remaining tpm/rpm quota for model in model_list
Currently, only updates TPM usage.
"""
try:
if kwargs["litellm_params"].get("metadata") is None:
pass
else:
deployment_name = kwargs["litellm_params"]["metadata"].get(
"deployment", None
) # stable name - works for wildcard routes as well
model_group = kwargs["litellm_params"]["metadata"].get(
"model_group", None
)
@ -3313,8 +3308,6 @@ class Router:
elif isinstance(id, int):
id = str(id)
parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
_usage_obj = completion_response.get("usage")
total_tokens = _usage_obj.get("total_tokens", 0) if _usage_obj else 0
@ -3326,14 +3319,13 @@ class Router:
"%H-%M"
) # use the same timezone regardless of system clock
tpm_key = RouterCacheEnum.TPM.value.format(
id=id, current_minute=current_minute, model=deployment_name
)
tpm_key = f"global_router:{id}:tpm:{current_minute}"
# ------------
# Update usage
# ------------
# update cache
parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
## TPM
await self.cache.async_increment_cache(
key=tpm_key,
@ -3342,17 +3334,6 @@ class Router:
ttl=RoutingArgs.ttl.value,
)
## RPM
rpm_key = RouterCacheEnum.RPM.value.format(
id=id, current_minute=current_minute, model=deployment_name
)
await self.cache.async_increment_cache(
key=rpm_key,
value=1,
parent_otel_span=parent_otel_span,
ttl=RoutingArgs.ttl.value,
)
increment_deployment_successes_for_current_minute(
litellm_router_instance=self,
deployment_id=id,
@ -3465,40 +3446,6 @@ class Router:
except Exception as e:
raise e
async def async_deployment_callback_on_failure(
self, kwargs, completion_response: Optional[Any], start_time, end_time
):
"""
Update RPM usage for a deployment
"""
deployment_name = kwargs["litellm_params"]["metadata"].get(
"deployment", None
) # handles wildcard routes - by giving the original name sent to `litellm.completion`
model_group = kwargs["litellm_params"]["metadata"].get("model_group", None)
model_info = kwargs["litellm_params"].get("model_info", {}) or {}
id = model_info.get("id", None)
if model_group is None or id is None:
return
elif isinstance(id, int):
id = str(id)
parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
dt = get_utc_datetime()
current_minute = dt.strftime(
"%H-%M"
) # use the same timezone regardless of system clock
## RPM
rpm_key = RouterCacheEnum.RPM.value.format(
id=id, current_minute=current_minute, model=deployment_name
)
await self.cache.async_increment_cache(
key=rpm_key,
value=1,
parent_otel_span=parent_otel_span,
ttl=RoutingArgs.ttl.value,
)
def log_retry(self, kwargs: dict, e: Exception) -> dict:
"""
When a retry or fallback happens, log the details of the just failed model call - similar to Sentry breadcrumbing
@ -4176,24 +4123,7 @@ class Router:
raise Exception("Model Name invalid - {}".format(type(model)))
return None
@overload
def get_router_model_info(
self, deployment: dict, received_model_name: str, id: None = None
) -> ModelMapInfo:
pass
@overload
def get_router_model_info(
self, deployment: None, received_model_name: str, id: str
) -> ModelMapInfo:
pass
def get_router_model_info(
self,
deployment: Optional[dict],
received_model_name: str,
id: Optional[str] = None,
) -> ModelMapInfo:
def get_router_model_info(self, deployment: dict) -> ModelMapInfo:
"""
For a given model id, return the model info (max tokens, input cost, output cost, etc.).
@ -4207,14 +4137,6 @@ class Router:
Raises:
- ValueError -> If model is not mapped yet
"""
if id is not None:
_deployment = self.get_deployment(model_id=id)
if _deployment is not None:
deployment = _deployment.model_dump(exclude_none=True)
if deployment is None:
raise ValueError("Deployment not found")
## GET BASE MODEL
base_model = deployment.get("model_info", {}).get("base_model", None)
if base_model is None:
@ -4236,27 +4158,10 @@ class Router:
elif custom_llm_provider != "azure":
model = _model
potential_models = self.pattern_router.route(received_model_name)
if "*" in model and potential_models is not None: # if wildcard route
for potential_model in potential_models:
try:
if potential_model.get("model_info", {}).get(
"id"
) == deployment.get("model_info", {}).get("id"):
model = potential_model.get("litellm_params", {}).get(
"model"
)
break
except Exception:
pass
## GET LITELLM MODEL INFO - raises exception, if model is not mapped
if not model.startswith(custom_llm_provider):
model_info_name = "{}/{}".format(custom_llm_provider, model)
else:
model_info_name = model
model_info = litellm.get_model_info(model=model_info_name)
