Compare commits

..

6 commits

Author SHA1 Message Date
Krrish Dholakia
03a5cc364f test: run flaky tests first 2024-11-27 23:32:58 +05:30
Krrish Dholakia
fc30b20c6e fix: fix linting error 2024-11-27 22:32:12 +05:30
Krrish Dholakia
74d59d74d4 fix(user_api_key_auth.py): use model from query param 2024-11-27 17:52:04 +05:30
Krrish Dholakia
9ec6ebaeeb fix(user_api_key_auth.py): add auth check for websocket endpoint
Fixes https://github.com/BerriAI/litellm/issues/6926
2024-11-27 17:45:59 +05:30
Krrish Dholakia
037171b98b fix(converse/transformation.py): support bedrock apac cross region inference
Fixes https://github.com/BerriAI/litellm/issues/6905
2024-11-27 16:18:40 +05:30
Krrish Dholakia
bbf31346ca fix(http_parsing_utils.py): remove ast.literal_eval() from http utils
Security fix - https://huntr.com/bounties/96a32812-213c-4819-ba4e-36143d35e95b?token=bf414bbd77f8b346556e
64ab2dd9301ea44339910877ea50401c76f977e36cdd78272f5fb4ca852a88a7e832828aae1192df98680544ee24aa98f3cf6980d8
bab641a66b7ccbc02c0e7d4ddba2db4dbe7318889dc0098d8db2d639f345f574159814627bb084563bad472e2f990f825bff0878a9
e281e72c88b4bc5884d637d186c0d67c9987c57c3f0caf395aff07b89ad2b7220d1dd7d1b427fd2260b5f01090efce5250f8b56ea2
c0ec19916c24b23825d85ce119911275944c840a1340d69e23ca6a462da610
2024-11-27 13:54:59 +05:30
144 changed files with 1086 additions and 3141 deletions

View file

@ -811,8 +811,7 @@ jobs:
- run: python ./tests/code_coverage_tests/router_code_coverage.py - run: python ./tests/code_coverage_tests/router_code_coverage.py
- run: python ./tests/code_coverage_tests/test_router_strategy_async.py - run: python ./tests/code_coverage_tests/test_router_strategy_async.py
- run: python ./tests/code_coverage_tests/litellm_logging_code_coverage.py - run: python ./tests/code_coverage_tests/litellm_logging_code_coverage.py
- run: python ./tests/documentation_tests/test_env_keys.py # - run: python ./tests/documentation_tests/test_env_keys.py
- run: python ./tests/documentation_tests/test_router_settings.py
- run: python ./tests/documentation_tests/test_api_docs.py - run: python ./tests/documentation_tests/test_api_docs.py
- run: python ./tests/code_coverage_tests/ensure_async_clients_test.py - run: python ./tests/code_coverage_tests/ensure_async_clients_test.py
- run: helm lint ./deploy/charts/litellm-helm - run: helm lint ./deploy/charts/litellm-helm
@ -1408,7 +1407,7 @@ jobs:
command: | command: |
docker run -d \ docker run -d \
-p 4000:4000 \ -p 4000:4000 \
-e DATABASE_URL=$PROXY_DATABASE_URL_2 \ -e DATABASE_URL=$PROXY_DATABASE_URL \
-e LITELLM_MASTER_KEY="sk-1234" \ -e LITELLM_MASTER_KEY="sk-1234" \
-e OPENAI_API_KEY=$OPENAI_API_KEY \ -e OPENAI_API_KEY=$OPENAI_API_KEY \
-e UI_USERNAME="admin" \ -e UI_USERNAME="admin" \

View file

@ -1,135 +0,0 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Moderation
### Usage
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python
from litellm import moderation
response = moderation(
input="hello from litellm",
model="text-moderation-stable"
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy Server">
For `/moderations` endpoint, there is **no need to specify `model` in the request or on the litellm config.yaml**
Start litellm proxy server
```
litellm
```
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.moderations.create(
input="hello from litellm",
model="text-moderation-stable" # optional, defaults to `omni-moderation-latest`
)
print(response)
```
</TabItem>
<TabItem value="curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/moderations' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{"input": "Sample text goes here", "model": "text-moderation-stable"}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Input Params
LiteLLM accepts and translates the [OpenAI Moderation params](https://platform.openai.com/docs/api-reference/moderations) across all supported providers.
### Required Fields
- `input`: *string or array* - Input (or inputs) to classify. Can be a single string, an array of strings, or an array of multi-modal input objects similar to other models.
- If string: A string of text to classify for moderation
- If array of strings: An array of strings to classify for moderation
- If array of objects: An array of multi-modal inputs to the moderation model, where each object can be:
- An object describing an image to classify with:
- `type`: *string, required* - Always `image_url`
- `image_url`: *object, required* - Contains either an image URL or a data URL for a base64 encoded image
- An object describing text to classify with:
- `type`: *string, required* - Always `text`
- `text`: *string, required* - A string of text to classify
### Optional Fields
- `model`: *string (optional)* - The moderation model to use. Defaults to `omni-moderation-latest`.
## Output Format
Here's the exact json output and type you can expect from all moderation calls:
[**LiteLLM follows OpenAI's output format**](https://platform.openai.com/docs/api-reference/moderations/object)
```python
{
"id": "modr-AB8CjOTu2jiq12hp1AQPfeqFWaORR",
"model": "text-moderation-007",
"results": [
{
"flagged": true,
"categories": {
"sexual": false,
"hate": false,
"harassment": true,
"self-harm": false,
"sexual/minors": false,
"hate/threatening": false,
"violence/graphic": false,
"self-harm/intent": false,
"self-harm/instructions": false,
"harassment/threatening": true,
"violence": true
},
"category_scores": {
"sexual": 0.000011726012417057063,
"hate": 0.22706663608551025,
"harassment": 0.5215635299682617,
"self-harm": 2.227119921371923e-6,
"sexual/minors": 7.107352217872176e-8,
"hate/threatening": 0.023547329008579254,
"violence/graphic": 0.00003391829886822961,
"self-harm/intent": 1.646940972932498e-6,
"self-harm/instructions": 1.1198755256458526e-9,
"harassment/threatening": 0.5694745779037476,
"violence": 0.9971134662628174
}
}
]
}
```
## **Supported Providers**
| Provider |
|-------------|
| OpenAI |

View file

@ -4,48 +4,9 @@ import TabItem from '@theme/TabItem';
# Argilla # Argilla
Argilla is a collaborative annotation tool for AI engineers and domain experts who need to build high-quality datasets for their projects. Argilla is a tool for annotating datasets.
## Getting Started
To log the data to Argilla, first you need to deploy the Argilla server. If you have not deployed the Argilla server, please follow the instructions [here](https://docs.argilla.io/latest/getting_started/quickstart/).
Next, you will need to configure and create the Argilla dataset.
```python
import argilla as rg
client = rg.Argilla(api_url="<api_url>", api_key="<api_key>")
settings = rg.Settings(
guidelines="These are some guidelines.",
fields=[
rg.ChatField(
name="user_input",
),
rg.TextField(
name="llm_output",
),
],
questions=[
rg.RatingQuestion(
name="rating",
values=[1, 2, 3, 4, 5, 6, 7],
),
],
)
dataset = rg.Dataset(
name="my_first_dataset",
settings=settings,
)
dataset.create()
```
For further configuration, please refer to the [Argilla documentation](https://docs.argilla.io/latest/how_to_guides/dataset/).
## Usage ## Usage
@ -53,14 +14,14 @@ For further configuration, please refer to the [Argilla documentation](https://d
<Tab value="sdk" label="SDK"> <Tab value="sdk" label="SDK">
```python ```python
import os
import litellm
from litellm import completion from litellm import completion
import litellm
import os
# add env vars # add env vars
os.environ["ARGILLA_API_KEY"]="argilla.apikey" os.environ["ARGILLA_API_KEY"]="argilla.apikey"
os.environ["ARGILLA_BASE_URL"]="http://localhost:6900" os.environ["ARGILLA_BASE_URL"]="http://localhost:6900"
os.environ["ARGILLA_DATASET_NAME"]="my_first_dataset" os.environ["ARGILLA_DATASET_NAME"]="my_second_dataset"
os.environ["OPENAI_API_KEY"]="sk-proj-..." os.environ["OPENAI_API_KEY"]="sk-proj-..."
litellm.callbacks = ["argilla"] litellm.callbacks = ["argilla"]

View file

@ -279,31 +279,7 @@ router_settings:
| retry_policy | object | Specifies the number of retries for different types of exceptions. [More information here](reliability) | | retry_policy | object | Specifies the number of retries for different types of exceptions. [More information here](reliability) |
| allowed_fails | integer | The number of failures allowed before cooling down a model. [More information here](reliability) | | allowed_fails | integer | The number of failures allowed before cooling down a model. [More information here](reliability) |
| allowed_fails_policy | object | Specifies the number of allowed failures for different error types before cooling down a deployment. [More information here](reliability) | | allowed_fails_policy | object | Specifies the number of allowed failures for different error types before cooling down a deployment. [More information here](reliability) |
| default_max_parallel_requests | Optional[int] | The default maximum number of parallel requests for a deployment. |
| default_priority | (Optional[int]) | The default priority for a request. Only for '.scheduler_acompletion()'. Default is None. |
| polling_interval | (Optional[float]) | frequency of polling queue. Only for '.scheduler_acompletion()'. Default is 3ms. |
| max_fallbacks | Optional[int] | The maximum number of fallbacks to try before exiting the call. Defaults to 5. |
| default_litellm_params | Optional[dict] | The default litellm parameters to add to all requests (e.g. `temperature`, `max_tokens`). |
| timeout | Optional[float] | The default timeout for a request. |
| debug_level | Literal["DEBUG", "INFO"] | The debug level for the logging library in the router. Defaults to "INFO". |
| client_ttl | int | Time-to-live for cached clients in seconds. Defaults to 3600. |
| cache_kwargs | dict | Additional keyword arguments for the cache initialization. |
| routing_strategy_args | dict | Additional keyword arguments for the routing strategy - e.g. lowest latency routing default ttl |
| model_group_alias | dict | Model group alias mapping. E.g. `{"claude-3-haiku": "claude-3-haiku-20240229"}` |
| num_retries | int | Number of retries for a request. Defaults to 3. |
| default_fallbacks | Optional[List[str]] | Fallbacks to try if no model group-specific fallbacks are defined. |
| caching_groups | Optional[List[tuple]] | List of model groups for caching across model groups. Defaults to None. - e.g. caching_groups=[("openai-gpt-3.5-turbo", "azure-gpt-3.5-turbo")]|
| alerting_config | AlertingConfig | [SDK-only arg] Slack alerting configuration. Defaults to None. [Further Docs](../routing.md#alerting-) |
| assistants_config | AssistantsConfig | Set on proxy via `assistant_settings`. [Further docs](../assistants.md) |
| set_verbose | boolean | [DEPRECATED PARAM - see debug docs](./debugging.md) If true, sets the logging level to verbose. |
| retry_after | int | Time to wait before retrying a request in seconds. Defaults to 0. If `x-retry-after` is received from LLM API, this value is overridden. |
| provider_budget_config | ProviderBudgetConfig | Provider budget configuration. Use this to set llm_provider budget limits. example $100/day to OpenAI, $100/day to Azure, etc. Defaults to None. [Further Docs](./provider_budget_routing.md) |
| enable_pre_call_checks | boolean | If true, checks if a call is within the model's context window before making the call. [More information here](reliability) |
| model_group_retry_policy | Dict[str, RetryPolicy] | [SDK-only arg] Set retry policy for model groups. |
| context_window_fallbacks | List[Dict[str, List[str]]] | Fallback models for context window violations. |
| redis_url | str | URL for Redis server. **Known performance issue with Redis URL.** |
| cache_responses | boolean | Flag to enable caching LLM Responses, if cache set under `router_settings`. If true, caches responses. Defaults to False. |
| router_general_settings | RouterGeneralSettings | [SDK-Only] Router general settings - contains optimizations like 'async_only_mode'. [Docs](../routing.md#router-general-settings) |
### environment variables - Reference ### environment variables - Reference
@ -359,8 +335,6 @@ router_settings:
| DD_SITE | Site URL for Datadog (e.g., datadoghq.com) | DD_SITE | Site URL for Datadog (e.g., datadoghq.com)
| DD_SOURCE | Source identifier for Datadog logs | DD_SOURCE | Source identifier for Datadog logs
| DD_ENV | Environment identifier for Datadog logs. Only supported for `datadog_llm_observability` callback | DD_ENV | Environment identifier for Datadog logs. Only supported for `datadog_llm_observability` callback
| DD_SERVICE | Service identifier for Datadog logs. Defaults to "litellm-server"
| DD_VERSION | Version identifier for Datadog logs. Defaults to "unknown"
| DEBUG_OTEL | Enable debug mode for OpenTelemetry | DEBUG_OTEL | Enable debug mode for OpenTelemetry
| DIRECT_URL | Direct URL for service endpoint | DIRECT_URL | Direct URL for service endpoint
| DISABLE_ADMIN_UI | Toggle to disable the admin UI | DISABLE_ADMIN_UI | Toggle to disable the admin UI

View file

@ -357,6 +357,77 @@ curl --location 'http://0.0.0.0:4000/v1/model/info' \
--data '' --data ''
``` ```
### Provider specific wildcard routing
**Proxy all models from a provider**
Use this if you want to **proxy all models from a specific provider without defining them on the config.yaml**
**Step 1** - define provider specific routing on config.yaml
```yaml
model_list:
# provider specific wildcard routing
- model_name: "anthropic/*"
litellm_params:
model: "anthropic/*"
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: "groq/*"
litellm_params:
model: "groq/*"
api_key: os.environ/GROQ_API_KEY
- model_name: "fo::*:static::*" # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
litellm_params:
model: "openai/fo::*:static::*"
api_key: os.environ/OPENAI_API_KEY
```
Step 2 - Run litellm proxy
```shell
$ litellm --config /path/to/config.yaml
```
Step 3 Test it
Test with `anthropic/` - all models with `anthropic/` prefix will get routed to `anthropic/*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "anthropic/claude-3-sonnet-20240229",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `groq/` - all models with `groq/` prefix will get routed to `groq/*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "groq/llama3-8b-8192",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `fo::*::static::*` - all requests matching this pattern will be routed to `openai/fo::*:static::*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "fo::hi::static::hi",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
### Load Balancing ### Load Balancing
:::info :::info

View file

@ -50,22 +50,18 @@ You can see the full DB Schema [here](https://github.com/BerriAI/litellm/blob/ma
| LiteLLM_ErrorLogs | Captures failed requests and errors. Stores exception details and request information. Helps with debugging and monitoring. | **Medium - on errors only** | | LiteLLM_ErrorLogs | Captures failed requests and errors. Stores exception details and request information. Helps with debugging and monitoring. | **Medium - on errors only** |
| LiteLLM_AuditLog | Tracks changes to system configuration. Records who made changes and what was modified. Maintains history of updates to teams, users, and models. | **Off by default**, **High - when enabled** | | LiteLLM_AuditLog | Tracks changes to system configuration. Records who made changes and what was modified. Maintains history of updates to teams, users, and models. | **Off by default**, **High - when enabled** |
## Disable `LiteLLM_SpendLogs` & `LiteLLM_ErrorLogs` ## How to Disable `LiteLLM_SpendLogs`
You can disable spend_logs and error_logs by setting `disable_spend_logs` and `disable_error_logs` to `True` on the `general_settings` section of your proxy_config.yaml file. You can disable spend_logs by setting `disable_spend_logs` to `True` on the `general_settings` section of your proxy_config.yaml file.
```yaml ```yaml
general_settings: general_settings:
disable_spend_logs: True # Disable writing spend logs to DB disable_spend_logs: True
disable_error_logs: True # Disable writing error logs to DB
``` ```
### What is the impact of disabling these logs?
When disabling spend logs (`disable_spend_logs: True`): ### What is the impact of disabling `LiteLLM_SpendLogs`?
- You **will not** be able to view Usage on the LiteLLM UI - You **will not** be able to view Usage on the LiteLLM UI
- You **will** continue seeing cost metrics on s3, Prometheus, Langfuse (any other Logging integration you are using) - You **will** continue seeing cost metrics on s3, Prometheus, Langfuse (any other Logging integration you are using)
When disabling error logs (`disable_error_logs: True`):
- You **will not** be able to view Errors on the LiteLLM UI
- You **will** continue seeing error logs in your application logs and any other logging integrations you are using

View file

@ -23,7 +23,6 @@ general_settings:
# OPTIONAL Best Practices # OPTIONAL Best Practices
disable_spend_logs: True # turn off writing each transaction to the db. We recommend doing this is you don't need to see Usage on the LiteLLM UI and are tracking metrics via Prometheus disable_spend_logs: True # turn off writing each transaction to the db. We recommend doing this is you don't need to see Usage on the LiteLLM UI and are tracking metrics via Prometheus
disable_error_logs: True # turn off writing LLM Exceptions to DB
allow_requests_on_db_unavailable: True # Only USE when running LiteLLM on your VPC. Allow requests to still be processed even if the DB is unavailable. We recommend doing this if you're running LiteLLM on VPC that cannot be accessed from the public internet. allow_requests_on_db_unavailable: True # Only USE when running LiteLLM on your VPC. Allow requests to still be processed even if the DB is unavailable. We recommend doing this if you're running LiteLLM on VPC that cannot be accessed from the public internet.
litellm_settings: litellm_settings:
@ -103,22 +102,17 @@ general_settings:
allow_requests_on_db_unavailable: True allow_requests_on_db_unavailable: True
``` ```
## 6. Disable spend_logs & error_logs if not using the LiteLLM UI ## 6. Disable spend_logs if you're not using the LiteLLM UI
By default, LiteLLM writes several types of logs to the database: By default LiteLLM will write every request to the `LiteLLM_SpendLogs` table. This is used for viewing Usage on the LiteLLM UI.
- Every LLM API request to the `LiteLLM_SpendLogs` table
- LLM Exceptions to the `LiteLLM_LogsErrors` table
If you're not viewing these logs on the LiteLLM UI (most users use Prometheus for monitoring), you can disable them by setting the following flags to `True`: If you're not viewing Usage on the LiteLLM UI (most users use Prometheus when this is disabled), you can disable spend_logs by setting `disable_spend_logs` to `True`.
```yaml ```yaml
general_settings: general_settings:
disable_spend_logs: True # Disable writing spend logs to DB disable_spend_logs: True
disable_error_logs: True # Disable writing error logs to DB
``` ```
[More information about what the Database is used for here](db_info)
## 7. Use Helm PreSync Hook for Database Migrations [BETA] ## 7. Use Helm PreSync Hook for Database Migrations [BETA]
To ensure only one service manages database migrations, use our [Helm PreSync hook for Database Migrations](https://github.com/BerriAI/litellm/blob/main/deploy/charts/litellm-helm/templates/migrations-job.yaml). This ensures migrations are handled during `helm upgrade` or `helm install`, while LiteLLM pods explicitly disable migrations. To ensure only one service manages database migrations, use our [Helm PreSync hook for Database Migrations](https://github.com/BerriAI/litellm/blob/main/deploy/charts/litellm-helm/templates/migrations-job.yaml). This ensures migrations are handled during `helm upgrade` or `helm install`, while LiteLLM pods explicitly disable migrations.