model_info = litellm.get_model_info(
model="{}/{}".format(custom_llm_provider, model)
)
## CHECK USER SET MODEL INFO
user_model_info = deployment.get("model_info", {})
@ -4306,10 +4211,8 @@ class Router:
total_tpm: Optional[int] = None
total_rpm: Optional[int] = None
configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = None
model_list = self.get_model_list(model_name=model_group)
if model_list is None:
return None
for model in model_list:
for model in self.model_list:
is_match = False
if (
"model_name" in model and model["model_name"] == model_group
@ -4324,7 +4227,7 @@ class Router:
if not is_match:
continue
# model in model group found #
litellm_params = LiteLLM_Params(**model["litellm_params"]) # type: ignore
litellm_params = LiteLLM_Params(**model["litellm_params"])
# get configurable clientside auth params
configurable_clientside_auth_params = (
litellm_params.configurable_clientside_auth_params
@ -4332,30 +4235,38 @@ class Router:
# get model tpm
_deployment_tpm: Optional[int] = None
if _deployment_tpm is None:
_deployment_tpm = model.get("tpm", None) # type: ignore
_deployment_tpm = model.get("tpm", None)
if _deployment_tpm is None:
_deployment_tpm = model.get("litellm_params", {}).get("tpm", None) # type: ignore
_deployment_tpm = model.get("litellm_params", {}).get("tpm", None)
if _deployment_tpm is None:
_deployment_tpm = model.get("model_info", {}).get("tpm", None) # type: ignore
_deployment_tpm = model.get("model_info", {}).get("tpm", None)
if _deployment_tpm is not None:
if total_tpm is None:
total_tpm = 0
total_tpm += _deployment_tpm # type: ignore
# get model rpm
_deployment_rpm: Optional[int] = None
if _deployment_rpm is None:
_deployment_rpm = model.get("rpm", None) # type: ignore
_deployment_rpm = model.get("rpm", None)
if _deployment_rpm is None:
_deployment_rpm = model.get("litellm_params", {}).get("rpm", None) # type: ignore
_deployment_rpm = model.get("litellm_params", {}).get("rpm", None)
if _deployment_rpm is None:
_deployment_rpm = model.get("model_info", {}).get("rpm", None) # type: ignore
_deployment_rpm = model.get("model_info", {}).get("rpm", None)
if _deployment_rpm is not None:
if total_rpm is None:
total_rpm = 0
total_rpm += _deployment_rpm # type: ignore
# get model info
try:
model_info = litellm.get_model_info(model=litellm_params.model)
except Exception:
model_info = None
# get llm provider
litellm_model, llm_provider = "", ""
model, llm_provider = "", ""
try:
litellm_model, llm_provider, _, _ = litellm.get_llm_provider(
model, llm_provider, _, _ = litellm.get_llm_provider(
model=litellm_params.model,
custom_llm_provider=litellm_params.custom_llm_provider,
)
@ -4366,7 +4277,7 @@ class Router:
if model_info is None:
supported_openai_params = litellm.get_supported_openai_params(
model=litellm_model, custom_llm_provider=llm_provider
model=model, custom_llm_provider=llm_provider
)
if supported_openai_params is None:
supported_openai_params = []
@ -4456,20 +4367,7 @@ class Router:
model_group_info.supported_openai_params = model_info[
"supported_openai_params"
]
if model_info.get("tpm", None) is not None and _deployment_tpm is None:
_deployment_tpm = model_info.get("tpm")
if model_info.get("rpm", None) is not None and _deployment_rpm is None:
_deployment_rpm = model_info.get("rpm")
if _deployment_tpm is not None:
if total_tpm is None:
total_tpm = 0
total_tpm += _deployment_tpm # type: ignore
if _deployment_rpm is not None:
if total_rpm is None:
total_rpm = 0
total_rpm += _deployment_rpm # type: ignore
if model_group_info is not None:
## UPDATE WITH TOTAL TPM/RPM FOR MODEL GROUP
if total_tpm is not None:
@ -4521,10 +4419,7 @@ class Router:
self, model_group: str
) -> Tuple[Optional[int], Optional[int]]:
"""
Returns current tpm/rpm usage for model group
Parameters:
- model_group: str - the received model name from the user (can be a wildcard route).
Returns remaining tpm/rpm quota for model group
Returns:
- usage: Tuple[tpm, rpm]
@ -4535,37 +4430,20 @@ class Router:
) # use the same timezone regardless of system clock
tpm_keys: List[str] = []
rpm_keys: List[str] = []
model_list = self.get_model_list(model_name=model_group)
if model_list is None: # no matching deployments
return None, None
for model in model_list:
id: Optional[str] = model.get("model_info", {}).get("id") # type: ignore
litellm_model: Optional[str] = model["litellm_params"].get(
"model"
) # USE THE MODEL SENT TO litellm.completion() - consistent with how global_router cache is written.
if id is None or litellm_model is None:
continue
tpm_keys.append(
RouterCacheEnum.TPM.value.format(
id=id,
model=litellm_model,
current_minute=current_minute,
for model in self.model_list:
if "model_name" in model and model["model_name"] == model_group:
tpm_keys.append(
f"global_router:{model['model_info']['id']}:tpm:{current_minute}"
)
)
rpm_keys.append(
RouterCacheEnum.RPM.value.format(
id=id,
model=litellm_model,
current_minute=current_minute,
rpm_keys.append(
f"global_router:{model['model_info']['id']}:rpm:{current_minute}"
)
)
combined_tpm_rpm_keys = tpm_keys + rpm_keys
combined_tpm_rpm_values = await self.cache.async_batch_get_cache(
keys=combined_tpm_rpm_keys
)
if combined_tpm_rpm_values is None:
return None, None
@ -4590,32 +4468,6 @@ class Router:
rpm_usage += t
return tpm_usage, rpm_usage
async def get_remaining_model_group_usage(self, model_group: str) -> Dict[str, int]:
current_tpm, current_rpm = await self.get_model_group_usage(model_group)
model_group_info = self.get_model_group_info(model_group)
if model_group_info is not None and model_group_info.tpm is not None:
tpm_limit = model_group_info.tpm
else:
tpm_limit = None
if model_group_info is not None and model_group_info.rpm is not None:
rpm_limit = model_group_info.rpm
else:
rpm_limit = None
returned_dict = {}
if tpm_limit is not None and current_tpm is not None:
returned_dict["x-ratelimit-remaining-tokens"] = tpm_limit - current_tpm
returned_dict["x-ratelimit-limit-tokens"] = tpm_limit
if rpm_limit is not None and current_rpm is not None:
returned_dict["x-ratelimit-remaining-requests"] = rpm_limit - current_rpm
returned_dict["x-ratelimit-limit-requests"] = rpm_limit
return returned_dict
async def set_response_headers(
self, response: Any, model_group: Optional[str] = None
) -> Any:
@ -4626,30 +4478,6 @@ class Router:
# - if healthy_deployments > 1, return model group rate limit headers
# - else return the model's rate limit headers
"""
if (
isinstance(response, BaseModel)
and hasattr(response, "_hidden_params")
and isinstance(response._hidden_params, dict) # type: ignore
):
response._hidden_params.setdefault("additional_headers", {}) # type: ignore
response._hidden_params["additional_headers"][ # type: ignore
"x-litellm-model-group"
] = model_group
additional_headers = response._hidden_params["additional_headers"] # type: ignore
if (
"x-ratelimit-remaining-tokens" not in additional_headers
and "x-ratelimit-remaining-requests" not in additional_headers
and model_group is not None
):
remaining_usage = await self.get_remaining_model_group_usage(
model_group
)
for header, value in remaining_usage.items():
if value is not None:
additional_headers[header] = value
return response
def get_model_ids(self, model_name: Optional[str] = None) -> List[str]:
@ -4712,9 +4540,6 @@ class Router:
if hasattr(self, "model_list"):
returned_models: List[DeploymentTypedDict] = []
if model_name is not None:
returned_models.extend(self._get_all_deployments(model_name=model_name))
if hasattr(self, "model_group_alias"):
for model_alias, model_value in self.model_group_alias.items():
@ -4735,32 +4560,21 @@ class Router:
)
)
if len(returned_models) == 0: # check if wildcard route
potential_wildcard_models = self.pattern_router.route(model_name)
if potential_wildcard_models is not None:
returned_models.extend(
[DeploymentTypedDict(**m) for m in potential_wildcard_models] # type: ignore
)
if model_name is None:
returned_models += self.model_list
return returned_models
returned_models.extend(self._get_all_deployments(model_name=model_name))
return returned_models
return None
def get_model_access_groups(self, model_name: Optional[str] = None):
"""
If model_name is provided, only return access groups for that model.
"""
def get_model_access_groups(self):
from collections import defaultdict
access_groups = defaultdict(list)
model_list = self.get_model_list(model_name=model_name)
if model_list:
for m in model_list:
if self.model_list:
for m in self.model_list:
for group in m.get("model_info", {}).get("access_groups", []):
model_name = m["model_name"]
access_groups[group].append(model_name)
@ -4996,12 +4810,10 @@ class Router:
base_model = deployment.get("litellm_params", {}).get(
"base_model", None
)
model_info = self.get_router_model_info(
deployment=deployment, received_model_name=model
)
model = base_model or deployment.get("litellm_params", {}).get(
"model", None
)
model_info = self.get_router_model_info(deployment=deployment)
if (
isinstance(model_info, dict)