View file

@ -192,13 +192,3 @@ Here is a screenshot of the metrics you can monitor with the LiteLLM Grafana Das
|----------------------|--------------------------------------| |----------------------|--------------------------------------|
| `litellm_llm_api_failed_requests_metric` | **deprecated** use `litellm_proxy_failed_requests_metric` | | `litellm_llm_api_failed_requests_metric` | **deprecated** use `litellm_proxy_failed_requests_metric` |
| `litellm_requests_metric` | **deprecated** use `litellm_proxy_total_requests_metric` | | `litellm_requests_metric` | **deprecated** use `litellm_proxy_total_requests_metric` |
## FAQ
### What are `_created` vs. `_total` metrics?
- `_created` metrics are metrics that are created when the proxy starts
- `_total` metrics are metrics that are incremented for each request
You should consume the `_total` metrics for your counting purposes

View file

@ -1891,22 +1891,3 @@ router = Router(
debug_level="DEBUG" # defaults to INFO debug_level="DEBUG" # defaults to INFO
) )
``` ```
## Router General Settings
### Usage
```python
router = Router(model_list=..., router_general_settings=RouterGeneralSettings(async_only_mode=True))
```
### Spec
```python
class RouterGeneralSettings(BaseModel):
async_only_mode: bool = Field(
default=False
) # this will only initialize async clients. Good for memory utils
pass_through_all_models: bool = Field(
default=False
) # if passed a model not llm_router model list, pass through the request to litellm.acompletion/embedding
```

View file

@ -1,174 +0,0 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Text Completion
### Usage
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python
from litellm import text_completion
response = text_completion(
model="gpt-3.5-turbo-instruct",
prompt="Say this is a test",
max_tokens=7
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy Server">
1. Define models on config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo-instruct
litellm_params:
model: text-completion-openai/gpt-3.5-turbo-instruct # The `text-completion-openai/` prefix will call openai.completions.create
api_key: os.environ/OPENAI_API_KEY
- model_name: text-davinci-003
litellm_params:
model: text-completion-openai/text-davinci-003
api_key: os.environ/OPENAI_API_KEY
```
2. Start litellm proxy server
```
litellm --config config.yaml
```
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt="Say this is a test",
max_tokens=7
)
print(response)
```
</TabItem>
<TabItem value="curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{
"model": "gpt-3.5-turbo-instruct",
"prompt": "Say this is a test",
"max_tokens": 7
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Input Params
LiteLLM accepts and translates the [OpenAI Text Completion params](https://platform.openai.com/docs/api-reference/completions) across all supported providers.
### Required Fields
- `model`: *string* - ID of the model to use
- `prompt`: *string or array* - The prompt(s) to generate completions for
### Optional Fields
- `best_of`: *integer* - Generates best_of completions server-side and returns the "best" one
- `echo`: *boolean* - Echo back the prompt in addition to the completion.
- `frequency_penalty`: *number* - Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency.
- `logit_bias`: *map* - Modify the likelihood of specified tokens appearing in the completion
- `logprobs`: *integer* - Include the log probabilities on the logprobs most likely tokens. Max value of 5
- `max_tokens`: *integer* - The maximum number of tokens to generate.
- `n`: *integer* - How many completions to generate for each prompt.
- `presence_penalty`: *number* - Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far.
- `seed`: *integer* - If specified, system will attempt to make deterministic samples
- `stop`: *string or array* - Up to 4 sequences where the API will stop generating tokens
- `stream`: *boolean* - Whether to stream back partial progress. Defaults to false
- `suffix`: *string* - The suffix that comes after a completion of inserted text
- `temperature`: *number* - What sampling temperature to use, between 0 and 2.
- `top_p`: *number* - An alternative to sampling with temperature, called nucleus sampling.
- `user`: *string* - A unique identifier representing your end-user
## Output Format
Here's the exact JSON output format you can expect from completion calls:
[**Follows OpenAI's output format**](https://platform.openai.com/docs/api-reference/completions/object)
<Tabs>
<TabItem value="non-streaming" label="Non-Streaming Response">
```python
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "gpt-3.5-turbo-instruct",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
```
</TabItem>
<TabItem value="streaming" label="Streaming Response">
```python
{
"id": "cmpl-7iA7iJjj8V2zOkCGvWF2hAkDWBQZe",
"object": "text_completion",
"created": 1690759702,
"choices": [
{
"text": "This",
"index": 0,
"logprobs": null,
"finish_reason": null
}
],
"model": "gpt-3.5-turbo-instruct"
"system_fingerprint": "fp_44709d6fcb",
}
```
</TabItem>
</Tabs>
## **Supported Providers**
| Provider | Link to Usage |
|-------------|--------------------|
| OpenAI | [Usage](../docs/providers/text_completion_openai) |
| Azure OpenAI| [Usage](../docs/providers/azure) |

View file

@ -1,140 +0,0 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Provider specific Wildcard routing
**Proxy all models from a provider**
Use this if you want to **proxy all models from a specific provider without defining them on the config.yaml**
## Step 1. Define provider specific routing
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import Router
router = Router(
model_list=[
{
"model_name": "anthropic/*",
"litellm_params": {
"model": "anthropic/*",
"api_key": os.environ["ANTHROPIC_API_KEY"]
}
},
{
"model_name": "groq/*",
"litellm_params": {
"model": "groq/*",
"api_key": os.environ["GROQ_API_KEY"]
}
},
{
"model_name": "fo::*:static::*", # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
"litellm_params": {
"model": "openai/fo::*:static::*",
"api_key": os.environ["OPENAI_API_KEY"]
}
}
]
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
**Step 1** - define provider specific routing on config.yaml
```yaml
model_list:
# provider specific wildcard routing
- model_name: "anthropic/*"
litellm_params:
model: "anthropic/*"
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: "groq/*"
litellm_params:
model: "groq/*"
api_key: os.environ/GROQ_API_KEY
- model_name: "fo::*:static::*" # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
litellm_params:
model: "openai/fo::*:static::*"
api_key: os.environ/OPENAI_API_KEY
```
</TabItem>
</Tabs>
## [PROXY-Only] Step 2 - Run litellm proxy
```shell
$ litellm --config /path/to/config.yaml
```
## Step 3 - Test it
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import Router
router = Router(model_list=...)
# Test with `anthropic/` - all models with `anthropic/` prefix will get routed to `anthropic/*`
resp = completion(model="anthropic/claude-3-sonnet-20240229", messages=[{"role": "user", "content": "Hello, Claude!"}])
print(resp)
# Test with `groq/` - all models with `groq/` prefix will get routed to `groq/*`
resp = completion(model="groq/llama3-8b-8192", messages=[{"role": "user", "content": "Hello, Groq!"}])
print(resp)
# Test with `fo::*::static::*` - all requests matching this pattern will be routed to `openai/fo::*:static::*`
resp = completion(model="fo::hi::static::hi", messages=[{"role": "user", "content": "Hello, Claude!"}])
print(resp)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
Test with `anthropic/` - all models with `anthropic/` prefix will get routed to `anthropic/*`
```bash
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "anthropic/claude-3-sonnet-20240229",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `groq/` - all models with `groq/` prefix will get routed to `groq/*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "groq/llama3-8b-8192",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `fo::*::static::*` - all requests matching this pattern will be routed to `openai/fo::*:static::*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "fo::hi::static::hi",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
</TabItem>
</Tabs>

View file

@ -246,7 +246,6 @@ const sidebars = {
"completion/usage", "completion/usage",
], ],
}, },
"text_completion",
"embedding/supported_embedding", "embedding/supported_embedding",
"image_generation", "image_generation",
{ {
@ -262,7 +261,6 @@ const sidebars = {
"batches", "batches",
"realtime", "realtime",
"fine_tuning", "fine_tuning",
"moderation",
{ {
type: "link", type: "link",
label: "Use LiteLLM Proxy with Vertex, Bedrock SDK", label: "Use LiteLLM Proxy with Vertex, Bedrock SDK",
@ -279,7 +277,7 @@ const sidebars = {
description: "Learn how to load balance, route, and set fallbacks for your LLM requests", description: "Learn how to load balance, route, and set fallbacks for your LLM requests",
slug: "/routing-load-balancing", slug: "/routing-load-balancing",
}, },
items: ["routing", "scheduler", "proxy/load_balancing", "proxy/reliability", "proxy/tag_routing", "proxy/provider_budget_routing", "proxy/team_based_routing", "proxy/customer_routing", "wildcard_routing"], items: ["routing", "scheduler", "proxy/load_balancing", "proxy/reliability", "proxy/tag_routing", "proxy/provider_budget_routing", "proxy/team_based_routing", "proxy/customer_routing"],
}, },
{ {
type: "category", type: "category",

View file

@ -2,9 +2,7 @@
from typing import Optional, List from typing import Optional, List
from litellm._logging import verbose_logger from litellm._logging import verbose_logger
from litellm.proxy.proxy_server import PrismaClient, HTTPException from litellm.proxy.proxy_server import PrismaClient, HTTPException
from litellm.llms.custom_httpx.http_handler import HTTPHandler
import collections import collections
import httpx
from datetime import datetime from datetime import datetime
@ -116,6 +114,7 @@ async def ui_get_spend_by_tags(
def _forecast_daily_cost(data: list): def _forecast_daily_cost(data: list):
import requests # type: ignore
from datetime import datetime, timedelta from datetime import datetime, timedelta
if len(data) == 0: if len(data) == 0:
@ -137,17 +136,17 @@ def _forecast_daily_cost(data: list):
print("last entry date", last_entry_date) print("last entry date", last_entry_date)
# Assuming today_date is a datetime object
today_date = datetime.now()
# Calculate the last day of the month # Calculate the last day of the month
last_day_of_todays_month = datetime( last_day_of_todays_month = datetime(
today_date.year, today_date.month % 12 + 1, 1 today_date.year, today_date.month % 12 + 1, 1
) - timedelta(days=1) ) - timedelta(days=1)
print("last day of todays month", last_day_of_todays_month)
# Calculate the remaining days in the month # Calculate the remaining days in the month
remaining_days = (last_day_of_todays_month - last_entry_date).days remaining_days = (last_day_of_todays_month - last_entry_date).days
print("remaining days", remaining_days)
current_spend_this_month = 0 current_spend_this_month = 0
series = {} series = {}
for entry in data: for entry in data:
@ -177,19 +176,13 @@ def _forecast_daily_cost(data: list):
"Content-Type": "application/json", "Content-Type": "application/json",
} }
client = HTTPHandler() response = requests.post(
try:
response = client.post(
url="https://trend-api-production.up.railway.app/forecast", url="https://trend-api-production.up.railway.app/forecast",
json=payload, json=payload,
headers=headers, headers=headers,
) )
except httpx.HTTPStatusError as e: # check the status code
raise HTTPException( response.raise_for_status()
status_code=500,
detail={"error": f"Error getting forecast: {e.response.text}"},
)
json_response = response.json() json_response = response.json()
forecast_data = json_response["forecast"] forecast_data = json_response["forecast"]
@ -213,3 +206,13 @@ def _forecast_daily_cost(data: list):
f"Predicted Spend for { today_month } 2024, ${total_predicted_spend}" f"Predicted Spend for { today_month } 2024, ${total_predicted_spend}"
) )
return {"response": response_data, "predicted_spend": predicted_spend} return {"response": response_data, "predicted_spend": predicted_spend}
# print(f"Date: {entry['date']}, Spend: {entry['spend']}, Response: {response.text}")
# _forecast_daily_cost(
# [
# {"date": "2022-01-01", "spend": 100},
# ]
# )

View file

@ -28,62 +28,6 @@ headers = {
_DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0) _DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0)
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour _DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
import re
def mask_sensitive_info(error_message):
# Find the start of the key parameter
if isinstance(error_message, str):
key_index = error_message.find("key=")
else:
return error_message
# If key is found
if key_index != -1:
# Find the end of the key parameter (next & or end of string)
next_param = error_message.find("&", key_index)
if next_param == -1:
# If no more parameters, mask until the end of the string
masked_message = error_message[: key_index + 4] + "[REDACTED_API_KEY]"
else:
# Replace the key with redacted value, keeping other parameters
masked_message = (
error_message[: key_index + 4]
+ "[REDACTED_API_KEY]"
+ error_message[next_param:]
)
return masked_message
return error_message
class MaskedHTTPStatusError(httpx.HTTPStatusError):
def __init__(
self, original_error, message: Optional[str] = None, text: Optional[str] = None
):
# Create a new error with the masked URL
masked_url = mask_sensitive_info(str(original_error.request.url))
# Create a new error that looks like the original, but with a masked URL
super().__init__(
message=original_error.message,
request=httpx.Request(
method=original_error.request.method,
url=masked_url,
headers=original_error.request.headers,
content=original_error.request.content,
),
response=httpx.Response(
status_code=original_error.response.status_code,
content=original_error.response.content,
headers=original_error.response.headers,
),
)
self.message = message
self.text = text
class AsyncHTTPHandler: class AsyncHTTPHandler:
def __init__( def __init__(
@ -211,16 +155,13 @@ class AsyncHTTPHandler:
headers=headers, headers=headers,
) )
except httpx.HTTPStatusError as e: except httpx.HTTPStatusError as e:
setattr(e, "status_code", e.response.status_code)
if stream is True: if stream is True:
setattr(e, "message", await e.response.aread()) setattr(e, "message", await e.response.aread())
setattr(e, "text", await e.response.aread()) setattr(e, "text", await e.response.aread())
else: else:
setattr(e, "message", mask_sensitive_info(e.response.text)) setattr(e, "message", e.response.text)
setattr(e, "text", mask_sensitive_info(e.response.text)) setattr(e, "text", e.response.text)
setattr(e, "status_code", e.response.status_code)
raise e raise e
except Exception as e: except Exception as e:
raise e raise e
@ -458,17 +399,11 @@ class HTTPHandler:
llm_provider="litellm-httpx-handler", llm_provider="litellm-httpx-handler",
) )
except httpx.HTTPStatusError as e: except httpx.HTTPStatusError as e:
if stream is True:
setattr(e, "message", mask_sensitive_info(e.response.read()))
setattr(e, "text", mask_sensitive_info(e.response.read()))
else:
error_text = mask_sensitive_info(e.response.text)
setattr(e, "message", error_text)
setattr(e, "text", error_text)
setattr(e, "status_code", e.response.status_code) setattr(e, "status_code", e.response.status_code)
if stream is True:
setattr(e, "message", e.response.read())
else:
setattr(e, "message", e.response.text)
raise e raise e
except Exception as e: except Exception as e:
raise e raise e

View file

@ -1159,44 +1159,15 @@ def convert_to_anthropic_tool_result(
] ]
} }
""" """
anthropic_content: Union[ content_str: str = ""
str,
List[Union[AnthropicMessagesToolResultContent, AnthropicMessagesImageParam]],
] = ""
if isinstance(message["content"], str): if isinstance(message["content"], str):
anthropic_content = message["content"] content_str = message["content"]
elif isinstance(message["content"], List): elif isinstance(message["content"], List):
content_list = message["content"] content_list = message["content"]
anthropic_content_list: List[
Union[AnthropicMessagesToolResultContent, AnthropicMessagesImageParam]
] = []
for content in content_list: for content in content_list:
if content["type"] == "text": if content["type"] == "text":
anthropic_content_list.append( content_str += content["text"]
AnthropicMessagesToolResultContent(
type="text",
text=content["text"],
)
)
elif content["type"] == "image_url":
if isinstance(content["image_url"], str):
image_chunk = convert_to_anthropic_image_obj(content["image_url"])
else:
image_chunk = convert_to_anthropic_image_obj(
content["image_url"]["url"]
)
anthropic_content_list.append(
AnthropicMessagesImageParam(
type="image",
source=AnthropicContentParamSource(
type="base64",
media_type=image_chunk["media_type"],
data=image_chunk["data"],
),
)
)
anthropic_content = anthropic_content_list
anthropic_tool_result: Optional[AnthropicMessagesToolResultParam] = None anthropic_tool_result: Optional[AnthropicMessagesToolResultParam] = None
## PROMPT CACHING CHECK ## ## PROMPT CACHING CHECK ##
cache_control = message.get("cache_control", None) cache_control = message.get("cache_control", None)
@ -1207,14 +1178,14 @@ def convert_to_anthropic_tool_result(
# We can't determine from openai message format whether it's a successful or # We can't determine from openai message format whether it's a successful or
# error call result so default to the successful result template # error call result so default to the successful result template
anthropic_tool_result = AnthropicMessagesToolResultParam( anthropic_tool_result = AnthropicMessagesToolResultParam(
type="tool_result", tool_use_id=tool_call_id, content=anthropic_content type="tool_result", tool_use_id=tool_call_id, content=content_str
) )
if message["role"] == "function": if message["role"] == "function":
function_message: ChatCompletionFunctionMessage = message function_message: ChatCompletionFunctionMessage = message
tool_call_id = function_message.get("tool_call_id") or str(uuid.uuid4()) tool_call_id = function_message.get("tool_call_id") or str(uuid.uuid4())
anthropic_tool_result = AnthropicMessagesToolResultParam( anthropic_tool_result = AnthropicMessagesToolResultParam(
type="tool_result", tool_use_id=tool_call_id, content=anthropic_content type="tool_result", tool_use_id=tool_call_id, content=content_str
) )
if anthropic_tool_result is None: if anthropic_tool_result is None:

View file

@ -107,10 +107,6 @@ def _get_image_mime_type_from_url(url: str) -> Optional[str]:
return "image/png" return "image/png"
elif url.endswith(".webp"): elif url.endswith(".webp"):
return "image/webp" return "image/webp"
elif url.endswith(".mp4"):
return "video/mp4"
elif url.endswith(".pdf"):
return "application/pdf"
return None return None

View file

@ -3383,8 +3383,6 @@
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"supports_prompt_caching": true, "supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash-001": { "gemini/gemini-1.5-flash-001": {
@ -3408,8 +3406,6 @@
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"supports_prompt_caching": true, "supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash": { "gemini/gemini-1.5-flash": {
@ -3432,8 +3428,6 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash-latest": { "gemini/gemini-1.5-flash-latest": {
@ -3456,32 +3450,6 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b": {
"max_tokens": 8192,
"max_input_tokens": 1048576,
"max_output_tokens": 8192,
"max_images_per_prompt": 3000,
"max_videos_per_prompt": 10,
"max_video_length": 1,
"max_audio_length_hours": 8.4,
"max_audio_per_prompt": 1,
"max_pdf_size_mb": 30,
"input_cost_per_token": 0,
"input_cost_per_token_above_128k_tokens": 0,
"output_cost_per_token": 0,
"output_cost_per_token_above_128k_tokens": 0,
"litellm_provider": "gemini",
"mode": "chat",
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash-8b-exp-0924": { "gemini/gemini-1.5-flash-8b-exp-0924": {
@ -3504,8 +3472,6 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-exp-1114": { "gemini/gemini-exp-1114": {
@ -3528,12 +3494,7 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000, "source": "https://ai.google.dev/pricing"
"rpm": 1000,
"source": "https://ai.google.dev/pricing",
"metadata": {
"notes": "Rate limits not documented for gemini-exp-1114. Assuming same as gemini-1.5-pro."
}
}, },
"gemini/gemini-1.5-flash-exp-0827": { "gemini/gemini-1.5-flash-exp-0827": {
"max_tokens": 8192, "max_tokens": 8192,
@ -3555,8 +3516,6 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash-8b-exp-0827": { "gemini/gemini-1.5-flash-8b-exp-0827": {
@ -3578,9 +3537,6 @@
"supports_system_messages": true, "supports_system_messages": true,
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-pro": { "gemini/gemini-pro": {
@ -3594,10 +3550,7 @@
"litellm_provider": "gemini", "litellm_provider": "gemini",
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"rpd": 30000, "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
"tpm": 120000,
"rpm": 360,
"source": "https://ai.google.dev/gemini-api/docs/models/gemini"
}, },
"gemini/gemini-1.5-pro": { "gemini/gemini-1.5-pro": {
"max_tokens": 8192, "max_tokens": 8192,
@ -3614,8 +3567,6 @@
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-002": { "gemini/gemini-1.5-pro-002": {
@ -3634,8 +3585,6 @@
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"supports_prompt_caching": true, "supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-001": { "gemini/gemini-1.5-pro-001": {
@ -3654,8 +3603,6 @@
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"supports_prompt_caching": true, "supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-exp-0801": { "gemini/gemini-1.5-pro-exp-0801": {
@ -3673,8 +3620,6 @@
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-exp-0827": { "gemini/gemini-1.5-pro-exp-0827": {
@ -3692,8 +3637,6 @@
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-latest": { "gemini/gemini-1.5-pro-latest": {
@ -3711,8 +3654,6 @@
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-pro-vision": { "gemini/gemini-pro-vision": {
@ -3727,9 +3668,6 @@
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini/gemini-gemma-2-27b-it": { "gemini/gemini-gemma-2-27b-it": {

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{11837:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_12bbc4', '__Inter_Fallback_12bbc4'",fontStyle:"normal"},className:"__className_12bbc4"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=11837)}),_N_E=n.O()}]);

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(e,n,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(e){e.exports={style:{fontFamily:"'__Inter_86ef86', '__Inter_Fallback_86ef86'",fontStyle:"normal"},className:"__className_86ef86"}}},function(e){e.O(0,[971,69,744],function(){return e(e.s=87421)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[461],{20723:function(e,s,t){Promise.resolve().then(t.bind(t,667))},667:function(e,s,t){"use strict";t.r(s),t.d(s,{default:function(){return g}});var l=t(57437),n=t(2265),a=t(47907),i=t(2179),r=t(18190),o=t(13810),c=t(10384),u=t(46453),d=t(71801),m=t(52273),h=t(42440),x=t(30953),f=t(777),p=t(37963),j=t(60620),_=t(13565);function g(){let[e]=j.Z.useForm(),s=(0,a.useSearchParams)();!function(e){console.log("COOKIES",document.cookie);let s=document.cookie.split("; ").find(s=>s.startsWith(e+"="));s&&s.split("=")[1]}("token");let t=s.get("invitation_id"),[g,Z]=(0,n.useState)(null),[k,w]=(0,n.useState)(""),[S,b]=(0,n.useState)(""),[N,v]=(0,n.useState)(null),[y,E]=(0,n.useState)(""),[I,O]=(0,n.useState)("");return(0,n.useEffect)(()=>{t&&(0,f.W_)(t).then(e=>{let s=e.login_url;console.log("login_url:",s),E(s);let t=e.token,l=(0,p.o)(t);O(t),console.log("decoded:",l),Z(l.key),console.log("decoded user email:",l.user_email),b(l.user_email),v(l.user_id)})},[t]),(0,l.jsx)("div",{className:"mx-auto w-full max-w-md mt-10",children:(0,l.jsxs)(o.Z,{children:[(0,l.jsx)(h.Z,{className:"text-sm mb-5 text-center",children:"\uD83D\uDE85 LiteLLM"}),(0,l.jsx)(h.Z,{className:"text-xl",children:"Sign up"}),(0,l.jsx)(d.Z,{children:"Claim your user account to login to Admin UI."}),(0,l.jsx)(r.Z,{className:"mt-4",title:"SSO",icon:x.GH$,color:"sky",children:(0,l.jsxs)(u.Z,{numItems:2,className:"flex justify-between items-center",children:[(0,l.jsx)(c.Z,{children:"SSO is under the Enterprise Tirer."}),(0,l.jsx)(c.Z,{children:(0,l.jsx)(i.Z,{variant:"primary",className:"mb-2",children:(0,l.jsx)("a",{href:"https://forms.gle/W3U4PZpJGFHWtHyA9",target:"_blank",children:"Get Free Trial"})})})]})}),(0,l.jsxs)(j.Z,{className:"mt-10 mb-5 mx-auto",layout:"vertical",onFinish:e=>{console.log("in handle submit. accessToken:",g,"token:",I,"formValues:",e),g&&I&&(e.user_email=S,N&&t&&(0,f.m_)(g,t,N,e.password).then(e=>{var s;let t="/ui/";t+="?userID="+((null===(s=e.data)||void 0===s?void 0:s.user_id)||e.user_id),document.cookie="token="+I,console.log("redirecting to:",t),window.location.href=t}))},children:[(0,l.jsxs)(l.Fragment,{children:[(0,l.jsx)(j.Z.Item,{label:"Email Address",name:"user_email",children:(0,l.jsx)(m.Z,{type:"email",disabled:!0,value:S,defaultValue:S,className:"max-w-md"})}),(0,l.jsx)(j.Z.Item,{label:"Password",name:"password",rules:[{required:!0,message:"password required to sign up"}],help:"Create a password for your account",children:(0,l.jsx)(m.Z,{placeholder:"",type:"password",className:"max-w-md"})})]}),(0,l.jsx)("div",{className:"mt-10",children:(0,l.jsx)(_.ZP,{htmlType:"submit",children:"Sign Up"})})]})]})})}}},function(e){e.O(0,[665,902,684,777,971,69,744],function(){return e(e.s=20723)}),_N_E=e.O()}]); (self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[461],{61994:function(e,s,t){Promise.resolve().then(t.bind(t,667))},667:function(e,s,t){"use strict";t.r(s),t.d(s,{default:function(){return g}});var l=t(57437),n=t(2265),a=t(47907),i=t(2179),r=t(18190),o=t(13810),c=t(10384),u=t(46453),d=t(71801),m=t(52273),h=t(42440),x=t(30953),f=t(777),p=t(37963),j=t(60620),_=t(13565);function g(){let[e]=j.Z.useForm(),s=(0,a.useSearchParams)();!function(e){console.log("COOKIES",document.cookie);let s=document.cookie.split("; ").find(s=>s.startsWith(e+"="));s&&s.split("=")[1]}("token");let t=s.get("invitation_id"),[g,Z]=(0,n.useState)(null),[k,w]=(0,n.useState)(""),[S,b]=(0,n.useState)(""),[N,v]=(0,n.useState)(null),[y,E]=(0,n.useState)(""),[I,O]=(0,n.useState)("");return(0,n.useEffect)(()=>{t&&(0,f.W_)(t).then(e=>{let s=e.login_url;console.log("login_url:",s),E(s);let t=e.token,l=(0,p.o)(t);O(t),console.log("decoded:",l),Z(l.key),console.log("decoded user email:",l.user_email),b(l.user_email),v(l.user_id)})},[t]),(0,l.jsx)("div",{className:"mx-auto w-full max-w-md mt-10",children:(0,l.jsxs)(o.Z,{children:[(0,l.jsx)(h.Z,{className:"text-sm mb-5 text-center",children:"\uD83D\uDE85 LiteLLM"}),(0,l.jsx)(h.Z,{className:"text-xl",children:"Sign up"}),(0,l.jsx)(d.Z,{children:"Claim your user account to login to Admin UI."}),(0,l.jsx)(r.Z,{className:"mt-4",title:"SSO",icon:x.GH$,color:"sky",children:(0,l.jsxs)(u.Z,{numItems:2,className:"flex justify-between items-center",children:[(0,l.jsx)(c.Z,{children:"SSO is under the Enterprise Tirer."}),(0,l.jsx)(c.Z,{children:(0,l.jsx)(i.Z,{variant:"primary",className:"mb-2",children:(0,l.jsx)("a",{href:"https://forms.gle/W3U4PZpJGFHWtHyA9",target:"_blank",children:"Get Free Trial"})})})]})}),(0,l.jsxs)(j.Z,{className:"mt-10 mb-5 mx-auto",layout:"vertical",onFinish:e=>{console.log("in handle submit. accessToken:",g,"token:",I,"formValues:",e),g&&I&&(e.user_email=S,N&&t&&(0,f.m_)(g,t,N,e.password).then(e=>{var s;let t="/ui/";t+="?userID="+((null===(s=e.data)||void 0===s?void 0:s.user_id)||e.user_id),document.cookie="token="+I,console.log("redirecting to:",t),window.location.href=t}))},children:[(0,l.jsxs)(l.Fragment,{children:[(0,l.jsx)(j.Z.Item,{label:"Email Address",name:"user_email",children:(0,l.jsx)(m.Z,{type:"email",disabled:!0,value:S,defaultValue:S,className:"max-w-md"})}),(0,l.jsx)(j.Z.Item,{label:"Password",name:"password",rules:[{required:!0,message:"password required to sign up"}],help:"Create a password for your account",children:(0,l.jsx)(m.Z,{placeholder:"",type:"password",className:"max-w-md"})})]}),(0,l.jsx)("div",{className:"mt-10",children:(0,l.jsx)(_.ZP,{htmlType:"submit",children:"Sign Up"})})]})]})})}}},function(e){e.O(0,[665,902,684,777,971,69,744],function(){return e(e.s=61994)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{70377:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(70377)}),_N_E=e.O()}]); (self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/ea3759ed931c00b2.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}(); !function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/00256a1984d35914.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

View file

@ -1,4 +1,4 @@
@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/ec159349637c90ad-s.woff2) format("woff2");unicode-range:u+0460-052f,u+1c80-1c88,u+20b4,u+2de0-2dff,u+a640-a69f,u+fe2e-fe2f}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/513657b02c5c193f-s.woff2) format("woff2");unicode-range:u+0301,u+0400-045f,u+0490-0491,u+04b0-04b1,u+2116}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/fd4db3eb5472fc27-s.woff2) format("woff2");unicode-range:u+1f??}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/51ed15f9841b9f9d-s.woff2) format("woff2");unicode-range:u+0370-0377,u+037a-037f,u+0384-038a,u+038c,u+038e-03a1,u+03a3-03ff}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/05a31a2ca4975f99-s.woff2) format("woff2");unicode-range:u+0102-0103,u+0110-0111,u+0128-0129,u+0168-0169,u+01a0-01a1,u+01af-01b0,u+0300-0301,u+0303-0304,u+0308-0309,u+0323,u+0329,u+1ea0-1ef9,u+20ab}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/d6b16ce4a6175f26-s.woff2) format("woff2");unicode-range:u+0100-02af,u+0304,u+0308,u+0329,u+1e00-1e9f,u+1ef2-1eff,u+2020,u+20a0-20ab,u+20ad-20c0,u+2113,u+2c60-2c7f,u+a720-a7ff}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2) format("woff2");unicode-range:u+00??,u+0131,u+0152-0153,u+02bb-02bc,u+02c6,u+02da,u+02dc,u+0304,u+0308,u+0329,u+2000-206f,u+2074,u+20ac,u+2122,u+2191,u+2193,u+2212,u+2215,u+feff,u+fffd}@font-face{font-family:__Inter_Fallback_12bbc4;src:local("Arial");ascent-override:90.20%;descent-override:22.48%;line-gap-override:0.00%;size-adjust:107.40%}.__className_12bbc4{font-family:__Inter_12bbc4,__Inter_Fallback_12bbc4;font-style:normal} @font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/55c55f0601d81cf3-s.woff2) format("woff2");unicode-range:u+0460-052f,u+1c80-1c88,u+20b4,u+2de0-2dff,u+a640-a69f,u+fe2e-fe2f}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/26a46d62cd723877-s.woff2) format("woff2");unicode-range:u+0301,u+0400-045f,u+0490-0491,u+04b0-04b1,u+2116}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/97e0cb1ae144a2a9-s.woff2) format("woff2");unicode-range:u+1f??}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/581909926a08bbc8-s.woff2) format("woff2");unicode-range:u+0370-0377,u+037a-037f,u+0384-038a,u+038c,u+038e-03a1,u+03a3-03ff}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/df0a9ae256c0569c-s.woff2) format("woff2");unicode-range:u+0102-0103,u+0110-0111,u+0128-0129,u+0168-0169,u+01a0-01a1,u+01af-01b0,u+0300-0301,u+0303-0304,u+0308-0309,u+0323,u+0329,u+1ea0-1ef9,u+20ab}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/6d93bde91c0c2823-s.woff2) format("woff2");unicode-range:u+0100-02af,u+0304,u+0308,u+0329,u+1e00-1e9f,u+1ef2-1eff,u+2020,u+20a0-20ab,u+20ad-20c0,u+2113,u+2c60-2c7f,u+a720-a7ff}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/a34f9d1faa5f3315-s.p.woff2) format("woff2");unicode-range:u+00??,u+0131,u+0152-0153,u+02bb-02bc,u+02c6,u+02da,u+02dc,u+0304,u+0308,u+0329,u+2000-206f,u+2074,u+20ac,u+2122,u+2191,u+2193,u+2212,u+2215,u+feff,u+fffd}@font-face{font-family:__Inter_Fallback_86ef86;src:local("Arial");ascent-override:90.20%;descent-override:22.48%;line-gap-override:0.00%;size-adjust:107.40%}.__className_86ef86{font-family:__Inter_86ef86,__Inter_Fallback_86ef86;font-style:normal}
/* /*
! tailwindcss v3.4.1 | MIT License | https://tailwindcss.com ! tailwindcss v3.4.1 | MIT License | https://tailwindcss.com

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-f593049e31b05aeb.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-8316d07d1f41e39f.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[82989,[\"665\",\"static/chunks/3014691f-b24e8254c7593934.js\",\"936\",\"static/chunks/2f6dbc85-cac2949a76539886.js\",\"902\",\"static/chunks/902-292bb6a83427dbc7.js\",\"131\",\"static/chunks/131-4ee1d633e8928742.js\",\"684\",\"static/chunks/684-16b194c83a169f6d.js\",\"626\",\"static/chunks/626-0c564a21577c9c53.js\",\"777\",\"static/chunks/777-9d9df0b75010dbf9.js\",\"931\",\"static/chunks/app/page-a952da77e0730c7c.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"pDx3dChtj-paUmJExuV6u\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_12bbc4\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html> <!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-e8ad0a25b0c46e0b.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-f593049e31b05aeb.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-8316d07d1f41e39f.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-e8ad0a25b0c46e0b.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/a34f9d1faa5f3315-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/00256a1984d35914.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[82989,[\"665\",\"static/chunks/3014691f-b24e8254c7593934.js\",\"936\",\"static/chunks/2f6dbc85-cac2949a76539886.js\",\"902\",\"static/chunks/902-58bf23027703b2e8.js\",\"131\",\"static/chunks/131-3d2257b0ff5aadb2.js\",\"684\",\"static/chunks/684-16b194c83a169f6d.js\",\"626\",\"static/chunks/626-4e8df4039ecf4386.js\",\"777\",\"static/chunks/777-9d9df0b75010dbf9.js\",\"931\",\"static/chunks/app/page-68b04cd7217f38ce.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/00256a1984d35914.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"WeMIGILYzOYN-R9DXbvCD\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_86ef86\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""] 2:I[77831,[],""]
3:I[82989,["665","static/chunks/3014691f-b24e8254c7593934.js","936","static/chunks/2f6dbc85-cac2949a76539886.js","902","static/chunks/902-292bb6a83427dbc7.js","131","static/chunks/131-4ee1d633e8928742.js","684","static/chunks/684-16b194c83a169f6d.js","626","static/chunks/626-0c564a21577c9c53.js","777","static/chunks/777-9d9df0b75010dbf9.js","931","static/chunks/app/page-a952da77e0730c7c.js"],""] 3:I[82989,["665","static/chunks/3014691f-b24e8254c7593934.js","936","static/chunks/2f6dbc85-cac2949a76539886.js","902","static/chunks/902-58bf23027703b2e8.js","131","static/chunks/131-3d2257b0ff5aadb2.js","684","static/chunks/684-16b194c83a169f6d.js","626","static/chunks/626-4e8df4039ecf4386.js","777","static/chunks/777-9d9df0b75010dbf9.js","931","static/chunks/app/page-68b04cd7217f38ce.js"],""]
4:I[5613,[],""] 4:I[5613,[],""]
5:I[31778,[],""] 5:I[31778,[],""]
0:["pDx3dChtj-paUmJExuV6u",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]] 0:["WeMIGILYzOYN-R9DXbvCD",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_86ef86","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00256a1984d35914.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]] 6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null 1:null

View file

@ -1,7 +1,7 @@
2:I[77831,[],""] 2:I[77831,[],""]
3:I[87494,["902","static/chunks/902-292bb6a83427dbc7.js","131","static/chunks/131-4ee1d633e8928742.js","777","static/chunks/777-9d9df0b75010dbf9.js","418","static/chunks/app/model_hub/page-748a83a8e772a56b.js"],""] 3:I[87494,["902","static/chunks/902-58bf23027703b2e8.js","131","static/chunks/131-3d2257b0ff5aadb2.js","777","static/chunks/777-9d9df0b75010dbf9.js","418","static/chunks/app/model_hub/page-104cada6b5e5b14c.js"],""]
4:I[5613,[],""] 4:I[5613,[],""]
5:I[31778,[],""] 5:I[31778,[],""]
0:["pDx3dChtj-paUmJExuV6u",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]] 0:["WeMIGILYzOYN-R9DXbvCD",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_86ef86","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00256a1984d35914.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]] 6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null 1:null

View file

@ -1,7 +1,7 @@
2:I[77831,[],""] 2:I[77831,[],""]
3:I[667,["665","static/chunks/3014691f-b24e8254c7593934.js","902","static/chunks/902-292bb6a83427dbc7.js","684","static/chunks/684-16b194c83a169f6d.js","777","static/chunks/777-9d9df0b75010dbf9.js","461","static/chunks/app/onboarding/page-884a15d08f8be397.js"],""] 3:I[667,["665","static/chunks/3014691f-b24e8254c7593934.js","902","static/chunks/902-58bf23027703b2e8.js","684","static/chunks/684-16b194c83a169f6d.js","777","static/chunks/777-9d9df0b75010dbf9.js","461","static/chunks/app/onboarding/page-bad6cfbe58b9d19c.js"],""]
4:I[5613,[],""] 4:I[5613,[],""]
5:I[31778,[],""] 5:I[31778,[],""]
0:["pDx3dChtj-paUmJExuV6u",[[["",{"children":["onboarding",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["onboarding",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","onboarding","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]] 0:["WeMIGILYzOYN-R9DXbvCD",[[["",{"children":["onboarding",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["onboarding",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","onboarding","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_86ef86","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00256a1984d35914.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]] 6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null 1:null

View file

@ -15,22 +15,6 @@ model_list:
litellm_params: litellm_params:
model: openai/gpt-4o-realtime-preview-2024-10-01 model: openai/gpt-4o-realtime-preview-2024-10-01
api_key: os.environ/OPENAI_API_KEY api_key: os.environ/OPENAI_API_KEY
- model_name: openai/*
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
- model_name: openai/*
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
model_info:
access_groups: ["public-openai-models"]
- model_name: openai/gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
model_info:
access_groups: ["private-openai-models"]
router_settings: router_settings:
routing_strategy: usage-based-routing-v2 routing_strategy: usage-based-routing-v2

View file

@ -2183,11 +2183,3 @@ PassThroughEndpointLoggingResultValues = Union[
class PassThroughEndpointLoggingTypedDict(TypedDict): class PassThroughEndpointLoggingTypedDict(TypedDict):
result: Optional[PassThroughEndpointLoggingResultValues] result: Optional[PassThroughEndpointLoggingResultValues]
kwargs: dict kwargs: dict
LiteLLM_ManagementEndpoint_MetadataFields = [
"model_rpm_limit",
"model_tpm_limit",
"guardrails",
"tags",
]

View file

@ -60,7 +60,6 @@ def common_checks( # noqa: PLR0915
global_proxy_spend: Optional[float], global_proxy_spend: Optional[float],
general_settings: dict, general_settings: dict,
route: str, route: str,
llm_router: Optional[litellm.Router],
) -> bool: ) -> bool:
""" """
Common checks across jwt + key-based auth. Common checks across jwt + key-based auth.
@ -98,12 +97,7 @@ def common_checks( # noqa: PLR0915
# this means the team has access to all models on the proxy # this means the team has access to all models on the proxy
pass pass
# check if the team model is an access_group # check if the team model is an access_group
elif ( elif model_in_access_group(_model, team_object.models) is True:
model_in_access_group(
model=_model, team_models=team_object.models, llm_router=llm_router
)
is True
):
pass pass
elif _model and "*" in _model: elif _model and "*" in _model:
pass pass
@ -379,33 +373,36 @@ async def get_end_user_object(
return None return None
def model_in_access_group( def model_in_access_group(model: str, team_models: Optional[List[str]]) -> bool:
model: str, team_models: Optional[List[str]], llm_router: Optional[litellm.Router]
) -> bool:
from collections import defaultdict from collections import defaultdict
from litellm.proxy.proxy_server import llm_router
if team_models is None: if team_models is None:
return True return True
if model in team_models: if model in team_models:
return True return True
access_groups: dict[str, list[str]] = defaultdict(list) access_groups = defaultdict(list)
if llm_router: if llm_router:
access_groups = llm_router.get_model_access_groups(model_name=model) access_groups = llm_router.get_model_access_groups()
models_in_current_access_groups = []
if len(access_groups) > 0: # check if token contains any model access groups if len(access_groups) > 0: # check if token contains any model access groups
for idx, m in enumerate( for idx, m in enumerate(
team_models team_models
): # loop token models, if any of them are an access group add the access group ): # loop token models, if any of them are an access group add the access group
if m in access_groups: if m in access_groups:
return True # if it is an access group we need to remove it from valid_token.models
models_in_group = access_groups[m]
models_in_current_access_groups.extend(models_in_group)
# Filter out models that are access_groups # Filter out models that are access_groups
filtered_models = [m for m in team_models if m not in access_groups] filtered_models = [m for m in team_models if m not in access_groups]
filtered_models += models_in_current_access_groups
if model in filtered_models: if model in filtered_models:
return True return True
return False return False
@ -526,6 +523,10 @@ async def _cache_management_object(
proxy_logging_obj: Optional[ProxyLogging], proxy_logging_obj: Optional[ProxyLogging],
): ):
await user_api_key_cache.async_set_cache(key=key, value=value) await user_api_key_cache.async_set_cache(key=key, value=value)
if proxy_logging_obj is not None:
await proxy_logging_obj.internal_usage_cache.dual_cache.async_set_cache(
key=key, value=value
)
async def _cache_team_object( async def _cache_team_object(
@ -877,10 +878,7 @@ async def get_org_object(
async def can_key_call_model( async def can_key_call_model(
model: str, model: str, llm_model_list: Optional[list], valid_token: UserAPIKeyAuth
llm_model_list: Optional[list],
valid_token: UserAPIKeyAuth,
llm_router: Optional[litellm.Router],
) -> Literal[True]: ) -> Literal[True]:
""" """
Checks if token can call a given model Checks if token can call a given model
@ -900,29 +898,35 @@ async def can_key_call_model(
) )
from collections import defaultdict from collections import defaultdict
from litellm.proxy.proxy_server import llm_router
access_groups = defaultdict(list) access_groups = defaultdict(list)
if llm_router: if llm_router:
access_groups = llm_router.get_model_access_groups(model_name=model) access_groups = llm_router.get_model_access_groups()
if ( models_in_current_access_groups = []
len(access_groups) > 0 and llm_router is not None if len(access_groups) > 0: # check if token contains any model access groups
): # check if token contains any model access groups
for idx, m in enumerate( for idx, m in enumerate(
valid_token.models valid_token.models
): # loop token models, if any of them are an access group add the access group ): # loop token models, if any of them are an access group add the access group
if m in access_groups: if m in access_groups:
return True # if it is an access group we need to remove it from valid_token.models
models_in_group = access_groups[m]
models_in_current_access_groups.extend(models_in_group)
# Filter out models that are access_groups # Filter out models that are access_groups
filtered_models = [m for m in valid_token.models if m not in access_groups] filtered_models = [m for m in valid_token.models if m not in access_groups]
filtered_models += models_in_current_access_groups
verbose_proxy_logger.debug(f"model: {model}; allowed_models: {filtered_models}") verbose_proxy_logger.debug(f"model: {model}; allowed_models: {filtered_models}")
all_model_access: bool = False all_model_access: bool = False
if ( if (
len(filtered_models) == 0 and len(valid_token.models) == 0 len(filtered_models) == 0
) or "*" in filtered_models: or "*" in filtered_models
or "openai/*" in filtered_models
):
all_model_access = True all_model_access = True
if model is not None and model not in filtered_models and all_model_access is False: if model is not None and model not in filtered_models and all_model_access is False:

View file

@ -259,7 +259,6 @@ async def user_api_key_auth( # noqa: PLR0915
jwt_handler, jwt_handler,
litellm_proxy_admin_name, litellm_proxy_admin_name,
llm_model_list, llm_model_list,
llm_router,
master_key, master_key,
open_telemetry_logger, open_telemetry_logger,
prisma_client, prisma_client,
@ -543,7 +542,6 @@ async def user_api_key_auth( # noqa: PLR0915
general_settings=general_settings, general_settings=general_settings,
global_proxy_spend=global_proxy_spend, global_proxy_spend=global_proxy_spend,
route=route, route=route,
llm_router=llm_router,
) )
# return UserAPIKeyAuth object # return UserAPIKeyAuth object
@ -907,7 +905,6 @@ async def user_api_key_auth( # noqa: PLR0915
model=model, model=model,
llm_model_list=llm_model_list, llm_model_list=llm_model_list,
valid_token=valid_token, valid_token=valid_token,
llm_router=llm_router,
) )
if fallback_models is not None: if fallback_models is not None:
@ -916,7 +913,6 @@ async def user_api_key_auth( # noqa: PLR0915
model=m, model=m,
llm_model_list=llm_model_list, llm_model_list=llm_model_list,
valid_token=valid_token, valid_token=valid_token,
llm_router=llm_router,
) )
# Check 2. If user_id for this token is in budget - done in common_checks() # Check 2. If user_id for this token is in budget - done in common_checks()
@ -1177,7 +1173,6 @@ async def user_api_key_auth( # noqa: PLR0915
general_settings=general_settings, general_settings=general_settings,
global_proxy_spend=global_proxy_spend, global_proxy_spend=global_proxy_spend,
route=route, route=route,
llm_router=llm_router,
) )
# Token passed all checks # Token passed all checks
if valid_token is None: if valid_token is None:

View file

@ -214,10 +214,10 @@ class BedrockGuardrail(CustomGuardrail, BaseAWSLLM):
prepared_request.url, prepared_request.url,
prepared_request.headers, prepared_request.headers,
) )
_json_data = json.dumps(request_data) # type: ignore
response = await self.async_handler.post( response = await self.async_handler.post(
url=prepared_request.url, url=prepared_request.url,
data=prepared_request.body, # type: ignore json=request_data, # type: ignore
headers=prepared_request.headers, # type: ignore headers=prepared_request.headers, # type: ignore
) )
verbose_proxy_logger.debug("Bedrock AI response: %s", response.text) verbose_proxy_logger.debug("Bedrock AI response: %s", response.text)

View file

@ -1,87 +0,0 @@
"""
Runs when LLM Exceptions occur on LiteLLM Proxy
"""
import copy
import json
import uuid
import litellm
from litellm.proxy._types import LiteLLM_ErrorLogs
async def _PROXY_failure_handler(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time=None,
end_time=None, # start/end time for completion
):
"""
Async Failure Handler - runs when LLM Exceptions occur on LiteLLM Proxy.
This function logs the errors to the Prisma DB
Can be disabled by setting the following on proxy_config.yaml:
```yaml
general_settings:
disable_error_logs: True
```
"""
from litellm._logging import verbose_proxy_logger
from litellm.proxy.proxy_server import general_settings, prisma_client
if general_settings.get("disable_error_logs") is True:
return
if prisma_client is not None:
verbose_proxy_logger.debug(
"inside _PROXY_failure_handler kwargs=", extra=kwargs
)
_exception = kwargs.get("exception")
_exception_type = _exception.__class__.__name__
_model = kwargs.get("model", None)
_optional_params = kwargs.get("optional_params", {})
_optional_params = copy.deepcopy(_optional_params)
for k, v in _optional_params.items():
v = str(v)
v = v[:100]
_status_code = "500"
try:
_status_code = str(_exception.status_code)
except Exception:
# Don't let this fail logging the exception to the dB
pass
_litellm_params = kwargs.get("litellm_params", {}) or {}
_metadata = _litellm_params.get("metadata", {}) or {}
_model_id = _metadata.get("model_info", {}).get("id", "")
_model_group = _metadata.get("model_group", "")
api_base = litellm.get_api_base(model=_model, optional_params=_litellm_params)
_exception_string = str(_exception)
error_log = LiteLLM_ErrorLogs(
request_id=str(uuid.uuid4()),
model_group=_model_group,
model_id=_model_id,
litellm_model_name=kwargs.get("model"),
request_kwargs=_optional_params,
api_base=api_base,
exception_type=_exception_type,
status_code=_status_code,
exception_string=_exception_string,
startTime=kwargs.get("start_time"),
endTime=kwargs.get("end_time"),
)
error_log_dict = error_log.model_dump()
error_log_dict["request_kwargs"] = json.dumps(error_log_dict["request_kwargs"])
await prisma_client.db.litellm_errorlogs.create(
data=error_log_dict # type: ignore
)
pass

View file

@ -288,12 +288,12 @@ class LiteLLMProxyRequestSetup:
## KEY-LEVEL SPEND LOGS / TAGS ## KEY-LEVEL SPEND LOGS / TAGS
if "tags" in key_metadata and key_metadata["tags"] is not None: if "tags" in key_metadata and key_metadata["tags"] is not None:
data[_metadata_variable_name]["tags"] = ( if "tags" in data[_metadata_variable_name] and isinstance(
LiteLLMProxyRequestSetup._merge_tags( data[_metadata_variable_name]["tags"], list
request_tags=data[_metadata_variable_name].get("tags"), ):
tags_to_add=key_metadata["tags"], data[_metadata_variable_name]["tags"].extend(key_metadata["tags"])
) else:
) data[_metadata_variable_name]["tags"] = key_metadata["tags"]
if "spend_logs_metadata" in key_metadata and isinstance( if "spend_logs_metadata" in key_metadata and isinstance(
key_metadata["spend_logs_metadata"], dict key_metadata["spend_logs_metadata"], dict
): ):
@ -319,30 +319,6 @@ class LiteLLMProxyRequestSetup:
data["disable_fallbacks"] = key_metadata["disable_fallbacks"] data["disable_fallbacks"] = key_metadata["disable_fallbacks"]
return data return data
@staticmethod
def _merge_tags(request_tags: Optional[list], tags_to_add: Optional[list]) -> list:
"""
Helper function to merge two lists of tags, ensuring no duplicates.
Args:
request_tags (Optional[list]): List of tags from the original request
tags_to_add (Optional[list]): List of tags to add
Returns:
list: Combined list of unique tags
"""
final_tags = []
if request_tags and isinstance(request_tags, list):
final_tags.extend(request_tags)
if tags_to_add and isinstance(tags_to_add, list):
for tag in tags_to_add:
if tag not in final_tags:
final_tags.append(tag)
return final_tags
async def add_litellm_data_to_request( # noqa: PLR0915 async def add_litellm_data_to_request( # noqa: PLR0915
data: dict, data: dict,
@ -466,10 +442,12 @@ async def add_litellm_data_to_request( # noqa: PLR0915
## TEAM-LEVEL SPEND LOGS/TAGS ## TEAM-LEVEL SPEND LOGS/TAGS
team_metadata = user_api_key_dict.team_metadata or {} team_metadata = user_api_key_dict.team_metadata or {}
if "tags" in team_metadata and team_metadata["tags"] is not None: if "tags" in team_metadata and team_metadata["tags"] is not None:
data[_metadata_variable_name]["tags"] = LiteLLMProxyRequestSetup._merge_tags( if "tags" in data[_metadata_variable_name] and isinstance(
request_tags=data[_metadata_variable_name].get("tags"), data[_metadata_variable_name]["tags"], list
tags_to_add=team_metadata["tags"], ):
) data[_metadata_variable_name]["tags"].extend(team_metadata["tags"])
else:
data[_metadata_variable_name]["tags"] = team_metadata["tags"]
if "spend_logs_metadata" in team_metadata and isinstance( if "spend_logs_metadata" in team_metadata and isinstance(
team_metadata["spend_logs_metadata"], dict team_metadata["spend_logs_metadata"], dict
): ):

View file

@ -32,7 +32,6 @@ from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.management_endpoints.key_management_endpoints import ( from litellm.proxy.management_endpoints.key_management_endpoints import (
duration_in_seconds, duration_in_seconds,
generate_key_helper_fn, generate_key_helper_fn,
prepare_metadata_fields,
) )
from litellm.proxy.management_helpers.utils import ( from litellm.proxy.management_helpers.utils import (
add_new_member, add_new_member,
@ -43,7 +42,7 @@ from litellm.proxy.utils import handle_exception_on_proxy
router = APIRouter() router = APIRouter()
def _update_internal_new_user_params(data_json: dict, data: NewUserRequest) -> dict: def _update_internal_user_params(data_json: dict, data: NewUserRequest) -> dict:
if "user_id" in data_json and data_json["user_id"] is None: if "user_id" in data_json and data_json["user_id"] is None:
data_json["user_id"] = str(uuid.uuid4()) data_json["user_id"] = str(uuid.uuid4())
auto_create_key = data_json.pop("auto_create_key", True) auto_create_key = data_json.pop("auto_create_key", True)
@ -146,7 +145,7 @@ async def new_user(
from litellm.proxy.proxy_server import general_settings, proxy_logging_obj from litellm.proxy.proxy_server import general_settings, proxy_logging_obj
data_json = data.json() # type: ignore data_json = data.json() # type: ignore
data_json = _update_internal_new_user_params(data_json, data) data_json = _update_internal_user_params(data_json, data)
response = await generate_key_helper_fn(request_type="user", **data_json) response = await generate_key_helper_fn(request_type="user", **data_json)
# Admin UI Logic # Admin UI Logic
@ -439,52 +438,6 @@ async def user_info( # noqa: PLR0915
raise handle_exception_on_proxy(e) raise handle_exception_on_proxy(e)
def _update_internal_user_params(data_json: dict, data: UpdateUserRequest) -> dict:
non_default_values = {}
for k, v in data_json.items():
if (
v is not None
and v
not in (
[],
{},
0,
)
and k not in LiteLLM_ManagementEndpoint_MetadataFields
): # models default to [], spend defaults to 0, we should not reset these values
non_default_values[k] = v
is_internal_user = False
if data.user_role == LitellmUserRoles.INTERNAL_USER:
is_internal_user = True
if "budget_duration" in non_default_values:
duration_s = duration_in_seconds(duration=non_default_values["budget_duration"])
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
if "max_budget" not in non_default_values:
if (
is_internal_user and litellm.max_internal_user_budget is not None
): # applies internal user limits, if user role updated
non_default_values["max_budget"] = litellm.max_internal_user_budget
if (
"budget_duration" not in non_default_values
): # applies internal user limits, if user role updated
if is_internal_user and litellm.internal_user_budget_duration is not None:
non_default_values["budget_duration"] = (
litellm.internal_user_budget_duration
)
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
return non_default_values
@router.post( @router.post(
"/user/update", "/user/update",
tags=["Internal User management"], tags=["Internal User management"],
@ -506,7 +459,6 @@ async def user_update(
"user_id": "test-litellm-user-4", "user_id": "test-litellm-user-4",
"user_role": "proxy_admin_viewer" "user_role": "proxy_admin_viewer"
}' }'
```
Parameters: Parameters:
- user_id: Optional[str] - Specify a user id. If not set, a unique id will be generated. - user_id: Optional[str] - Specify a user id. If not set, a unique id will be generated.
@ -539,7 +491,7 @@ async def user_update(
- duration: Optional[str] - [NOT IMPLEMENTED]. - duration: Optional[str] - [NOT IMPLEMENTED].
- key_alias: Optional[str] - [NOT IMPLEMENTED]. - key_alias: Optional[str] - [NOT IMPLEMENTED].
```
""" """
from litellm.proxy.proxy_server import prisma_client from litellm.proxy.proxy_server import prisma_client
@ -550,21 +502,46 @@ async def user_update(
raise Exception("Not connected to DB!") raise Exception("Not connected to DB!")
# get non default values for key # get non default values for key
non_default_values = _update_internal_user_params( non_default_values = {}
data_json=data_json, data=data for k, v in data_json.items():
) if v is not None and v not in (
[],
{},
0,
): # models default to [], spend defaults to 0, we should not reset these values
non_default_values[k] = v
existing_user_row = await prisma_client.get_data( is_internal_user = False
user_id=data.user_id, table_name="user", query_type="find_unique" if data.user_role == LitellmUserRoles.INTERNAL_USER:
) is_internal_user = True
existing_metadata = existing_user_row.metadata if existing_user_row else {} if "budget_duration" in non_default_values:
duration_s = duration_in_seconds(
non_default_values = prepare_metadata_fields( duration=non_default_values["budget_duration"]
data=data,
non_default_values=non_default_values,
existing_metadata=existing_metadata or {},
) )
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
if "max_budget" not in non_default_values:
if (
is_internal_user and litellm.max_internal_user_budget is not None
): # applies internal user limits, if user role updated
non_default_values["max_budget"] = litellm.max_internal_user_budget
if (
"budget_duration" not in non_default_values
): # applies internal user limits, if user role updated
if is_internal_user and litellm.internal_user_budget_duration is not None:
non_default_values["budget_duration"] = (
litellm.internal_user_budget_duration
)
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(
seconds=duration_s
)
non_default_values["budget_reset_at"] = user_reset_at
## ADD USER, IF NEW ## ## ADD USER, IF NEW ##
verbose_proxy_logger.debug("/user/update: Received data = %s", data) verbose_proxy_logger.debug("/user/update: Received data = %s", data)

View file

@ -17,7 +17,7 @@ import secrets
import traceback import traceback
import uuid import uuid
from datetime import datetime, timedelta, timezone from datetime import datetime, timedelta, timezone
from typing import List, Optional, Tuple, cast from typing import List, Optional, Tuple
import fastapi import fastapi
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Request, status from fastapi import APIRouter, Depends, Header, HTTPException, Query, Request, status
@ -394,8 +394,7 @@ async def generate_key_fn( # noqa: PLR0915
} }
) )
_budget_id = getattr(_budget, "budget_id", None) _budget_id = getattr(_budget, "budget_id", None)
data_json = data.model_dump(exclude_unset=True, exclude_none=True) # type: ignore data_json = data.json() # type: ignore
# if we get max_budget passed to /key/generate, then use it as key_max_budget. Since generate_key_helper_fn is used to make new users # if we get max_budget passed to /key/generate, then use it as key_max_budget. Since generate_key_helper_fn is used to make new users
if "max_budget" in data_json: if "max_budget" in data_json:
data_json["key_max_budget"] = data_json.pop("max_budget", None) data_json["key_max_budget"] = data_json.pop("max_budget", None)
@ -421,11 +420,6 @@ async def generate_key_fn( # noqa: PLR0915
data_json.pop("tags") data_json.pop("tags")
await _enforce_unique_key_alias(
key_alias=data_json.get("key_alias", None),
prisma_client=prisma_client,
)
response = await generate_key_helper_fn( response = await generate_key_helper_fn(
request_type="key", **data_json, table_name="key" request_type="key", **data_json, table_name="key"
) )
@ -453,52 +447,12 @@ async def generate_key_fn( # noqa: PLR0915
raise handle_exception_on_proxy(e) raise handle_exception_on_proxy(e)
def prepare_metadata_fields(
data: BaseModel, non_default_values: dict, existing_metadata: dict
) -> dict:
"""
Check LiteLLM_ManagementEndpoint_MetadataFields (proxy/_types.py) for fields that are allowed to be updated
"""
if "metadata" not in non_default_values: # allow user to set metadata to none
non_default_values["metadata"] = existing_metadata.copy()
casted_metadata = cast(dict, non_default_values["metadata"])
data_json = data.model_dump(exclude_unset=True, exclude_none=True)
try:
for k, v in data_json.items():
if k == "model_tpm_limit" or k == "model_rpm_limit":
if k not in casted_metadata or casted_metadata[k] is None:
casted_metadata[k] = {}
casted_metadata[k].update(v)
if k == "tags" or k == "guardrails":
if k not in casted_metadata or casted_metadata[k] is None:
casted_metadata[k] = []
seen = set(casted_metadata[k])
casted_metadata[k].extend(
x for x in v if x not in seen and not seen.add(x) # type: ignore
) # prevent duplicates from being added + maintain initial order
except Exception as e:
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.prepare_metadata_fields(): Exception occured - {}".format(
str(e)
)
)
non_default_values["metadata"] = casted_metadata
return non_default_values
def prepare_key_update_data( def prepare_key_update_data(
data: Union[UpdateKeyRequest, RegenerateKeyRequest], existing_key_row data: Union[UpdateKeyRequest, RegenerateKeyRequest], existing_key_row
): ):
data_json: dict = data.model_dump(exclude_unset=True) data_json: dict = data.model_dump(exclude_unset=True)
data_json.pop("key", None) data_json.pop("key", None)
_metadata_fields = ["model_rpm_limit", "model_tpm_limit", "guardrails", "tags"] _metadata_fields = ["model_rpm_limit", "model_tpm_limit", "guardrails"]
non_default_values = {} non_default_values = {}
for k, v in data_json.items(): for k, v in data_json.items():
if k in _metadata_fields: if k in _metadata_fields:
@ -522,13 +476,24 @@ def prepare_key_update_data(
duration_s = duration_in_seconds(duration=budget_duration) duration_s = duration_in_seconds(duration=budget_duration)
key_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s) key_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = key_reset_at non_default_values["budget_reset_at"] = key_reset_at
non_default_values["budget_duration"] = budget_duration
_metadata = existing_key_row.metadata or {} _metadata = existing_key_row.metadata or {}
non_default_values = prepare_metadata_fields( if data.model_tpm_limit:
data=data, non_default_values=non_default_values, existing_metadata=_metadata if "model_tpm_limit" not in _metadata:
) _metadata["model_tpm_limit"] = {}
_metadata["model_tpm_limit"].update(data.model_tpm_limit)
non_default_values["metadata"] = _metadata
if data.model_rpm_limit:
if "model_rpm_limit" not in _metadata:
_metadata["model_rpm_limit"] = {}
_metadata["model_rpm_limit"].update(data.model_rpm_limit)
non_default_values["metadata"] = _metadata
if data.guardrails:
_metadata["guardrails"] = data.guardrails
non_default_values["metadata"] = _metadata
return non_default_values return non_default_values
@ -620,12 +585,6 @@ async def update_key_fn(
data=data, existing_key_row=existing_key_row data=data, existing_key_row=existing_key_row
) )
await _enforce_unique_key_alias(
key_alias=non_default_values.get("key_alias", None),
prisma_client=prisma_client,
existing_key_token=existing_key_row.token,
)
response = await prisma_client.update_data( response = await prisma_client.update_data(
token=key, data={**non_default_values, "token": key} token=key, data={**non_default_values, "token": key}
) )
@ -953,11 +912,11 @@ async def generate_key_helper_fn( # noqa: PLR0915
request_type: Literal[ request_type: Literal[
"user", "key" "user", "key"
], # identifies if this request is from /user/new or /key/generate ], # identifies if this request is from /user/new or /key/generate
duration: Optional[str] = None, duration: Optional[str],
models: list = [], models: list,
aliases: dict = {}, aliases: dict,
config: dict = {}, config: dict,
spend: float = 0.0, spend: float,
key_max_budget: Optional[float] = None, # key_max_budget is used to Budget Per key key_max_budget: Optional[float] = None, # key_max_budget is used to Budget Per key
key_budget_duration: Optional[str] = None, key_budget_duration: Optional[str] = None,
budget_id: Optional[float] = None, # budget id <-> LiteLLM_BudgetTable budget_id: Optional[float] = None, # budget id <-> LiteLLM_BudgetTable
@ -986,8 +945,8 @@ async def generate_key_helper_fn( # noqa: PLR0915
allowed_cache_controls: Optional[list] = [], allowed_cache_controls: Optional[list] = [],
permissions: Optional[dict] = {}, permissions: Optional[dict] = {},
model_max_budget: Optional[dict] = {}, model_max_budget: Optional[dict] = {},
model_rpm_limit: Optional[dict] = None, model_rpm_limit: Optional[dict] = {},
model_tpm_limit: Optional[dict] = None, model_tpm_limit: Optional[dict] = {},
guardrails: Optional[list] = None, guardrails: Optional[list] = None,
teams: Optional[list] = None, teams: Optional[list] = None,
organization_id: Optional[str] = None, organization_id: Optional[str] = None,
@ -1924,38 +1883,3 @@ async def test_key_logging(
status="healthy", status="healthy",
details=f"No logger exceptions triggered, system is healthy. Manually check if logs were sent to {logging_callbacks} ", details=f"No logger exceptions triggered, system is healthy. Manually check if logs were sent to {logging_callbacks} ",
) )
async def _enforce_unique_key_alias(
key_alias: Optional[str],
prisma_client: Any,
existing_key_token: Optional[str] = None,
) -> None:
"""
Helper to enforce unique key aliases across all keys.
Args:
key_alias (Optional[str]): The key alias to check
prisma_client (Any): Prisma client instance
existing_key_token (Optional[str]): ID of existing key being updated, to exclude from uniqueness check
(The Admin UI passes key_alias, in all Edit key requests. So we need to be sure that if we find a key with the same alias, it's not the same key we're updating)
Raises:
ProxyException: If key alias already exists on a different key
"""
if key_alias is not None and prisma_client is not None:
where_clause: dict[str, Any] = {"key_alias": key_alias}
if existing_key_token:
# Exclude the current key from the uniqueness check
where_clause["NOT"] = {"token": existing_key_token}
existing_key = await prisma_client.db.litellm_verificationtoken.find_first(
where=where_clause
)
if existing_key is not None:
raise ProxyException(
message=f"Key with alias '{key_alias}' already exists. Unique key aliases across all keys are required.",
type=ProxyErrorTypes.bad_request_error,
param="key_alias",
code=status.HTTP_400_BAD_REQUEST,
)