View file

@ -79,9 +79,7 @@ class PatternMatchRouter:
return new_deployments
def route(
self, request: Optional[str], filtered_model_names: Optional[List[str]] = None
) -> Optional[List[Dict]]:
def route(self, request: Optional[str]) -> Optional[List[Dict]]:
"""
Route a requested model to the corresponding llm deployments based on the regex pattern
@ -91,26 +89,14 @@ class PatternMatchRouter:
Args:
request: Optional[str]
filtered_model_names: Optional[List[str]] - if provided, only return deployments that match the filtered_model_names
Returns:
Optional[List[Deployment]]: llm deployments
"""
try:
if request is None:
return None
regex_filtered_model_names = (
[self._pattern_to_regex(m) for m in filtered_model_names]
if filtered_model_names is not None
else []
)
for pattern, llm_deployments in self.patterns.items():
if (
filtered_model_names is not None
and pattern not in regex_filtered_model_names
):
continue
pattern_match = re.match(pattern, request)
if pattern_match:
return self._return_pattern_matched_deployments(

View file

@ -0,0 +1,29 @@
import pytest
import litellm
def test_mlflow_logging():
litellm.success_callback = ["mlflow"]
litellm.failure_callback = ["mlflow"]
litellm.completion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
user="test-user",
)
@pytest.mark.asyncio()
async def test_async_mlflow_logging():
litellm.success_callback = ["mlflow"]
litellm.failure_callback = ["mlflow"]
await litellm.acompletion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "hi test from local arize"}],
mock_response="hello",
temperature=0.1,
user="OTEL_USER",
)

View file

@ -9,7 +9,7 @@ from typing import Any, Dict, List, Literal, Optional, Tuple, Union
import httpx
from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Required, TypedDict
from typing_extensions import TypedDict
from ..exceptions import RateLimitError
from .completion import CompletionRequest
@ -352,10 +352,9 @@ class LiteLLMParamsTypedDict(TypedDict, total=False):
tags: Optional[List[str]]
class DeploymentTypedDict(TypedDict, total=False):
model_name: Required[str]
litellm_params: Required[LiteLLMParamsTypedDict]
model_info: dict
class DeploymentTypedDict(TypedDict):
model_name: str
litellm_params: LiteLLMParamsTypedDict
SPECIAL_MODEL_INFO_PARAMS = [
@ -641,8 +640,3 @@ class ProviderBudgetInfo(BaseModel):
ProviderBudgetConfigType = Dict[str, ProviderBudgetInfo]
class RouterCacheEnum(enum.Enum):
TPM = "global_router:{id}:{model}:tpm:{current_minute}"
RPM = "global_router:{id}:{model}:rpm:{current_minute}"

View file

@ -106,8 +106,6 @@ class ModelInfo(TypedDict, total=False):
supports_prompt_caching: Optional[bool]
supports_audio_input: Optional[bool]
supports_audio_output: Optional[bool]
tpm: Optional[int]
rpm: Optional[int]
class GenericStreamingChunk(TypedDict, total=False):

View file

@ -4656,8 +4656,6 @@ def get_model_info( # noqa: PLR0915
),
supports_audio_input=_model_info.get("supports_audio_input", False),
supports_audio_output=_model_info.get("supports_audio_output", False),
tpm=_model_info.get("tpm", None),
rpm=_model_info.get("rpm", None),
)
except Exception as e:
if "OllamaError" in str(e):

View file

@ -2032,6 +2032,7 @@
"tool_use_system_prompt_tokens": 264,
"supports_assistant_prefill": true,
"supports_prompt_caching": true,
"supports_pdf_input": true,
"supports_response_schema": true
},
"claude-3-opus-20240229": {
@ -2097,7 +2098,6 @@
"supports_vision": true,
"tool_use_system_prompt_tokens": 159,
"supports_assistant_prefill": true,
"supports_pdf_input": true,
"supports_prompt_caching": true,
"supports_response_schema": true
},
@ -3383,8 +3383,6 @@
"supports_vision": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-001": {
@ -3408,8 +3406,6 @@
"supports_vision": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash": {
@ -3432,8 +3428,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-latest": {
@ -3456,32 +3450,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b": {
"max_tokens": 8192,
"max_input_tokens": 1048576,
"max_output_tokens": 8192,
"max_images_per_prompt": 3000,
"max_videos_per_prompt": 10,
"max_video_length": 1,
"max_audio_length_hours": 8.4,
"max_audio_per_prompt": 1,
"max_pdf_size_mb": 30,
"input_cost_per_token": 0,
"input_cost_per_token_above_128k_tokens": 0,
"output_cost_per_token": 0,
"output_cost_per_token_above_128k_tokens": 0,
"litellm_provider": "gemini",
"mode": "chat",
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b-exp-0924": {
@ -3504,8 +3472,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-exp-1114": {
@ -3528,12 +3494,7 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing",
"metadata": {
"notes": "Rate limits not documented for gemini-exp-1114. Assuming same as gemini-1.5-pro."
}
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-exp-0827": {
"max_tokens": 8192,
@ -3555,8 +3516,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b-exp-0827": {
@ -3578,9 +3537,6 @@
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-pro": {
@ -3594,10 +3550,7 @@
"litellm_provider": "gemini",
"mode": "chat",
"supports_function_calling": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://ai.google.dev/gemini-api/docs/models/gemini"
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
},
"gemini/gemini-1.5-pro": {
"max_tokens": 8192,
@ -3614,8 +3567,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-002": {
@ -3634,8 +3585,6 @@
"supports_tool_choice": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-001": {
@ -3654,8 +3603,6 @@
"supports_tool_choice": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-exp-0801": {
@ -3673,8 +3620,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-exp-0827": {
@ -3692,8 +3637,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-latest": {
@ -3711,8 +3654,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-pro-vision": {
@ -3727,9 +3668,6 @@
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
},
"gemini/gemini-gemma-2-27b-it": {