View file

@ -1367,7 +1367,6 @@ async def list_team(
""".format( """.format(
team.team_id, team.model_dump(), str(e) team.team_id, team.model_dump(), str(e)
) )
verbose_proxy_logger.exception(team_exception) raise HTTPException(status_code=400, detail={"error": team_exception})
continue
return returned_responses return returned_responses

View file

@ -176,7 +176,6 @@ from litellm.proxy.health_endpoints._health_endpoints import router as health_ro
from litellm.proxy.hooks.prompt_injection_detection import ( from litellm.proxy.hooks.prompt_injection_detection import (
_OPTIONAL_PromptInjectionDetection, _OPTIONAL_PromptInjectionDetection,
) )
from litellm.proxy.hooks.proxy_failure_handler import _PROXY_failure_handler
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
from litellm.proxy.management_endpoints.customer_endpoints import ( from litellm.proxy.management_endpoints.customer_endpoints import (
router as customer_router, router as customer_router,
@ -530,6 +529,14 @@ db_writer_client: Optional[HTTPHandler] = None
### logger ### ### logger ###
def _get_pydantic_json_dict(pydantic_obj: BaseModel) -> dict:
try:
return pydantic_obj.model_dump() # type: ignore
except Exception:
# if using pydantic v1
return pydantic_obj.dict()
def get_custom_headers( def get_custom_headers(
*, *,
user_api_key_dict: UserAPIKeyAuth, user_api_key_dict: UserAPIKeyAuth,
@ -683,6 +690,68 @@ def cost_tracking():
litellm._async_success_callback.append(_PROXY_track_cost_callback) # type: ignore litellm._async_success_callback.append(_PROXY_track_cost_callback) # type: ignore
async def _PROXY_failure_handler(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time=None,
end_time=None, # start/end time for completion
):
global prisma_client
if prisma_client is not None:
verbose_proxy_logger.debug(
"inside _PROXY_failure_handler kwargs=", extra=kwargs
)
_exception = kwargs.get("exception")
_exception_type = _exception.__class__.__name__
_model = kwargs.get("model", None)
_optional_params = kwargs.get("optional_params", {})
_optional_params = copy.deepcopy(_optional_params)
for k, v in _optional_params.items():
v = str(v)
v = v[:100]
_status_code = "500"
try:
_status_code = str(_exception.status_code)
except Exception:
# Don't let this fail logging the exception to the dB
pass
_litellm_params = kwargs.get("litellm_params", {}) or {}
_metadata = _litellm_params.get("metadata", {}) or {}
_model_id = _metadata.get("model_info", {}).get("id", "")
_model_group = _metadata.get("model_group", "")
api_base = litellm.get_api_base(model=_model, optional_params=_litellm_params)
_exception_string = str(_exception)
error_log = LiteLLM_ErrorLogs(
request_id=str(uuid.uuid4()),
model_group=_model_group,
model_id=_model_id,
litellm_model_name=kwargs.get("model"),
request_kwargs=_optional_params,
api_base=api_base,
exception_type=_exception_type,
status_code=_status_code,
exception_string=_exception_string,
startTime=kwargs.get("start_time"),
endTime=kwargs.get("end_time"),
)
# helper function to convert to dict on pydantic v2 & v1
error_log_dict = _get_pydantic_json_dict(error_log)
error_log_dict["request_kwargs"] = json.dumps(error_log_dict["request_kwargs"])
await prisma_client.db.litellm_errorlogs.create(
data=error_log_dict # type: ignore
)
pass
@log_db_metrics @log_db_metrics
async def _PROXY_track_cost_callback( async def _PROXY_track_cost_callback(
kwargs, # kwargs to completion kwargs, # kwargs to completion

View file

@ -86,6 +86,7 @@ async def route_request(
else: else:
models = [model.strip() for model in data.pop("model").split(",")] models = [model.strip() for model in data.pop("model").split(",")]
return llm_router.abatch_completion(models=models, **data) return llm_router.abatch_completion(models=models, **data)
elif llm_router is not None: elif llm_router is not None:
if ( if (
data["model"] in router_model_names data["model"] in router_model_names
@ -112,9 +113,6 @@ async def route_request(
or len(llm_router.pattern_router.patterns) > 0 or len(llm_router.pattern_router.patterns) > 0
): ):
return getattr(llm_router, f"{route_type}")(**data) return getattr(llm_router, f"{route_type}")(**data)
elif route_type == "amoderation":
# moderation endpoint does not require `model` parameter
return getattr(llm_router, f"{route_type}")(**data)
elif user_model is not None: elif user_model is not None:
return getattr(litellm, f"{route_type}")(**data) return getattr(litellm, f"{route_type}")(**data)

View file

@ -891,7 +891,7 @@ class ProxyLogging:
original_exception: Exception, original_exception: Exception,
request: Request, request: Request,
parent_otel_span: Optional[Any], parent_otel_span: Optional[Any],
api_key: Optional[str], api_key: str,
): ):
""" """
Handler for Logging Authentication Errors on LiteLLM Proxy Handler for Logging Authentication Errors on LiteLLM Proxy
@ -905,13 +905,9 @@ class ProxyLogging:
user_api_key_dict = UserAPIKeyAuth( user_api_key_dict = UserAPIKeyAuth(
parent_otel_span=parent_otel_span, parent_otel_span=parent_otel_span,
token=_hash_token_if_needed(token=api_key or ""), token=_hash_token_if_needed(token=api_key),
) )
try:
request_data = await request.json() request_data = await request.json()
except json.JSONDecodeError:
# For GET requests or requests without a JSON body
request_data = {}
await self._run_post_call_failure_hook_custom_loggers( await self._run_post_call_failure_hook_custom_loggers(
original_exception=original_exception, original_exception=original_exception,
request_data=request_data, request_data=request_data,

View file

@ -41,7 +41,6 @@ from typing import (
import httpx import httpx
import openai import openai
from openai import AsyncOpenAI from openai import AsyncOpenAI
from pydantic import BaseModel
from typing_extensions import overload from typing_extensions import overload
import litellm import litellm
@ -123,7 +122,6 @@ from litellm.types.router import (
ModelInfo, ModelInfo,
ProviderBudgetConfigType, ProviderBudgetConfigType,
RetryPolicy, RetryPolicy,
RouterCacheEnum,
RouterErrors, RouterErrors,
RouterGeneralSettings, RouterGeneralSettings,
RouterModelGroupAliasItem, RouterModelGroupAliasItem,
@ -241,6 +239,7 @@ class Router:
] = "simple-shuffle", ] = "simple-shuffle",
routing_strategy_args: dict = {}, # just for latency-based routing_strategy_args: dict = {}, # just for latency-based
provider_budget_config: Optional[ProviderBudgetConfigType] = None, provider_budget_config: Optional[ProviderBudgetConfigType] = None,
semaphore: Optional[asyncio.Semaphore] = None,
alerting_config: Optional[AlertingConfig] = None, alerting_config: Optional[AlertingConfig] = None,
router_general_settings: Optional[ router_general_settings: Optional[
RouterGeneralSettings RouterGeneralSettings
@ -316,6 +315,8 @@ class Router:
from litellm._service_logger import ServiceLogging from litellm._service_logger import ServiceLogging
if semaphore:
self.semaphore = semaphore
self.set_verbose = set_verbose self.set_verbose = set_verbose
self.debug_level = debug_level self.debug_level = debug_level
self.enable_pre_call_checks = enable_pre_call_checks self.enable_pre_call_checks = enable_pre_call_checks
@ -505,14 +506,6 @@ class Router:
litellm.success_callback.append(self.sync_deployment_callback_on_success) litellm.success_callback.append(self.sync_deployment_callback_on_success)
else: else:
litellm.success_callback = [self.sync_deployment_callback_on_success] litellm.success_callback = [self.sync_deployment_callback_on_success]
if isinstance(litellm._async_failure_callback, list):
litellm._async_failure_callback.append(
self.async_deployment_callback_on_failure
)
else:
litellm._async_failure_callback = [
self.async_deployment_callback_on_failure
]
## COOLDOWNS ## ## COOLDOWNS ##
if isinstance(litellm.failure_callback, list): if isinstance(litellm.failure_callback, list):
litellm.failure_callback.append(self.deployment_callback_on_failure) litellm.failure_callback.append(self.deployment_callback_on_failure)
@ -2563,7 +2556,10 @@ class Router:
original_function: Callable, original_function: Callable,
**kwargs, **kwargs,
): ):
if kwargs.get("model") and self.get_model_list(model_name=kwargs["model"]): if (
"model" in kwargs
and self.get_model_list(model_name=kwargs["model"]) is not None
):
deployment = await self.async_get_available_deployment( deployment = await self.async_get_available_deployment(
model=kwargs["model"] model=kwargs["model"]
) )
@ -3295,14 +3291,13 @@ class Router:
): ):
""" """
Track remaining tpm/rpm quota for model in model_list Track remaining tpm/rpm quota for model in model_list
Currently, only updates TPM usage.
""" """
try: try:
if kwargs["litellm_params"].get("metadata") is None: if kwargs["litellm_params"].get("metadata") is None:
pass pass
else: else:
deployment_name = kwargs["litellm_params"]["metadata"].get(
"deployment", None
) # stable name - works for wildcard routes as well
model_group = kwargs["litellm_params"]["metadata"].get( model_group = kwargs["litellm_params"]["metadata"].get(
"model_group", None "model_group", None
) )
@ -3313,8 +3308,6 @@ class Router:
elif isinstance(id, int): elif isinstance(id, int):
id = str(id) id = str(id)
parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
_usage_obj = completion_response.get("usage") _usage_obj = completion_response.get("usage")
total_tokens = _usage_obj.get("total_tokens", 0) if _usage_obj else 0 total_tokens = _usage_obj.get("total_tokens", 0) if _usage_obj else 0
@ -3326,14 +3319,13 @@ class Router:
"%H-%M" "%H-%M"
) # use the same timezone regardless of system clock ) # use the same timezone regardless of system clock
tpm_key = RouterCacheEnum.TPM.value.format( tpm_key = f"global_router:{id}:tpm:{current_minute}"
id=id, current_minute=current_minute, model=deployment_name
)
# ------------ # ------------
# Update usage # Update usage
# ------------ # ------------
# update cache # update cache
parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
## TPM ## TPM
await self.cache.async_increment_cache( await self.cache.async_increment_cache(
key=tpm_key, key=tpm_key,
@ -3342,17 +3334,6 @@ class Router:
ttl=RoutingArgs.ttl.value, ttl=RoutingArgs.ttl.value,
) )
## RPM
rpm_key = RouterCacheEnum.RPM.value.format(
id=id, current_minute=current_minute, model=deployment_name
)
await self.cache.async_increment_cache(
key=rpm_key,
value=1,
parent_otel_span=parent_otel_span,
ttl=RoutingArgs.ttl.value,
)
increment_deployment_successes_for_current_minute( increment_deployment_successes_for_current_minute(
litellm_router_instance=self, litellm_router_instance=self,
deployment_id=id, deployment_id=id,
@ -3465,40 +3446,6 @@ class Router:
except Exception as e: except Exception as e:
raise e raise e
async def async_deployment_callback_on_failure(
self, kwargs, completion_response: Optional[Any], start_time, end_time
):
"""
Update RPM usage for a deployment
"""
deployment_name = kwargs["litellm_params"]["metadata"].get(
"deployment", None
) # handles wildcard routes - by giving the original name sent to `litellm.completion`
model_group = kwargs["litellm_params"]["metadata"].get("model_group", None)
model_info = kwargs["litellm_params"].get("model_info", {}) or {}
id = model_info.get("id", None)
if model_group is None or id is None:
return
elif isinstance(id, int):
id = str(id)
parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
dt = get_utc_datetime()
current_minute = dt.strftime(
"%H-%M"
) # use the same timezone regardless of system clock
## RPM
rpm_key = RouterCacheEnum.RPM.value.format(
id=id, current_minute=current_minute, model=deployment_name
)
await self.cache.async_increment_cache(
key=rpm_key,
value=1,
parent_otel_span=parent_otel_span,
ttl=RoutingArgs.ttl.value,
)
def log_retry(self, kwargs: dict, e: Exception) -> dict: def log_retry(self, kwargs: dict, e: Exception) -> dict:
""" """
When a retry or fallback happens, log the details of the just failed model call - similar to Sentry breadcrumbing When a retry or fallback happens, log the details of the just failed model call - similar to Sentry breadcrumbing
@ -4176,24 +4123,7 @@ class Router:
raise Exception("Model Name invalid - {}".format(type(model))) raise Exception("Model Name invalid - {}".format(type(model)))
return None return None
@overload def get_router_model_info(self, deployment: dict) -> ModelMapInfo:
def get_router_model_info(
self, deployment: dict, received_model_name: str, id: None = None
) -> ModelMapInfo:
pass
@overload
def get_router_model_info(
self, deployment: None, received_model_name: str, id: str
) -> ModelMapInfo:
pass
def get_router_model_info(
self,
deployment: Optional[dict],
received_model_name: str,
id: Optional[str] = None,
) -> ModelMapInfo:
""" """
For a given model id, return the model info (max tokens, input cost, output cost, etc.). For a given model id, return the model info (max tokens, input cost, output cost, etc.).
@ -4207,14 +4137,6 @@ class Router:
Raises: Raises:
- ValueError -> If model is not mapped yet - ValueError -> If model is not mapped yet
""" """
if id is not None:
_deployment = self.get_deployment(model_id=id)
if _deployment is not None:
deployment = _deployment.model_dump(exclude_none=True)
if deployment is None:
raise ValueError("Deployment not found")
## GET BASE MODEL ## GET BASE MODEL
base_model = deployment.get("model_info", {}).get("base_model", None) base_model = deployment.get("model_info", {}).get("base_model", None)
if base_model is None: if base_model is None:
@ -4236,27 +4158,10 @@ class Router:
elif custom_llm_provider != "azure": elif custom_llm_provider != "azure":
model = _model model = _model
potential_models = self.pattern_router.route(received_model_name)
if "*" in model and potential_models is not None: # if wildcard route
for potential_model in potential_models:
try:
if potential_model.get("model_info", {}).get(
"id"
) == deployment.get("model_info", {}).get("id"):
model = potential_model.get("litellm_params", {}).get(
"model"
)
break
except Exception:
pass
## GET LITELLM MODEL INFO - raises exception, if model is not mapped ## GET LITELLM MODEL INFO - raises exception, if model is not mapped
if not model.startswith(custom_llm_provider): model_info = litellm.get_model_info(
model_info_name = "{}/{}".format(custom_llm_provider, model) model="{}/{}".format(custom_llm_provider, model)
else: )
model_info_name = model
model_info = litellm.get_model_info(model=model_info_name)
## CHECK USER SET MODEL INFO ## CHECK USER SET MODEL INFO
user_model_info = deployment.get("model_info", {}) user_model_info = deployment.get("model_info", {})
@ -4306,10 +4211,8 @@ class Router:
total_tpm: Optional[int] = None total_tpm: Optional[int] = None
total_rpm: Optional[int] = None total_rpm: Optional[int] = None
configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = None configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = None
model_list = self.get_model_list(model_name=model_group)
if model_list is None: for model in self.model_list:
return None
for model in model_list:
is_match = False is_match = False
if ( if (
"model_name" in model and model["model_name"] == model_group "model_name" in model and model["model_name"] == model_group
@ -4324,7 +4227,7 @@ class Router:
if not is_match: if not is_match:
continue continue
# model in model group found # # model in model group found #
litellm_params = LiteLLM_Params(**model["litellm_params"]) # type: ignore litellm_params = LiteLLM_Params(**model["litellm_params"])
# get configurable clientside auth params # get configurable clientside auth params
configurable_clientside_auth_params = ( configurable_clientside_auth_params = (
litellm_params.configurable_clientside_auth_params litellm_params.configurable_clientside_auth_params
@ -4332,30 +4235,38 @@ class Router:
# get model tpm # get model tpm
_deployment_tpm: Optional[int] = None _deployment_tpm: Optional[int] = None
if _deployment_tpm is None: if _deployment_tpm is None:
_deployment_tpm = model.get("tpm", None) # type: ignore _deployment_tpm = model.get("tpm", None)
if _deployment_tpm is None: if _deployment_tpm is None:
_deployment_tpm = model.get("litellm_params", {}).get("tpm", None) # type: ignore _deployment_tpm = model.get("litellm_params", {}).get("tpm", None)
if _deployment_tpm is None: if _deployment_tpm is None:
_deployment_tpm = model.get("model_info", {}).get("tpm", None) # type: ignore _deployment_tpm = model.get("model_info", {}).get("tpm", None)
if _deployment_tpm is not None:
if total_tpm is None:
total_tpm = 0
total_tpm += _deployment_tpm # type: ignore
# get model rpm # get model rpm
_deployment_rpm: Optional[int] = None _deployment_rpm: Optional[int] = None
if _deployment_rpm is None: if _deployment_rpm is None:
_deployment_rpm = model.get("rpm", None) # type: ignore _deployment_rpm = model.get("rpm", None)
if _deployment_rpm is None: if _deployment_rpm is None:
_deployment_rpm = model.get("litellm_params", {}).get("rpm", None) # type: ignore _deployment_rpm = model.get("litellm_params", {}).get("rpm", None)
if _deployment_rpm is None: if _deployment_rpm is None:
_deployment_rpm = model.get("model_info", {}).get("rpm", None) # type: ignore _deployment_rpm = model.get("model_info", {}).get("rpm", None)
if _deployment_rpm is not None:
if total_rpm is None:
total_rpm = 0
total_rpm += _deployment_rpm # type: ignore
# get model info # get model info
try: try:
model_info = litellm.get_model_info(model=litellm_params.model) model_info = litellm.get_model_info(model=litellm_params.model)
except Exception: except Exception:
model_info = None model_info = None
# get llm provider # get llm provider
litellm_model, llm_provider = "", "" model, llm_provider = "", ""
try: try:
litellm_model, llm_provider, _, _ = litellm.get_llm_provider( model, llm_provider, _, _ = litellm.get_llm_provider(
model=litellm_params.model, model=litellm_params.model,
custom_llm_provider=litellm_params.custom_llm_provider, custom_llm_provider=litellm_params.custom_llm_provider,
) )
@ -4366,7 +4277,7 @@ class Router:
if model_info is None: if model_info is None:
supported_openai_params = litellm.get_supported_openai_params( supported_openai_params = litellm.get_supported_openai_params(
model=litellm_model, custom_llm_provider=llm_provider model=model, custom_llm_provider=llm_provider
) )
if supported_openai_params is None: if supported_openai_params is None:
supported_openai_params = [] supported_openai_params = []
@ -4456,20 +4367,7 @@ class Router:
model_group_info.supported_openai_params = model_info[ model_group_info.supported_openai_params = model_info[
"supported_openai_params" "supported_openai_params"
] ]
if model_info.get("tpm", None) is not None and _deployment_tpm is None:
_deployment_tpm = model_info.get("tpm")
if model_info.get("rpm", None) is not None and _deployment_rpm is None:
_deployment_rpm = model_info.get("rpm")
if _deployment_tpm is not None:
if total_tpm is None:
total_tpm = 0
total_tpm += _deployment_tpm # type: ignore
if _deployment_rpm is not None:
if total_rpm is None:
total_rpm = 0
total_rpm += _deployment_rpm # type: ignore
if model_group_info is not None: if model_group_info is not None:
## UPDATE WITH TOTAL TPM/RPM FOR MODEL GROUP ## UPDATE WITH TOTAL TPM/RPM FOR MODEL GROUP
if total_tpm is not None: if total_tpm is not None:
@ -4521,10 +4419,7 @@ class Router:
self, model_group: str self, model_group: str
) -> Tuple[Optional[int], Optional[int]]: ) -> Tuple[Optional[int], Optional[int]]:
""" """
Returns current tpm/rpm usage for model group Returns remaining tpm/rpm quota for model group
Parameters:
- model_group: str - the received model name from the user (can be a wildcard route).
Returns: Returns:
- usage: Tuple[tpm, rpm] - usage: Tuple[tpm, rpm]
@ -4535,37 +4430,20 @@ class Router:
) # use the same timezone regardless of system clock ) # use the same timezone regardless of system clock
tpm_keys: List[str] = [] tpm_keys: List[str] = []
rpm_keys: List[str] = [] rpm_keys: List[str] = []
for model in self.model_list:
model_list = self.get_model_list(model_name=model_group) if "model_name" in model and model["model_name"] == model_group:
if model_list is None: # no matching deployments
return None, None
for model in model_list:
id: Optional[str] = model.get("model_info", {}).get("id") # type: ignore
litellm_model: Optional[str] = model["litellm_params"].get(
"model"
) # USE THE MODEL SENT TO litellm.completion() - consistent with how global_router cache is written.
if id is None or litellm_model is None:
continue
tpm_keys.append( tpm_keys.append(
RouterCacheEnum.TPM.value.format( f"global_router:{model['model_info']['id']}:tpm:{current_minute}"
id=id,
model=litellm_model,
current_minute=current_minute,
)
) )
rpm_keys.append( rpm_keys.append(
RouterCacheEnum.RPM.value.format( f"global_router:{model['model_info']['id']}:rpm:{current_minute}"
id=id,
model=litellm_model,
current_minute=current_minute,
)
) )
combined_tpm_rpm_keys = tpm_keys + rpm_keys combined_tpm_rpm_keys = tpm_keys + rpm_keys
combined_tpm_rpm_values = await self.cache.async_batch_get_cache( combined_tpm_rpm_values = await self.cache.async_batch_get_cache(
keys=combined_tpm_rpm_keys keys=combined_tpm_rpm_keys
) )
if combined_tpm_rpm_values is None: if combined_tpm_rpm_values is None:
return None, None return None, None
@ -4590,32 +4468,6 @@ class Router:
rpm_usage += t rpm_usage += t
return tpm_usage, rpm_usage return tpm_usage, rpm_usage
async def get_remaining_model_group_usage(self, model_group: str) -> Dict[str, int]:
current_tpm, current_rpm = await self.get_model_group_usage(model_group)
model_group_info = self.get_model_group_info(model_group)
if model_group_info is not None and model_group_info.tpm is not None:
tpm_limit = model_group_info.tpm
else:
tpm_limit = None
if model_group_info is not None and model_group_info.rpm is not None:
rpm_limit = model_group_info.rpm
else:
rpm_limit = None
returned_dict = {}
if tpm_limit is not None and current_tpm is not None:
returned_dict["x-ratelimit-remaining-tokens"] = tpm_limit - current_tpm
returned_dict["x-ratelimit-limit-tokens"] = tpm_limit
if rpm_limit is not None and current_rpm is not None:
returned_dict["x-ratelimit-remaining-requests"] = rpm_limit - current_rpm
returned_dict["x-ratelimit-limit-requests"] = rpm_limit
return returned_dict
async def set_response_headers( async def set_response_headers(
self, response: Any, model_group: Optional[str] = None self, response: Any, model_group: Optional[str] = None
) -> Any: ) -> Any:
@ -4626,30 +4478,6 @@ class Router:
# - if healthy_deployments > 1, return model group rate limit headers # - if healthy_deployments > 1, return model group rate limit headers
# - else return the model's rate limit headers # - else return the model's rate limit headers
""" """
if (
isinstance(response, BaseModel)
and hasattr(response, "_hidden_params")
and isinstance(response._hidden_params, dict) # type: ignore
):
response._hidden_params.setdefault("additional_headers", {}) # type: ignore
response._hidden_params["additional_headers"][ # type: ignore
"x-litellm-model-group"
] = model_group
additional_headers = response._hidden_params["additional_headers"] # type: ignore
if (
"x-ratelimit-remaining-tokens" not in additional_headers
and "x-ratelimit-remaining-requests" not in additional_headers
and model_group is not None
):
remaining_usage = await self.get_remaining_model_group_usage(
model_group
)
for header, value in remaining_usage.items():
if value is not None:
additional_headers[header] = value
return response return response
def get_model_ids(self, model_name: Optional[str] = None) -> List[str]: def get_model_ids(self, model_name: Optional[str] = None) -> List[str]:
@ -4712,9 +4540,6 @@ class Router:
if hasattr(self, "model_list"): if hasattr(self, "model_list"):
returned_models: List[DeploymentTypedDict] = [] returned_models: List[DeploymentTypedDict] = []
if model_name is not None:
returned_models.extend(self._get_all_deployments(model_name=model_name))
if hasattr(self, "model_group_alias"): if hasattr(self, "model_group_alias"):
for model_alias, model_value in self.model_group_alias.items(): for model_alias, model_value in self.model_group_alias.items():
@ -4735,32 +4560,21 @@ class Router:
) )
) )
if len(returned_models) == 0: # check if wildcard route
potential_wildcard_models = self.pattern_router.route(model_name)
if potential_wildcard_models is not None:
returned_models.extend(
[DeploymentTypedDict(**m) for m in potential_wildcard_models] # type: ignore
)
if model_name is None: if model_name is None:
returned_models += self.model_list returned_models += self.model_list
return returned_models return returned_models
returned_models.extend(self._get_all_deployments(model_name=model_name))
return returned_models return returned_models
return None return None
def get_model_access_groups(self, model_name: Optional[str] = None): def get_model_access_groups(self):
"""
If model_name is provided, only return access groups for that model.
"""
from collections import defaultdict from collections import defaultdict
access_groups = defaultdict(list) access_groups = defaultdict(list)
model_list = self.get_model_list(model_name=model_name) if self.model_list:
if model_list: for m in self.model_list:
for m in model_list:
for group in m.get("model_info", {}).get("access_groups", []): for group in m.get("model_info", {}).get("access_groups", []):
model_name = m["model_name"] model_name = m["model_name"]
access_groups[group].append(model_name) access_groups[group].append(model_name)
@ -4996,12 +4810,10 @@ class Router:
base_model = deployment.get("litellm_params", {}).get( base_model = deployment.get("litellm_params", {}).get(
"base_model", None "base_model", None
) )
model_info = self.get_router_model_info(
deployment=deployment, received_model_name=model
)
model = base_model or deployment.get("litellm_params", {}).get( model = base_model or deployment.get("litellm_params", {}).get(
"model", None "model", None
) )
model_info = self.get_router_model_info(deployment=deployment)
if ( if (
isinstance(model_info, dict) isinstance(model_info, dict)

View file

@ -79,9 +79,7 @@ class PatternMatchRouter:
return new_deployments return new_deployments
def route( def route(self, request: Optional[str]) -> Optional[List[Dict]]:
self, request: Optional[str], filtered_model_names: Optional[List[str]] = None
) -> Optional[List[Dict]]:
""" """
Route a requested model to the corresponding llm deployments based on the regex pattern Route a requested model to the corresponding llm deployments based on the regex pattern
@ -91,26 +89,14 @@ class PatternMatchRouter:
Args: Args:
request: Optional[str] request: Optional[str]
filtered_model_names: Optional[List[str]] - if provided, only return deployments that match the filtered_model_names
Returns: Returns:
Optional[List[Deployment]]: llm deployments Optional[List[Deployment]]: llm deployments
""" """
try: try:
if request is None: if request is None:
return None return None
regex_filtered_model_names = (
[self._pattern_to_regex(m) for m in filtered_model_names]
if filtered_model_names is not None
else []
)
for pattern, llm_deployments in self.patterns.items(): for pattern, llm_deployments in self.patterns.items():
if (
filtered_model_names is not None
and pattern not in regex_filtered_model_names
):
continue
pattern_match = re.match(pattern, request) pattern_match = re.match(pattern, request)
if pattern_match: if pattern_match:
return self._return_pattern_matched_deployments( return self._return_pattern_matched_deployments(

View file

@ -9,7 +9,7 @@ from typing import Any, Dict, List, Literal, Optional, Tuple, Union
import httpx import httpx
from pydantic import BaseModel, ConfigDict, Field from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Required, TypedDict from typing_extensions import TypedDict
from ..exceptions import RateLimitError from ..exceptions import RateLimitError
from .completion import CompletionRequest from .completion import CompletionRequest
@ -352,10 +352,9 @@ class LiteLLMParamsTypedDict(TypedDict, total=False):
tags: Optional[List[str]] tags: Optional[List[str]]
class DeploymentTypedDict(TypedDict, total=False): class DeploymentTypedDict(TypedDict):
model_name: Required[str] model_name: str
litellm_params: Required[LiteLLMParamsTypedDict] litellm_params: LiteLLMParamsTypedDict
model_info: dict
SPECIAL_MODEL_INFO_PARAMS = [ SPECIAL_MODEL_INFO_PARAMS = [
@ -641,8 +640,3 @@ class ProviderBudgetInfo(BaseModel):
ProviderBudgetConfigType = Dict[str, ProviderBudgetInfo] ProviderBudgetConfigType = Dict[str, ProviderBudgetInfo]
class RouterCacheEnum(enum.Enum):
TPM = "global_router:{id}:{model}:tpm:{current_minute}"
RPM = "global_router:{id}:{model}:rpm:{current_minute}"

View file

@ -106,8 +106,6 @@ class ModelInfo(TypedDict, total=False):
supports_prompt_caching: Optional[bool] supports_prompt_caching: Optional[bool]
supports_audio_input: Optional[bool] supports_audio_input: Optional[bool]
supports_audio_output: Optional[bool] supports_audio_output: Optional[bool]
tpm: Optional[int]
rpm: Optional[int]
class GenericStreamingChunk(TypedDict, total=False): class GenericStreamingChunk(TypedDict, total=False):

View file

@ -4656,8 +4656,6 @@ def get_model_info( # noqa: PLR0915
), ),
supports_audio_input=_model_info.get("supports_audio_input", False), supports_audio_input=_model_info.get("supports_audio_input", False),
supports_audio_output=_model_info.get("supports_audio_output", False), supports_audio_output=_model_info.get("supports_audio_output", False),
tpm=_model_info.get("tpm", None),
rpm=_model_info.get("rpm", None),
) )
except Exception as e: except Exception as e:
if "OllamaError" in str(e): if "OllamaError" in str(e):

View file

@ -3383,8 +3383,6 @@
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"supports_prompt_caching": true, "supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash-001": { "gemini/gemini-1.5-flash-001": {
@ -3408,8 +3406,6 @@
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"supports_prompt_caching": true, "supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash": { "gemini/gemini-1.5-flash": {
@ -3432,8 +3428,6 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash-latest": { "gemini/gemini-1.5-flash-latest": {
@ -3456,32 +3450,6 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b": {
"max_tokens": 8192,
"max_input_tokens": 1048576,
"max_output_tokens": 8192,
"max_images_per_prompt": 3000,
"max_videos_per_prompt": 10,
"max_video_length": 1,
"max_audio_length_hours": 8.4,
"max_audio_per_prompt": 1,
"max_pdf_size_mb": 30,
"input_cost_per_token": 0,
"input_cost_per_token_above_128k_tokens": 0,
"output_cost_per_token": 0,
"output_cost_per_token_above_128k_tokens": 0,
"litellm_provider": "gemini",
"mode": "chat",
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash-8b-exp-0924": { "gemini/gemini-1.5-flash-8b-exp-0924": {
@ -3504,8 +3472,6 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-exp-1114": { "gemini/gemini-exp-1114": {
@ -3528,12 +3494,7 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000, "source": "https://ai.google.dev/pricing"
"rpm": 1000,
"source": "https://ai.google.dev/pricing",
"metadata": {
"notes": "Rate limits not documented for gemini-exp-1114. Assuming same as gemini-1.5-pro."
}
}, },
"gemini/gemini-1.5-flash-exp-0827": { "gemini/gemini-1.5-flash-exp-0827": {
"max_tokens": 8192, "max_tokens": 8192,
@ -3555,8 +3516,6 @@
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-flash-8b-exp-0827": { "gemini/gemini-1.5-flash-8b-exp-0827": {
@ -3578,9 +3537,6 @@
"supports_system_messages": true, "supports_system_messages": true,
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-pro": { "gemini/gemini-pro": {
@ -3594,10 +3550,7 @@
"litellm_provider": "gemini", "litellm_provider": "gemini",
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"rpd": 30000, "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
"tpm": 120000,
"rpm": 360,
"source": "https://ai.google.dev/gemini-api/docs/models/gemini"
}, },
"gemini/gemini-1.5-pro": { "gemini/gemini-1.5-pro": {
"max_tokens": 8192, "max_tokens": 8192,
@ -3614,8 +3567,6 @@
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-002": { "gemini/gemini-1.5-pro-002": {
@ -3634,8 +3585,6 @@
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"supports_prompt_caching": true, "supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-001": { "gemini/gemini-1.5-pro-001": {
@ -3654,8 +3603,6 @@
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"supports_prompt_caching": true, "supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-exp-0801": { "gemini/gemini-1.5-pro-exp-0801": {
@ -3673,8 +3620,6 @@
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-exp-0827": { "gemini/gemini-1.5-pro-exp-0827": {
@ -3692,8 +3637,6 @@
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-1.5-pro-latest": { "gemini/gemini-1.5-pro-latest": {
@ -3711,8 +3654,6 @@
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true, "supports_tool_choice": true,
"supports_response_schema": true, "supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing" "source": "https://ai.google.dev/pricing"
}, },
"gemini/gemini-pro-vision": { "gemini/gemini-pro-vision": {
@ -3727,9 +3668,6 @@
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini/gemini-gemma-2-27b-it": { "gemini/gemini-gemma-2-27b-it": {

View file

@ -1,6 +1,6 @@
[tool.poetry] [tool.poetry]
name = "litellm" name = "litellm"
version = "1.53.2" version = "1.53.0"
description = "Library to easily interface with LLM API providers" description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"] authors = ["BerriAI"]
license = "MIT" license = "MIT"
@ -91,7 +91,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api" build-backend = "poetry.core.masonry.api"
[tool.commitizen] [tool.commitizen]
version = "1.53.2" version = "1.53.0"
version_files = [ version_files = [
"pyproject.toml:^version" "pyproject.toml:^version"
] ]

View file

@ -1,6 +1,6 @@
# LITELLM PROXY DEPENDENCIES # # LITELLM PROXY DEPENDENCIES #
anyio==4.4.0 # openai + http req. anyio==4.4.0 # openai + http req.
openai==1.55.3 # openai req. openai==1.54.0 # openai req.
fastapi==0.111.0 # server dep fastapi==0.111.0 # server dep
backoff==2.2.1 # server dep backoff==2.2.1 # server dep
pyyaml==6.0.0 # server dep pyyaml==6.0.0 # server dep

View file

@ -46,22 +46,17 @@ print(env_keys)
repo_base = "./" repo_base = "./"
print(os.listdir(repo_base)) print(os.listdir(repo_base))
docs_path = ( docs_path = (
"./docs/my-website/docs/proxy/config_settings.md" # Path to the documentation "../../docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
) )
documented_keys = set() documented_keys = set()
try: try:
with open(docs_path, "r", encoding="utf-8") as docs_file: with open(docs_path, "r", encoding="utf-8") as docs_file:
content = docs_file.read() content = docs_file.read()
print(f"content: {content}")
# Find the section titled "general_settings - Reference" # Find the section titled "general_settings - Reference"
general_settings_section = re.search( general_settings_section = re.search(
r"### environment variables - Reference(.*?)(?=\n###|\Z)", r"### environment variables - Reference(.*?)###", content, re.DOTALL
content,
re.DOTALL | re.MULTILINE,
) )
print(f"general_settings_section: {general_settings_section}")
if general_settings_section: if general_settings_section:
# Extract the table rows, which contain the documented keys # Extract the table rows, which contain the documented keys
table_content = general_settings_section.group(1) table_content = general_settings_section.group(1)
@ -75,7 +70,6 @@ except Exception as e:
) )
print(f"documented_keys: {documented_keys}")
# Compare and find undocumented keys # Compare and find undocumented keys
undocumented_keys = env_keys - documented_keys undocumented_keys = env_keys - documented_keys

View file

@ -1,87 +0,0 @@
import os
import re
import inspect
from typing import Type
import sys
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
def get_init_params(cls: Type) -> list[str]:
"""
Retrieve all parameters supported by the `__init__` method of a given class.
Args:
cls: The class to inspect.
Returns:
A list of parameter names.
"""
if not hasattr(cls, "__init__"):
raise ValueError(
f"The provided class {cls.__name__} does not have an __init__ method."
)
init_method = cls.__init__
argspec = inspect.getfullargspec(init_method)
# The first argument is usually 'self', so we exclude it
return argspec.args[1:] # Exclude 'self'
router_init_params = set(get_init_params(litellm.router.Router))
print(router_init_params)
router_init_params.remove("model_list")
# Parse the documentation to extract documented keys
repo_base = "./"
print(os.listdir(repo_base))
docs_path = (
"./docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
)
# docs_path = (
# "../../docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
# )
documented_keys = set()
try:
with open(docs_path, "r", encoding="utf-8") as docs_file:
content = docs_file.read()
# Find the section titled "general_settings - Reference"
general_settings_section = re.search(
r"### router_settings - Reference(.*?)###", content, re.DOTALL
)
if general_settings_section:
# Extract the table rows, which contain the documented keys
table_content = general_settings_section.group(1)
doc_key_pattern = re.compile(
r"\|\s*([^\|]+?)\s*\|"
) # Capture the key from each row of the table
documented_keys.update(doc_key_pattern.findall(table_content))
except Exception as e:
raise Exception(
f"Error reading documentation: {e}, \n repo base - {os.listdir(repo_base)}"
)
# Compare and find undocumented keys
undocumented_keys = router_init_params - documented_keys
# Print results
print("Keys expected in 'router settings' (found in code):")
for key in sorted(router_init_params):
print(key)
if undocumented_keys:
raise Exception(
f"\nKeys not documented in 'router settings - Reference': {undocumented_keys}"
)
else:
print(
"\nAll keys are documented in 'router settings - Reference'. - {}".format(
router_init_params
)
)

View file

@ -1,3 +1 @@
Unit tests for individual LLM providers. More tests under `litellm/litellm/tests/*`.
Name of the test file is the name of the LLM provider - e.g. `test_openai.py` is for OpenAI.