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.53.2"
version = "1.52.16"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@ -91,7 +91,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.53.2"
version = "1.52.16"
version_files = [
"pyproject.toml:^version"
]

View file

@ -1,6 +1,6 @@
# LITELLM PROXY DEPENDENCIES #
anyio==4.4.0 # openai + http req.
openai==1.55.3 # openai req.
openai==1.54.0 # openai req.
fastapi==0.111.0 # server dep
backoff==2.2.1 # server dep
pyyaml==6.0.0 # server dep

View file

@ -46,22 +46,17 @@ print(env_keys)
repo_base = "./"
print(os.listdir(repo_base))
docs_path = (
"./docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
"../../docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
)
documented_keys = set()
try:
with open(docs_path, "r", encoding="utf-8") as docs_file:
content = docs_file.read()
print(f"content: {content}")
# Find the section titled "general_settings - Reference"
general_settings_section = re.search(
r"### environment variables - Reference(.*?)(?=\n###|\Z)",
content,
re.DOTALL | re.MULTILINE,
r"### environment variables - Reference(.*?)###", content, re.DOTALL
)
print(f"general_settings_section: {general_settings_section}")
if general_settings_section:
# Extract the table rows, which contain the documented keys
table_content = general_settings_section.group(1)
@ -75,7 +70,6 @@ except Exception as e:
)
print(f"documented_keys: {documented_keys}")
# Compare and find undocumented keys
undocumented_keys = env_keys - documented_keys

View file

@ -1,87 +0,0 @@
import os
import re
import inspect
from typing import Type
import sys
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
def get_init_params(cls: Type) -> list[str]:
"""
Retrieve all parameters supported by the `__init__` method of a given class.
Args:
cls: The class to inspect.
Returns:
A list of parameter names.
"""
if not hasattr(cls, "__init__"):
raise ValueError(
f"The provided class {cls.__name__} does not have an __init__ method."
)
init_method = cls.__init__
argspec = inspect.getfullargspec(init_method)
# The first argument is usually 'self', so we exclude it
return argspec.args[1:] # Exclude 'self'
router_init_params = set(get_init_params(litellm.router.Router))
print(router_init_params)
router_init_params.remove("model_list")
# Parse the documentation to extract documented keys
repo_base = "./"
print(os.listdir(repo_base))
docs_path = (
"./docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
)
# docs_path = (
# "../../docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
# )
documented_keys = set()
try:
with open(docs_path, "r", encoding="utf-8") as docs_file:
content = docs_file.read()
# Find the section titled "general_settings - Reference"
general_settings_section = re.search(
r"### router_settings - Reference(.*?)###", content, re.DOTALL
)
if general_settings_section:
# Extract the table rows, which contain the documented keys
table_content = general_settings_section.group(1)
doc_key_pattern = re.compile(
r"\|\s*([^\|]+?)\s*\|"
) # Capture the key from each row of the table
documented_keys.update(doc_key_pattern.findall(table_content))
except Exception as e:
raise Exception(
f"Error reading documentation: {e}, \n repo base - {os.listdir(repo_base)}"
)
# Compare and find undocumented keys
undocumented_keys = router_init_params - documented_keys
# Print results
print("Keys expected in 'router settings' (found in code):")
for key in sorted(router_init_params):
print(key)
if undocumented_keys:
raise Exception(
f"\nKeys not documented in 'router settings - Reference': {undocumented_keys}"
)
else:
print(
"\nAll keys are documented in 'router settings - Reference'. - {}".format(
router_init_params
)
)

View file

@ -1,3 +1 @@
Unit tests for individual LLM providers.
Name of the test file is the name of the LLM provider - e.g. `test_openai.py` is for OpenAI.
More tests under `litellm/litellm/tests/*`.