View file

@ -62,14 +62,7 @@ class BaseLLMChatTest(ABC):
response = litellm.completion(**base_completion_call_args, messages=messages) response = litellm.completion(**base_completion_call_args, messages=messages)
assert response is not None assert response is not None
@pytest.mark.parametrize( def test_json_response_format(self):
"response_format",
[
{"type": "json_object"},
{"type": "text"},
],
)
def test_json_response_format(self, response_format):
""" """
Test that the JSON response format is supported by the LLM API Test that the JSON response format is supported by the LLM API
""" """
@ -90,7 +83,7 @@ class BaseLLMChatTest(ABC):
response = litellm.completion( response = litellm.completion(
**base_completion_call_args, **base_completion_call_args,
messages=messages, messages=messages,
response_format=response_format, response_format={"type": "json_object"},
) )
print(response) print(response)

File diff suppressed because one or more lines are too long

View file

@ -45,26 +45,51 @@ def test_map_azure_model_group(model_group_header, expected_model):
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_azure_ai_with_image_url(): @pytest.mark.respx
async def test_azure_ai_with_image_url(respx_mock: MockRouter):
""" """
Important test: Important test:
Test that Azure AI studio can handle image_url passed when content is a list containing both text and image_url Test that Azure AI studio can handle image_url passed when content is a list containing both text and image_url
""" """
from openai import AsyncOpenAI
litellm.set_verbose = True litellm.set_verbose = True
client = AsyncOpenAI( # Mock response based on the actual API response
api_key="fake-api-key", mock_response = {
base_url="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com", "id": "cmpl-53860ea1efa24d2883555bfec13d2254",
) "choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": None,
"message": {
"content": "The image displays a graphic with the text 'LiteLLM' in black",
"role": "assistant",
"refusal": None,
"audio": None,
"function_call": None,
"tool_calls": None,
},
}
],
"created": 1731801937,
"model": "phi35-vision-instruct",
"object": "chat.completion",
"usage": {
"completion_tokens": 69,
"prompt_tokens": 617,
"total_tokens": 686,
"completion_tokens_details": None,
"prompt_tokens_details": None,
},
}
with patch.object( # Mock the API request
client.chat.completions.with_raw_response, "create" mock_request = respx_mock.post(
) as mock_client: "https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com"
try: ).mock(return_value=httpx.Response(200, json=mock_response))
await litellm.acompletion(
response = await litellm.acompletion(
model="azure_ai/Phi-3-5-vision-instruct-dcvov", model="azure_ai/Phi-3-5-vision-instruct-dcvov",
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com", api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
messages=[ messages=[
@ -85,19 +110,16 @@ async def test_azure_ai_with_image_url():
}, },
], ],
api_key="fake-api-key", api_key="fake-api-key",
client=client,
) )
except Exception as e:
traceback.print_exc()
print(f"Error: {e}")
# Verify the request was made # Verify the request was made
mock_client.assert_called_once() assert mock_request.called
# Check the request body # Check the request body
request_body = mock_client.call_args.kwargs request_body = json.loads(mock_request.calls[0].request.content)
assert request_body["model"] == "Phi-3-5-vision-instruct-dcvov" assert request_body == {
assert request_body["messages"] == [ "model": "Phi-3-5-vision-instruct-dcvov",
"messages": [
{ {
"role": "user", "role": "user",
"content": [ "content": [
@ -110,4 +132,7 @@ async def test_azure_ai_with_image_url():
}, },
], ],
} }
] ],
}
print(f"response: {response}")

View file

@ -13,7 +13,6 @@ load_dotenv()
import httpx import httpx
import pytest import pytest
from respx import MockRouter from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm import litellm
from litellm import Choices, Message, ModelResponse from litellm import Choices, Message, ModelResponse
@ -42,35 +41,31 @@ def return_mocked_response(model: str):
"bedrock/mistral.mistral-large-2407-v1:0", "bedrock/mistral.mistral-large-2407-v1:0",
], ],
) )
@pytest.mark.respx
@pytest.mark.asyncio() @pytest.mark.asyncio()
async def test_bedrock_max_completion_tokens(model: str): async def test_bedrock_max_completion_tokens(model: str, respx_mock: MockRouter):
""" """
Tests that: Tests that:
- max_completion_tokens is passed as max_tokens to bedrock models - max_completion_tokens is passed as max_tokens to bedrock models
""" """
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
litellm.set_verbose = True litellm.set_verbose = True
client = AsyncHTTPHandler()
mock_response = return_mocked_response(model) mock_response = return_mocked_response(model)
_model = model.split("/")[1] _model = model.split("/")[1]
print("\n\nmock_response: ", mock_response) print("\n\nmock_response: ", mock_response)
url = f"https://bedrock-runtime.us-west-2.amazonaws.com/model/{_model}/converse"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion( response = await litellm.acompletion(
model=model, model=model,
max_completion_tokens=10, max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}], messages=[{"role": "user", "content": "Hello!"}],
client=client,
) )
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once() assert mock_request.called
request_body = json.loads(mock_client.call_args.kwargs["data"]) request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body) print("request_body: ", request_body)
@ -80,20 +75,22 @@ async def test_bedrock_max_completion_tokens(model: str):
"system": [], "system": [],
"inferenceConfig": {"maxTokens": 10}, "inferenceConfig": {"maxTokens": 10},
} }
print(f"response: {response}")
assert isinstance(response, ModelResponse)
@pytest.mark.parametrize( @pytest.mark.parametrize(
"model", "model",
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229"], ["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229,"],
) )
@pytest.mark.respx
@pytest.mark.asyncio() @pytest.mark.asyncio()
async def test_anthropic_api_max_completion_tokens(model: str): async def test_anthropic_api_max_completion_tokens(model: str, respx_mock: MockRouter):
""" """
Tests that: Tests that:
- max_completion_tokens is passed as max_tokens to anthropic models - max_completion_tokens is passed as max_tokens to anthropic models
""" """
litellm.set_verbose = True litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
mock_response = { mock_response = {
"content": [{"text": "Hi! My name is Claude.", "type": "text"}], "content": [{"text": "Hi! My name is Claude.", "type": "text"}],
@ -106,32 +103,30 @@ async def test_anthropic_api_max_completion_tokens(model: str):
"usage": {"input_tokens": 2095, "output_tokens": 503}, "usage": {"input_tokens": 2095, "output_tokens": 503},
} }
client = HTTPHandler()
print("\n\nmock_response: ", mock_response) print("\n\nmock_response: ", mock_response)
url = f"https://api.anthropic.com/v1/messages"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion( response = await litellm.acompletion(
model=model, model=model,
max_completion_tokens=10, max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}], messages=[{"role": "user", "content": "Hello!"}],
client=client,
) )
except Exception as e:
print(f"Error: {e}") assert mock_request.called
mock_client.assert_called_once() request_body = json.loads(mock_request.calls[0].request.content)
request_body = mock_client.call_args.kwargs["json"]
print("request_body: ", request_body) print("request_body: ", request_body)
assert request_body == { assert request_body == {
"messages": [ "messages": [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}],
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}
],
"max_tokens": 10, "max_tokens": 10,
"model": model.split("/")[-1], "model": model.split("/")[-1],
} }
print(f"response: {response}")
assert isinstance(response, ModelResponse)
def test_all_model_configs(): def test_all_model_configs():

View file

@ -12,27 +12,28 @@ sys.path.insert(
import httpx import httpx
import pytest import pytest
from respx import MockRouter from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm import litellm
from litellm import Choices, Message, ModelResponse, EmbeddingResponse, Usage from litellm import Choices, Message, ModelResponse, EmbeddingResponse, Usage
from litellm import completion from litellm import completion
def test_completion_nvidia_nim(): @pytest.mark.respx
from openai import OpenAI def test_completion_nvidia_nim(respx_mock: MockRouter):
litellm.set_verbose = True litellm.set_verbose = True
model_name = "nvidia_nim/databricks/dbrx-instruct" mock_response = ModelResponse(
client = OpenAI( id="cmpl-mock",
api_key="fake-api-key", choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="databricks/dbrx-instruct",
) )
model_name = "nvidia_nim/databricks/dbrx-instruct"
with patch.object( mock_request = respx_mock.post(
client.chat.completions.with_raw_response, "create" "https://integrate.api.nvidia.com/v1/chat/completions"
) as mock_client: ).mock(return_value=httpx.Response(200, json=mock_response.dict()))
try: try:
completion( response = completion(
model=model_name, model=model_name,
messages=[ messages=[
{ {
@ -42,48 +43,64 @@ def test_completion_nvidia_nim():
], ],
presence_penalty=0.5, presence_penalty=0.5,
frequency_penalty=0.1, frequency_penalty=0.1,
client=client,
) )
except Exception as e:
print(e)
# Add any assertions here to check the response # Add any assertions here to check the response
print(response)
assert response.choices[0].message.content is not None
assert len(response.choices[0].message.content) > 0
mock_client.assert_called_once() assert mock_request.called
request_body = mock_client.call_args.kwargs request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body) print("request_body: ", request_body)
assert request_body["messages"] == [ assert request_body == {
"messages": [
{ {
"role": "user", "role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?", "content": "What's the weather like in Boston today in Fahrenheit?",
}, }
] ],
assert request_body["model"] == "databricks/dbrx-instruct" "model": "databricks/dbrx-instruct",
assert request_body["frequency_penalty"] == 0.1 "frequency_penalty": 0.1,
assert request_body["presence_penalty"] == 0.5 "presence_penalty": 0.5,
}
except litellm.exceptions.Timeout as e:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_embedding_nvidia_nim(): def test_embedding_nvidia_nim(respx_mock: MockRouter):
litellm.set_verbose = True litellm.set_verbose = True
from openai import OpenAI mock_response = EmbeddingResponse(
model="nvidia_nim/databricks/dbrx-instruct",
client = OpenAI( data=[
api_key="fake-api-key", {
"embedding": [0.1, 0.2, 0.3],
"index": 0,
}
],
usage=Usage(
prompt_tokens=10,
completion_tokens=0,
total_tokens=10,
),
) )
with patch.object(client.embeddings.with_raw_response, "create") as mock_client: mock_request = respx_mock.post(
try: "https://integrate.api.nvidia.com/v1/embeddings"
litellm.embedding( ).mock(return_value=httpx.Response(200, json=mock_response.dict()))
response = litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5", model="nvidia_nim/nvidia/nv-embedqa-e5-v5",
input="What is the meaning of life?", input="What is the meaning of life?",
input_type="passage", input_type="passage",
client=client,
) )
except Exception as e: assert mock_request.called
print(e) request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body) print("request_body: ", request_body)
assert request_body["input"] == "What is the meaning of life?" assert request_body == {
assert request_body["model"] == "nvidia/nv-embedqa-e5-v5" "input": "What is the meaning of life?",
assert request_body["extra_body"]["input_type"] == "passage" "model": "nvidia/nv-embedqa-e5-v5",
"input_type": "passage",
"encoding_format": "base64",
}

View file

@ -2,7 +2,7 @@ import json
import os import os
import sys import sys
from datetime import datetime from datetime import datetime
from unittest.mock import AsyncMock, patch, MagicMock from unittest.mock import AsyncMock
sys.path.insert( sys.path.insert(
0, os.path.abspath("../..") 0, os.path.abspath("../..")
@ -18,75 +18,87 @@ from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_o1_handle_system_role(): @pytest.mark.respx
async def test_o1_handle_system_role(respx_mock: MockRouter):
""" """
Tests that: Tests that:
- max_tokens is translated to 'max_completion_tokens' - max_tokens is translated to 'max_completion_tokens'
- role 'system' is translated to 'user' - role 'system' is translated to 'user'
""" """
from openai import AsyncOpenAI
litellm.set_verbose = True litellm.set_verbose = True
client = AsyncOpenAI(api_key="fake-api-key") mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="o1-preview",
)
with patch.object( mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
client.chat.completions.with_raw_response, "create" return_value=httpx.Response(200, json=mock_response.dict())
) as mock_client: )
try:
await litellm.acompletion( response = await litellm.acompletion(
model="o1-preview", model="o1-preview",
max_tokens=10, max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}], messages=[{"role": "system", "content": "Hello!"}],
client=client,
) )
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once() assert mock_request.called
request_body = mock_client.call_args.kwargs request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body) print("request_body: ", request_body)
assert request_body["model"] == "o1-preview" assert request_body == {
assert request_body["max_completion_tokens"] == 10 "model": "o1-preview",
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}] "max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
@pytest.mark.asyncio @pytest.mark.asyncio
@pytest.mark.respx
@pytest.mark.parametrize("model", ["gpt-4", "gpt-4-0314", "gpt-4-32k", "o1-preview"]) @pytest.mark.parametrize("model", ["gpt-4", "gpt-4-0314", "gpt-4-32k", "o1-preview"])
async def test_o1_max_completion_tokens(model: str): async def test_o1_max_completion_tokens(respx_mock: MockRouter, model: str):
""" """
Tests that: Tests that:
- max_completion_tokens is passed directly to OpenAI chat completion models - max_completion_tokens is passed directly to OpenAI chat completion models
""" """
from openai import AsyncOpenAI
litellm.set_verbose = True litellm.set_verbose = True
client = AsyncOpenAI(api_key="fake-api-key") mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model=model,
)
with patch.object( mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
client.chat.completions.with_raw_response, "create" return_value=httpx.Response(200, json=mock_response.dict())
) as mock_client: )
try:
await litellm.acompletion( response = await litellm.acompletion(
model=model, model=model,
max_completion_tokens=10, max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}], messages=[{"role": "user", "content": "Hello!"}],
client=client,
) )
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once() assert mock_request.called
request_body = mock_client.call_args.kwargs request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body) print("request_body: ", request_body)
assert request_body["model"] == model assert request_body == {
assert request_body["max_completion_tokens"] == 10 "model": model,
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}] "max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
def test_litellm_responses(): def test_litellm_responses():

View file

@ -2,7 +2,7 @@ import json
import os import os
import sys import sys
from datetime import datetime from datetime import datetime
from unittest.mock import AsyncMock, patch from unittest.mock import AsyncMock
sys.path.insert( sys.path.insert(
0, os.path.abspath("../..") 0, os.path.abspath("../..")
@ -63,7 +63,8 @@ def test_openai_prediction_param():
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_openai_prediction_param_mock(): @pytest.mark.respx
async def test_openai_prediction_param_mock(respx_mock: MockRouter):
""" """
Tests that prediction parameter is correctly passed to the API Tests that prediction parameter is correctly passed to the API
""" """
@ -91,15 +92,38 @@ async def test_openai_prediction_param_mock():
public string Username { get; set; } public string Username { get; set; }
} }
""" """
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key") mock_response = ModelResponse(
id="chatcmpl-AQ5RmV8GvVSRxEcDxnuXlQnsibiY9",
choices=[
Choices(
message=Message(
content=code.replace("Username", "Email").replace(
"username", "email"
),
role="assistant",
)
)
],
created=int(datetime.now().timestamp()),
model="gpt-4o-mini-2024-07-18",
usage={
"completion_tokens": 207,
"prompt_tokens": 175,
"total_tokens": 382,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 80,
},
},
)
with patch.object( mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
client.chat.completions.with_raw_response, "create" return_value=httpx.Response(200, json=mock_response.dict())
) as mock_client: )
try:
await litellm.acompletion( completion = await litellm.acompletion(
model="gpt-4o-mini", model="gpt-4o-mini",
messages=[ messages=[
{ {
@ -109,19 +133,20 @@ async def test_openai_prediction_param_mock():
{"role": "user", "content": code}, {"role": "user", "content": code},
], ],
prediction={"type": "content", "content": code}, prediction={"type": "content", "content": code},
client=client,
) )
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once() assert mock_request.called
request_body = mock_client.call_args.kwargs request_body = json.loads(mock_request.calls[0].request.content)
# Verify the request contains the prediction parameter # Verify the request contains the prediction parameter
assert "prediction" in request_body assert "prediction" in request_body
# verify prediction is correctly sent to the API # verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code} assert request_body["prediction"] == {"type": "content", "content": code}
# Verify the completion tokens details
assert completion.usage.completion_tokens_details.accepted_prediction_tokens == 0
assert completion.usage.completion_tokens_details.rejected_prediction_tokens == 80
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_openai_prediction_param_with_caching(): async def test_openai_prediction_param_with_caching():
@ -198,73 +223,3 @@ async def test_openai_prediction_param_with_caching():
) )
assert completion_response_3.id != completion_response_1.id assert completion_response_3.id != completion_response_1.id
@pytest.mark.asyncio()
async def test_vision_with_custom_model():
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["messages"] == [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
},
]
assert request_body["model"] == "my-custom-model"
assert request_body["max_tokens"] == 10

View file

@ -0,0 +1,94 @@
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio()
@pytest.mark.respx
async def test_vision_with_custom_model(respx_mock: MockRouter):
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="my-custom-model",
)
mock_request = respx_mock.post(f"{api_base}/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
"model": "my-custom-model",
"max_tokens": 10,
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)

View file

@ -6,7 +6,6 @@ from unittest.mock import AsyncMock
import pytest import pytest
import httpx import httpx
from respx import MockRouter from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
sys.path.insert( sys.path.insert(
0, os.path.abspath("../..") 0, os.path.abspath("../..")
@ -69,16 +68,13 @@ def test_convert_dict_to_text_completion_response():
assert response.choices[0].logprobs.top_logprobs == [None, {",": -2.1568563}] assert response.choices[0].logprobs.top_logprobs == [None, {",": -2.1568563}]
@pytest.mark.skip(
reason="need to migrate huggingface to support httpx client being passed in"
)
@pytest.mark.asyncio @pytest.mark.asyncio
@pytest.mark.respx @pytest.mark.respx
async def test_huggingface_text_completion_logprobs(): async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
"""Test text completion with Hugging Face, focusing on logprobs structure""" """Test text completion with Hugging Face, focusing on logprobs structure"""
litellm.set_verbose = True litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
# Mock the raw response from Hugging Face
mock_response = [ mock_response = [
{ {
"generated_text": ",\n\nI have a question...", # truncated for brevity "generated_text": ",\n\nI have a question...", # truncated for brevity
@ -95,21 +91,19 @@ async def test_huggingface_text_completion_logprobs():
} }
] ]
return_val = AsyncMock() # Mock the API request
mock_request = respx_mock.post(
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
).mock(return_value=httpx.Response(200, json=mock_response))
return_val.json.return_value = mock_response
client = AsyncHTTPHandler()
with patch.object(client, "post", return_value=return_val) as mock_post:
response = await litellm.atext_completion( response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1", model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning", prompt="good morning",
client=client,
) )
# Verify the request # Verify the request
mock_post.assert_called_once() assert mock_request.called
request_body = json.loads(mock_post.call_args.kwargs["data"]) request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == { assert request_body == {
"inputs": "good morning", "inputs": "good morning",
"parameters": {"details": True, "return_full_text": False}, "parameters": {"details": True, "return_full_text": False},

View file

@ -1146,21 +1146,6 @@ def test_process_gemini_image():
mime_type="image/png", file_uri="https://example.com/image.png" mime_type="image/png", file_uri="https://example.com/image.png"
) )
# Test HTTPS VIDEO URL
https_result = _process_gemini_image("https://cloud-samples-data/video/animals.mp4")
print("https_result PNG", https_result)
assert https_result["file_data"] == FileDataType(
mime_type="video/mp4", file_uri="https://cloud-samples-data/video/animals.mp4"
)
# Test HTTPS PDF URL
https_result = _process_gemini_image("https://cloud-samples-data/pdf/animals.pdf")
print("https_result PDF", https_result)
assert https_result["file_data"] == FileDataType(
mime_type="application/pdf",
file_uri="https://cloud-samples-data/pdf/animals.pdf",
)
# Test base64 image # Test base64 image
base64_image = "..." base64_image = "..."
base64_result = _process_gemini_image(base64_image) base64_result = _process_gemini_image(base64_image)

View file

@ -95,107 +95,3 @@ async def test_handle_failed_db_connection():
print("_handle_failed_db_connection_for_get_key_object got exception", exc_info) print("_handle_failed_db_connection_for_get_key_object got exception", exc_info)
assert str(exc_info.value) == "Failed to connect to DB" assert str(exc_info.value) == "Failed to connect to DB"
@pytest.mark.parametrize(
"model, expect_to_work",
[("openai/gpt-4o-mini", True), ("openai/gpt-4o", False)],
)
@pytest.mark.asyncio
async def test_can_key_call_model(model, expect_to_work):
"""
If wildcard model + specific model is used, choose the specific model settings
"""
from litellm.proxy.auth.auth_checks import can_key_call_model
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"llm_model_list": llm_model_list,
"valid_token": UserAPIKeyAuth(
models=["public-openai-models"],
),
"llm_router": router,
}
if expect_to_work:
await can_key_call_model(**args)
else:
with pytest.raises(Exception) as e:
await can_key_call_model(**args)
print(e)
@pytest.mark.parametrize(
"model, expect_to_work",
[("openai/gpt-4o", False), ("openai/gpt-4o-mini", True)],
)
@pytest.mark.asyncio
async def test_can_team_call_model(model, expect_to_work):
from litellm.proxy.auth.auth_checks import model_in_access_group
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"team_models": ["public-openai-models"],
"llm_router": router,
}
if expect_to_work:
assert model_in_access_group(**args)
else:
assert not model_in_access_group(**args)

View file

@ -33,7 +33,7 @@ from litellm.router import Router
@pytest.mark.asyncio() @pytest.mark.asyncio()
@pytest.mark.respx() @pytest.mark.respx()
async def test_aaaaazure_tenant_id_auth(respx_mock: MockRouter): async def test_azure_tenant_id_auth(respx_mock: MockRouter):
""" """
Tests when we set tenant_id, client_id, client_secret they don't get sent with the request Tests when we set tenant_id, client_id, client_secret they don't get sent with the request