View file

@ -62,14 +62,7 @@ class BaseLLMChatTest(ABC):
response = litellm.completion(**base_completion_call_args, messages=messages)
assert response is not None
@pytest.mark.parametrize(
"response_format",
[
{"type": "json_object"},
{"type": "text"},
],
)
def test_json_response_format(self, response_format):
def test_json_response_format(self):
"""
Test that the JSON response format is supported by the LLM API
"""
@ -90,7 +83,7 @@ class BaseLLMChatTest(ABC):
response = litellm.completion(
**base_completion_call_args,
messages=messages,
response_format=response_format,
response_format={"type": "json_object"},
)
print(response)

File diff suppressed because one or more lines are too long

View file

@ -45,59 +45,81 @@ def test_map_azure_model_group(model_group_header, expected_model):
@pytest.mark.asyncio
async def test_azure_ai_with_image_url():
@pytest.mark.respx
async def test_azure_ai_with_image_url(respx_mock: MockRouter):
"""
Important test:
Test that Azure AI studio can handle image_url passed when content is a list containing both text and image_url
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
client = AsyncOpenAI(
api_key="fake-api-key",
base_url="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
)
# Mock response based on the actual API response
mock_response = {
"id": "cmpl-53860ea1efa24d2883555bfec13d2254",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": None,
"message": {
"content": "The image displays a graphic with the text 'LiteLLM' in black",
"role": "assistant",
"refusal": None,
"audio": None,
"function_call": None,
"tool_calls": None,
},
}
],
"created": 1731801937,
"model": "phi35-vision-instruct",
"object": "chat.completion",
"usage": {
"completion_tokens": 69,
"prompt_tokens": 617,
"total_tokens": 686,
"completion_tokens_details": None,
"prompt_tokens_details": None,
},
}
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="azure_ai/Phi-3-5-vision-instruct-dcvov",
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
messages=[
# Mock the API request
mock_request = respx_mock.post(
"https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com"
).mock(return_value=httpx.Response(200, json=mock_response))
response = await litellm.acompletion(
model="azure_ai/Phi-3-5-vision-instruct-dcvov",
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
messages=[
{
"role": "user",
"content": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
},
},
],
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
},
},
],
api_key="fake-api-key",
client=client,
)
except Exception as e:
traceback.print_exc()
print(f"Error: {e}")
},
],
api_key="fake-api-key",
)
# Verify the request was made
mock_client.assert_called_once()
# Verify the request was made
assert mock_request.called
# Check the request body
request_body = mock_client.call_args.kwargs
assert request_body["model"] == "Phi-3-5-vision-instruct-dcvov"
assert request_body["messages"] == [
# Check the request body
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"model": "Phi-3-5-vision-instruct-dcvov",
"messages": [
{
"role": "user",
"content": [
@ -110,4 +132,7 @@ async def test_azure_ai_with_image_url():
},
],
}
]
],
}
print(f"response: {response}")

View file

@ -1243,19 +1243,6 @@ def test_bedrock_cross_region_inference(model):
)
@pytest.mark.parametrize(
"model, expected_base_model",
[
(
"apac.anthropic.claude-3-5-sonnet-20240620-v1:0",
"anthropic.claude-3-5-sonnet-20240620-v1:0",
),
],
)
def test_bedrock_get_base_model(model, expected_base_model):
assert litellm.AmazonConverseConfig()._get_base_model(model) == expected_base_model
from litellm.llms.prompt_templates.factory import _bedrock_converse_messages_pt

View file

@ -13,7 +13,6 @@ load_dotenv()
import httpx
import pytest
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import Choices, Message, ModelResponse
@ -42,58 +41,56 @@ def return_mocked_response(model: str):
"bedrock/mistral.mistral-large-2407-v1:0",
],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_bedrock_max_completion_tokens(model: str):
async def test_bedrock_max_completion_tokens(model: str, respx_mock: MockRouter):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to bedrock models
"""
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
litellm.set_verbose = True
client = AsyncHTTPHandler()
mock_response = return_mocked_response(model)
_model = model.split("/")[1]
print("\n\nmock_response: ", mock_response)
url = f"https://bedrock-runtime.us-west-2.amazonaws.com/model/{_model}/converse"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
mock_client.assert_called_once()
request_body = json.loads(mock_client.call_args.kwargs["data"])
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
print("request_body: ", request_body)
assert request_body == {
"messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
"additionalModelRequestFields": {},
"system": [],
"inferenceConfig": {"maxTokens": 10},
}
assert request_body == {
"messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
"additionalModelRequestFields": {},
"system": [],
"inferenceConfig": {"maxTokens": 10},
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
@pytest.mark.parametrize(
"model",
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229"],
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229,"],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_anthropic_api_max_completion_tokens(model: str):
async def test_anthropic_api_max_completion_tokens(model: str, respx_mock: MockRouter):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to anthropic models
"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
mock_response = {
"content": [{"text": "Hi! My name is Claude.", "type": "text"}],
@ -106,32 +103,30 @@ async def test_anthropic_api_max_completion_tokens(model: str):
"usage": {"input_tokens": 2095, "output_tokens": 503},
}
client = HTTPHandler()
print("\n\nmock_response: ", mock_response)
url = f"https://api.anthropic.com/v1/messages"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs["json"]
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
print("request_body: ", request_body)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"messages": [
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}
],
"max_tokens": 10,
"model": model.split("/")[-1],
}
print("request_body: ", request_body)
assert request_body == {
"messages": [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}],
"max_tokens": 10,
"model": model.split("/")[-1],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
def test_all_model_configs():

View file

@ -12,78 +12,95 @@ sys.path.insert(
import httpx
import pytest
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import Choices, Message, ModelResponse, EmbeddingResponse, Usage
from litellm import completion
def test_completion_nvidia_nim():
from openai import OpenAI
@pytest.mark.respx
def test_completion_nvidia_nim(respx_mock: MockRouter):
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="databricks/dbrx-instruct",
)
model_name = "nvidia_nim/databricks/dbrx-instruct"
client = OpenAI(
api_key="fake-api-key",
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
completion(
model=model_name,
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
presence_penalty=0.5,
frequency_penalty=0.1,
client=client,
)
except Exception as e:
print(e)
mock_request = respx_mock.post(
"https://integrate.api.nvidia.com/v1/chat/completions"
).mock(return_value=httpx.Response(200, json=mock_response.dict()))
try:
response = completion(
model=model_name,
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
presence_penalty=0.5,
frequency_penalty=0.1,
)
# Add any assertions here to check the response
print(response)
assert response.choices[0].message.content is not None
assert len(response.choices[0].message.content) > 0
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body["messages"] == [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
},
]
assert request_body["model"] == "databricks/dbrx-instruct"
assert request_body["frequency_penalty"] == 0.1
assert request_body["presence_penalty"] == 0.5
assert request_body == {
"messages": [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
"model": "databricks/dbrx-instruct",
"frequency_penalty": 0.1,
"presence_penalty": 0.5,
}
except litellm.exceptions.Timeout as e:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_embedding_nvidia_nim():
def test_embedding_nvidia_nim(respx_mock: MockRouter):
litellm.set_verbose = True
from openai import OpenAI
client = OpenAI(
api_key="fake-api-key",
mock_response = EmbeddingResponse(
model="nvidia_nim/databricks/dbrx-instruct",
data=[
{
"embedding": [0.1, 0.2, 0.3],
"index": 0,
}
],
usage=Usage(
prompt_tokens=10,
completion_tokens=0,
total_tokens=10,
),
)
with patch.object(client.embeddings.with_raw_response, "create") as mock_client:
try:
litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5",
input="What is the meaning of life?",
input_type="passage",
client=client,
)
except Exception as e:
print(e)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["input"] == "What is the meaning of life?"
assert request_body["model"] == "nvidia/nv-embedqa-e5-v5"
assert request_body["extra_body"]["input_type"] == "passage"
mock_request = respx_mock.post(
"https://integrate.api.nvidia.com/v1/embeddings"
).mock(return_value=httpx.Response(200, json=mock_response.dict()))
response = litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5",
input="What is the meaning of life?",
input_type="passage",
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"input": "What is the meaning of life?",
"model": "nvidia/nv-embedqa-e5-v5",
"input_type": "passage",
"encoding_format": "base64",
}

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, patch, MagicMock
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
@ -18,75 +18,87 @@ from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio
async def test_o1_handle_system_role():
@pytest.mark.respx
async def test_o1_handle_system_role(respx_mock: MockRouter):
"""
Tests that:
- max_tokens is translated to 'max_completion_tokens'
- role 'system' is translated to 'user'
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
client = AsyncOpenAI(api_key="fake-api-key")
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="o1-preview",
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="o1-preview",
max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
response = await litellm.acompletion(
model="o1-preview",
max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}],
)
print("request_body: ", request_body)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body["model"] == "o1-preview"
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
print("request_body: ", request_body)
assert request_body == {
"model": "o1-preview",
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
@pytest.mark.asyncio
@pytest.mark.respx
@pytest.mark.parametrize("model", ["gpt-4", "gpt-4-0314", "gpt-4-32k", "o1-preview"])
async def test_o1_max_completion_tokens(model: str):
async def test_o1_max_completion_tokens(respx_mock: MockRouter, model: str):
"""
Tests that:
- max_completion_tokens is passed directly to OpenAI chat completion models
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
client = AsyncOpenAI(api_key="fake-api-key")
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model=model,
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
print("request_body: ", request_body)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body["model"] == model
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
print("request_body: ", request_body)
assert request_body == {
"model": model,
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
def test_litellm_responses():

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, patch
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
@ -63,7 +63,8 @@ def test_openai_prediction_param():
@pytest.mark.asyncio
async def test_openai_prediction_param_mock():
@pytest.mark.respx
async def test_openai_prediction_param_mock(respx_mock: MockRouter):
"""
Tests that prediction parameter is correctly passed to the API
"""
@ -91,36 +92,60 @@ async def test_openai_prediction_param_mock():
public string Username { get; set; }
}
"""
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
client=client,
mock_response = ModelResponse(
id="chatcmpl-AQ5RmV8GvVSRxEcDxnuXlQnsibiY9",
choices=[
Choices(
message=Message(
content=code.replace("Username", "Email").replace(
"username", "email"
),
role="assistant",
)
)
except Exception as e:
print(f"Error: {e}")
],
created=int(datetime.now().timestamp()),
model="gpt-4o-mini-2024-07-18",
usage={
"completion_tokens": 207,
"prompt_tokens": 175,
"total_tokens": 382,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 80,
},
},
)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
completion = await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
# Verify the completion tokens details
assert completion.usage.completion_tokens_details.accepted_prediction_tokens == 0
assert completion.usage.completion_tokens_details.rejected_prediction_tokens == 80
@pytest.mark.asyncio
@ -198,73 +223,3 @@ async def test_openai_prediction_param_with_caching():
)
assert completion_response_3.id != completion_response_1.id
@pytest.mark.asyncio()
async def test_vision_with_custom_model():
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["messages"] == [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
},
]
assert request_body["model"] == "my-custom-model"
assert request_body["max_tokens"] == 10

View file

@ -0,0 +1,94 @@
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio()
@pytest.mark.respx
async def test_vision_with_custom_model(respx_mock: MockRouter):
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="my-custom-model",
)
mock_request = respx_mock.post(f"{api_base}/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
"model": "my-custom-model",
"max_tokens": 10,
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)

View file

@ -6,7 +6,6 @@ from unittest.mock import AsyncMock
import pytest
import httpx
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
@ -69,16 +68,13 @@ def test_convert_dict_to_text_completion_response():
assert response.choices[0].logprobs.top_logprobs == [None, {",": -2.1568563}]
@pytest.mark.skip(
reason="need to migrate huggingface to support httpx client being passed in"
)
@pytest.mark.asyncio
@pytest.mark.respx
async def test_huggingface_text_completion_logprobs():
async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
"""Test text completion with Hugging Face, focusing on logprobs structure"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
# Mock the raw response from Hugging Face
mock_response = [
{
"generated_text": ",\n\nI have a question...", # truncated for brevity
@ -95,48 +91,46 @@ async def test_huggingface_text_completion_logprobs():
}
]
return_val = AsyncMock()
# Mock the API request
mock_request = respx_mock.post(
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
).mock(return_value=httpx.Response(200, json=mock_response))
return_val.json.return_value = mock_response
response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning",
)
client = AsyncHTTPHandler()
with patch.object(client, "post", return_value=return_val) as mock_post:
response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning",
client=client,
)
# Verify the request
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"inputs": "good morning",
"parameters": {"details": True, "return_full_text": False},
"stream": False,
}
# Verify the request
mock_post.assert_called_once()
request_body = json.loads(mock_post.call_args.kwargs["data"])
assert request_body == {
"inputs": "good morning",
"parameters": {"details": True, "return_full_text": False},
"stream": False,
}
print("response=", response)
print("response=", response)
# Verify response structure
assert isinstance(response, TextCompletionResponse)
assert response.object == "text_completion"
assert response.model == "mistralai/Mistral-7B-v0.1"
# Verify response structure
assert isinstance(response, TextCompletionResponse)
assert response.object == "text_completion"
assert response.model == "mistralai/Mistral-7B-v0.1"
# Verify logprobs structure
choice = response.choices[0]
assert choice.finish_reason == "length"
assert choice.index == 0
assert isinstance(choice.logprobs.tokens, list)
assert isinstance(choice.logprobs.token_logprobs, list)
assert isinstance(choice.logprobs.text_offset, list)
assert isinstance(choice.logprobs.top_logprobs, list)
assert choice.logprobs.tokens == [",", "\n"]
assert choice.logprobs.token_logprobs == [-1.7626953, -1.7314453]
assert choice.logprobs.text_offset == [0, 1]
assert choice.logprobs.top_logprobs == [{}, {}]
# Verify logprobs structure
choice = response.choices[0]
assert choice.finish_reason == "length"
assert choice.index == 0
assert isinstance(choice.logprobs.tokens, list)
assert isinstance(choice.logprobs.token_logprobs, list)
assert isinstance(choice.logprobs.text_offset, list)
assert isinstance(choice.logprobs.top_logprobs, list)
assert choice.logprobs.tokens == [",", "\n"]
assert choice.logprobs.token_logprobs == [-1.7626953, -1.7314453]
assert choice.logprobs.text_offset == [0, 1]
assert choice.logprobs.top_logprobs == [{}, {}]
# Verify usage
assert response.usage["completion_tokens"] > 0
assert response.usage["prompt_tokens"] > 0
assert response.usage["total_tokens"] > 0
# Verify usage
assert response.usage["completion_tokens"] > 0
assert response.usage["prompt_tokens"] > 0
assert response.usage["total_tokens"] > 0

Some files were not shown because too many files have changed in this diff Show more