View file

@ -1,128 +1,128 @@
# #### What this tests #### #### What this tests ####
# # This adds perf testing to the router, to ensure it's never > 50ms slower than the azure-openai sdk. # This adds perf testing to the router, to ensure it's never > 50ms slower than the azure-openai sdk.
# import sys, os, time, inspect, asyncio, traceback import sys, os, time, inspect, asyncio, traceback
# from datetime import datetime from datetime import datetime
# import pytest import pytest
# sys.path.insert(0, os.path.abspath("../..")) sys.path.insert(0, os.path.abspath("../.."))
# import openai, litellm, uuid import openai, litellm, uuid
# from openai import AsyncAzureOpenAI from openai import AsyncAzureOpenAI
# client = AsyncAzureOpenAI( client = AsyncAzureOpenAI(
# api_key=os.getenv("AZURE_API_KEY"), api_key=os.getenv("AZURE_API_KEY"),
# azure_endpoint=os.getenv("AZURE_API_BASE"), # type: ignore azure_endpoint=os.getenv("AZURE_API_BASE"), # type: ignore
# api_version=os.getenv("AZURE_API_VERSION"), api_version=os.getenv("AZURE_API_VERSION"),
# ) )
# model_list = [ model_list = [
# { {
# "model_name": "azure-test", "model_name": "azure-test",
# "litellm_params": { "litellm_params": {
# "model": "azure/chatgpt-v-2", "model": "azure/chatgpt-v-2",
# "api_key": os.getenv("AZURE_API_KEY"), "api_key": os.getenv("AZURE_API_KEY"),
# "api_base": os.getenv("AZURE_API_BASE"), "api_base": os.getenv("AZURE_API_BASE"),
# "api_version": os.getenv("AZURE_API_VERSION"), "api_version": os.getenv("AZURE_API_VERSION"),
# }, },
# } }
# ] ]
# router = litellm.Router(model_list=model_list) # type: ignore router = litellm.Router(model_list=model_list) # type: ignore
# async def _openai_completion(): async def _openai_completion():
# try: try:
# start_time = time.time() start_time = time.time()
# response = await client.chat.completions.create( response = await client.chat.completions.create(
# model="chatgpt-v-2", model="chatgpt-v-2",
# messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}], messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
# stream=True, stream=True,
# ) )
# time_to_first_token = None time_to_first_token = None
# first_token_ts = None first_token_ts = None
# init_chunk = None init_chunk = None
# async for chunk in response: async for chunk in response:
# if ( if (
# time_to_first_token is None time_to_first_token is None
# and len(chunk.choices) > 0 and len(chunk.choices) > 0
# and chunk.choices[0].delta.content is not None and chunk.choices[0].delta.content is not None
# ): ):
# first_token_ts = time.time() first_token_ts = time.time()
# time_to_first_token = first_token_ts - start_time time_to_first_token = first_token_ts - start_time
# init_chunk = chunk init_chunk = chunk
# end_time = time.time() end_time = time.time()
# print( print(
# "OpenAI Call: ", "OpenAI Call: ",
# init_chunk, init_chunk,
# start_time, start_time,
# first_token_ts, first_token_ts,
# time_to_first_token, time_to_first_token,
# end_time, end_time,
# ) )
# return time_to_first_token return time_to_first_token
# except Exception as e: except Exception as e:
# print(e) print(e)
# return None return None
# async def _router_completion(): async def _router_completion():
# try: try:
# start_time = time.time() start_time = time.time()
# response = await router.acompletion( response = await router.acompletion(
# model="azure-test", model="azure-test",
# messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}], messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
# stream=True, stream=True,
# ) )
# time_to_first_token = None time_to_first_token = None
# first_token_ts = None first_token_ts = None
# init_chunk = None init_chunk = None
# async for chunk in response: async for chunk in response:
# if ( if (
# time_to_first_token is None time_to_first_token is None
# and len(chunk.choices) > 0 and len(chunk.choices) > 0
# and chunk.choices[0].delta.content is not None and chunk.choices[0].delta.content is not None
# ): ):
# first_token_ts = time.time() first_token_ts = time.time()
# time_to_first_token = first_token_ts - start_time time_to_first_token = first_token_ts - start_time
# init_chunk = chunk init_chunk = chunk
# end_time = time.time() end_time = time.time()
# print( print(
# "Router Call: ", "Router Call: ",
# init_chunk, init_chunk,
# start_time, start_time,
# first_token_ts, first_token_ts,
# time_to_first_token, time_to_first_token,
# end_time - first_token_ts, end_time - first_token_ts,
# ) )
# return time_to_first_token return time_to_first_token
# except Exception as e: except Exception as e:
# print(e) print(e)
# return None return None
# async def test_azure_completion_streaming(): async def test_azure_completion_streaming():
# """ """
# Test azure streaming call - measure on time to first (non-null) token. Test azure streaming call - measure on time to first (non-null) token.
# """ """
# n = 3 # Number of concurrent tasks n = 3 # Number of concurrent tasks
# ## OPENAI AVG. TIME ## OPENAI AVG. TIME
# tasks = [_openai_completion() for _ in range(n)] tasks = [_openai_completion() for _ in range(n)]
# chat_completions = await asyncio.gather(*tasks) chat_completions = await asyncio.gather(*tasks)
# successful_completions = [c for c in chat_completions if c is not None] successful_completions = [c for c in chat_completions if c is not None]
# total_time = 0 total_time = 0
# for item in successful_completions: for item in successful_completions:
# total_time += item total_time += item
# avg_openai_time = total_time / 3 avg_openai_time = total_time / 3
# ## ROUTER AVG. TIME ## ROUTER AVG. TIME
# tasks = [_router_completion() for _ in range(n)] tasks = [_router_completion() for _ in range(n)]
# chat_completions = await asyncio.gather(*tasks) chat_completions = await asyncio.gather(*tasks)
# successful_completions = [c for c in chat_completions if c is not None] successful_completions = [c for c in chat_completions if c is not None]
# total_time = 0 total_time = 0
# for item in successful_completions: for item in successful_completions:
# total_time += item total_time += item
# avg_router_time = total_time / 3 avg_router_time = total_time / 3
# ## COMPARE ## COMPARE
# print(f"avg_router_time: {avg_router_time}; avg_openai_time: {avg_openai_time}") print(f"avg_router_time: {avg_router_time}; avg_openai_time: {avg_openai_time}")
# assert avg_router_time < avg_openai_time + 0.5 assert avg_router_time < avg_openai_time + 0.5
# # asyncio.run(test_azure_completion_streaming()) # asyncio.run(test_azure_completion_streaming())

View file

@ -1146,9 +1146,7 @@ async def test_exception_with_headers_httpx(
except litellm.RateLimitError as e: except litellm.RateLimitError as e:
exception_raised = True exception_raised = True
assert ( assert e.litellm_response_headers is not None
e.litellm_response_headers is not None
), "litellm_response_headers is None"
print("e.litellm_response_headers", e.litellm_response_headers) print("e.litellm_response_headers", e.litellm_response_headers)
assert int(e.litellm_response_headers["retry-after"]) == cooldown_time assert int(e.litellm_response_headers["retry-after"]) == cooldown_time

View file

@ -102,17 +102,3 @@ def test_get_model_info_ollama_chat():
print(mock_client.call_args.kwargs) print(mock_client.call_args.kwargs)
assert mock_client.call_args.kwargs["json"]["name"] == "mistral" assert mock_client.call_args.kwargs["json"]["name"] == "mistral"
def test_get_model_info_gemini():
"""
Tests if ALL gemini models have 'tpm' and 'rpm' in the model info
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
model_map = litellm.model_cost
for model, info in model_map.items():
if model.startswith("gemini/") and not "gemma" in model:
assert info.get("tpm") is not None, f"{model} does not have tpm"
assert info.get("rpm") is not None, f"{model} does not have rpm"

View file

@ -2115,14 +2115,10 @@ def test_router_get_model_info(model, base_model, llm_provider):
assert deployment is not None assert deployment is not None
if llm_provider == "openai" or (base_model is not None and llm_provider == "azure"): if llm_provider == "openai" or (base_model is not None and llm_provider == "azure"):
router.get_router_model_info( router.get_router_model_info(deployment=deployment.to_json())
deployment=deployment.to_json(), received_model_name=model
)
else: else:
try: try:
router.get_router_model_info( router.get_router_model_info(deployment=deployment.to_json())
deployment=deployment.to_json(), received_model_name=model
)
pytest.fail("Expected this to raise model not mapped error") pytest.fail("Expected this to raise model not mapped error")
except Exception as e: except Exception as e:
if "This model isn't mapped yet" in str(e): if "This model isn't mapped yet" in str(e):

View file

@ -174,185 +174,3 @@ async def test_update_kwargs_before_fallbacks(call_type):
print(mock_client.call_args.kwargs) print(mock_client.call_args.kwargs)
assert mock_client.call_args.kwargs["litellm_trace_id"] is not None assert mock_client.call_args.kwargs["litellm_trace_id"] is not None
def test_router_get_model_info_wildcard_routes():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
},
]
)
model_info = router.get_router_model_info(
deployment=None, received_model_name="gemini/gemini-1.5-flash", id="1"
)
print(model_info)
assert model_info is not None
assert model_info["tpm"] is not None
assert model_info["rpm"] is not None
@pytest.mark.asyncio
async def test_router_get_model_group_usage_wildcard_routes():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
},
]
)
resp = await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="Hello, I'm good.",
)
print(resp)
await asyncio.sleep(1)
tpm, rpm = await router.get_model_group_usage(model_group="gemini/gemini-1.5-flash")
assert tpm is not None, "tpm is None"
assert rpm is not None, "rpm is None"
@pytest.mark.asyncio
async def test_call_router_callbacks_on_success():
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
},
]
)
with patch.object(
router.cache, "async_increment_cache", new=AsyncMock()
) as mock_callback:
await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="Hello, I'm good.",
)
await asyncio.sleep(1)
assert mock_callback.call_count == 2
assert (
mock_callback.call_args_list[0]
.kwargs["key"]
.startswith("global_router:1:gemini/gemini-1.5-flash:tpm")
)
assert (
mock_callback.call_args_list[1]
.kwargs["key"]
.startswith("global_router:1:gemini/gemini-1.5-flash:rpm")
)
@pytest.mark.asyncio
async def test_call_router_callbacks_on_failure():
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
},
]
)
with patch.object(
router.cache, "async_increment_cache", new=AsyncMock()
) as mock_callback:
with pytest.raises(litellm.RateLimitError):
await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="litellm.RateLimitError",
num_retries=0,
)
await asyncio.sleep(1)
print(mock_callback.call_args_list)
assert mock_callback.call_count == 1
assert (
mock_callback.call_args_list[0]
.kwargs["key"]
.startswith("global_router:1:gemini/gemini-1.5-flash:rpm")
)
@pytest.mark.asyncio
async def test_router_model_group_headers():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
from litellm.types.utils import OPENAI_RESPONSE_HEADERS
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
}
]
)
for _ in range(2):
resp = await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="Hello, I'm good.",
)
await asyncio.sleep(1)
assert (
resp._hidden_params["additional_headers"]["x-litellm-model-group"]
== "gemini/gemini-1.5-flash"
)
assert "x-ratelimit-remaining-requests" in resp._hidden_params["additional_headers"]
assert "x-ratelimit-remaining-tokens" in resp._hidden_params["additional_headers"]
@pytest.mark.asyncio
async def test_get_remaining_model_group_usage():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
from litellm.types.utils import OPENAI_RESPONSE_HEADERS
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
}
]
)
for _ in range(2):
await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="Hello, I'm good.",
)
await asyncio.sleep(1)
remaining_usage = await router.get_remaining_model_group_usage(
model_group="gemini/gemini-1.5-flash"
)
assert remaining_usage is not None
assert "x-ratelimit-remaining-requests" in remaining_usage
assert "x-ratelimit-remaining-tokens" in remaining_usage

View file

@ -506,7 +506,7 @@ async def test_router_caching_ttl():
) as mock_client: ) as mock_client:
await router.acompletion(model=model, messages=messages) await router.acompletion(model=model, messages=messages)
# mock_client.assert_called_once() mock_client.assert_called_once()
print(f"mock_client.call_args.kwargs: {mock_client.call_args.kwargs}") print(f"mock_client.call_args.kwargs: {mock_client.call_args.kwargs}")
print(f"mock_client.call_args.args: {mock_client.call_args.args}") print(f"mock_client.call_args.args: {mock_client.call_args.args}")

View file

@ -212,7 +212,7 @@ async def test_bedrock_guardrail_triggered():
session, session,
"sk-1234", "sk-1234",
model="fake-openai-endpoint", model="fake-openai-endpoint",
messages=[{"role": "user", "content": "Hello do you like coffee?"}], messages=[{"role": "user", "content": f"Hello do you like coffee?"}],
guardrails=["bedrock-pre-guard"], guardrails=["bedrock-pre-guard"],
) )
pytest.fail("Should have thrown an exception") pytest.fail("Should have thrown an exception")

View file

@ -1,71 +0,0 @@
import pytest
import asyncio
import aiohttp, openai
from openai import OpenAI, AsyncOpenAI
from typing import Optional, List, Union
import uuid
async def make_moderations_curl_request(
session,
key,
request_data: dict,
):
url = "http://0.0.0.0:4000/moderations"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
async with session.post(url, headers=headers, json=request_data) as response:
status = response.status
response_text = await response.text()
if status != 200:
raise Exception(response_text)
return await response.json()
@pytest.mark.asyncio
async def test_basic_moderations_on_proxy_no_model():
"""
Test moderations endpoint on proxy when no `model` is specified in the request
"""
async with aiohttp.ClientSession() as session:
test_text = "I want to harm someone" # Test text that should trigger moderation
request_data = {
"input": test_text,
}
try:
response = await make_moderations_curl_request(
session,
"sk-1234",
request_data,
)
print("response=", response)
except Exception as e:
print(e)
pytest.fail("Moderations request failed")
@pytest.mark.asyncio
async def test_basic_moderations_on_proxy_with_model():
"""
Test moderations endpoint on proxy when `model` is specified in the request
"""
async with aiohttp.ClientSession() as session:
test_text = "I want to harm someone" # Test text that should trigger moderation
request_data = {
"input": test_text,
"model": "text-moderation-stable",
}
try:
response = await make_moderations_curl_request(
session,
"sk-1234",
request_data,
)
print("response=", response)
except Exception as e:
pytest.fail("Moderations request failed")

View file

@ -693,47 +693,3 @@ def test_personal_key_generation_check():
), ),
data=GenerateKeyRequest(), data=GenerateKeyRequest(),
) )
def test_prepare_metadata_fields():
from litellm.proxy.management_endpoints.key_management_endpoints import (
prepare_metadata_fields,
)
new_metadata = {"test": "new"}
old_metadata = {"test": "test"}
args = {
"data": UpdateKeyRequest(
key_alias=None,
duration=None,
models=[],
spend=None,
max_budget=None,
user_id=None,
team_id=None,
max_parallel_requests=None,
metadata=new_metadata,
tpm_limit=None,
rpm_limit=None,
budget_duration=None,
allowed_cache_controls=[],
soft_budget=None,
config={},
permissions={},
model_max_budget={},
send_invite_email=None,
model_rpm_limit=None,
model_tpm_limit=None,
guardrails=None,
blocked=None,
aliases={},
key="sk-1qGQUJJTcljeaPfzgWRrXQ",
tags=None,
),
"non_default_values": {"metadata": new_metadata},
"existing_metadata": {"tags": None, **old_metadata},
}
non_default_values = prepare_metadata_fields(**args)
assert non_default_values == {"metadata": new_metadata}

View file

@ -23,7 +23,7 @@ import os
import sys import sys
import traceback import traceback
import uuid import uuid
from datetime import datetime, timezone from datetime import datetime
from dotenv import load_dotenv from dotenv import load_dotenv
from fastapi import Request from fastapi import Request
@ -1305,8 +1305,6 @@ def test_generate_and_update_key(prisma_client):
data=UpdateKeyRequest( data=UpdateKeyRequest(
key=generated_key, key=generated_key,
models=["ada", "babbage", "curie", "davinci"], models=["ada", "babbage", "curie", "davinci"],
budget_duration="1mo",
max_budget=100,
), ),
) )
@ -1335,18 +1333,6 @@ def test_generate_and_update_key(prisma_client):
} }
assert result["info"]["models"] == ["ada", "babbage", "curie", "davinci"] assert result["info"]["models"] == ["ada", "babbage", "curie", "davinci"]
assert result["info"]["team_id"] == _team_2 assert result["info"]["team_id"] == _team_2
assert result["info"]["budget_duration"] == "1mo"
assert result["info"]["max_budget"] == 100
# budget_reset_at should be 30 days from now
assert result["info"]["budget_reset_at"] is not None
budget_reset_at = result["info"]["budget_reset_at"].replace(
tzinfo=timezone.utc
)
current_time = datetime.now(timezone.utc)
# assert budget_reset_at is 30 days from now
assert 31 >= (budget_reset_at - current_time).days >= 29
# cleanup - delete key # cleanup - delete key
delete_key_request = KeyRequest(keys=[generated_key]) delete_key_request = KeyRequest(keys=[generated_key])
@ -2627,15 +2613,6 @@ async def test_create_update_team(prisma_client):
_updated_info["budget_reset_at"], datetime.datetime _updated_info["budget_reset_at"], datetime.datetime
) )
# budget_reset_at should be 2 days from now
budget_reset_at = _updated_info["budget_reset_at"].replace(tzinfo=timezone.utc)
current_time = datetime.datetime.now(timezone.utc)
# assert budget_reset_at is 2 days from now
assert (
abs((budget_reset_at - current_time).total_seconds() - 2 * 24 * 60 * 60) <= 10
)
# now hit team_info # now hit team_info
try: try:
response = await team_info( response = await team_info(
@ -2779,56 +2756,6 @@ async def test_update_user_role(prisma_client):
print("result from user auth with new key", result) print("result from user auth with new key", result)
@pytest.mark.asyncio()
async def test_update_user_unit_test(prisma_client):
"""
Unit test for /user/update
Ensure that params are updated for UpdateUserRequest
"""
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
await litellm.proxy.proxy_server.prisma_client.connect()
key = await new_user(
data=NewUserRequest(
user_email="test@test.com",
)
)
print(key)
user_info = await user_update(
data=UpdateUserRequest(
user_id=key.user_id,
team_id="1234",
max_budget=100,
budget_duration="10d",
tpm_limit=100,
rpm_limit=100,
metadata={"very-new-metadata": "something"},
)
)
print("user_info", user_info)
assert user_info is not None
_user_info = user_info["data"].model_dump()
assert _user_info["user_id"] == key.user_id
assert _user_info["team_id"] == "1234"
assert _user_info["max_budget"] == 100
assert _user_info["budget_duration"] == "10d"
assert _user_info["tpm_limit"] == 100
assert _user_info["rpm_limit"] == 100
assert _user_info["metadata"] == {"very-new-metadata": "something"}
# budget reset at should be 10 days from now
budget_reset_at = _user_info["budget_reset_at"].replace(tzinfo=timezone.utc)
current_time = datetime.now(timezone.utc)
assert (
abs((budget_reset_at - current_time).total_seconds() - 10 * 24 * 60 * 60) <= 10
)
@pytest.mark.asyncio() @pytest.mark.asyncio()
async def test_custom_api_key_header_name(prisma_client): async def test_custom_api_key_header_name(prisma_client):
""" """ """ """
@ -2917,6 +2844,7 @@ async def test_generate_key_with_model_tpm_limit(prisma_client):
"team": "litellm-team3", "team": "litellm-team3",
"model_tpm_limit": {"gpt-4": 100}, "model_tpm_limit": {"gpt-4": 100},
"model_rpm_limit": {"gpt-4": 2}, "model_rpm_limit": {"gpt-4": 2},
"tags": None,
} }
# Update model tpm_limit and rpm_limit # Update model tpm_limit and rpm_limit
@ -2940,6 +2868,7 @@ async def test_generate_key_with_model_tpm_limit(prisma_client):
"team": "litellm-team3", "team": "litellm-team3",
"model_tpm_limit": {"gpt-4": 200}, "model_tpm_limit": {"gpt-4": 200},
"model_rpm_limit": {"gpt-4": 3}, "model_rpm_limit": {"gpt-4": 3},
"tags": None,
} }
@ -2979,6 +2908,7 @@ async def test_generate_key_with_guardrails(prisma_client):
assert result["info"]["metadata"] == { assert result["info"]["metadata"] == {
"team": "litellm-team3", "team": "litellm-team3",
"guardrails": ["aporia-pre-call"], "guardrails": ["aporia-pre-call"],
"tags": None,
} }
# Update model tpm_limit and rpm_limit # Update model tpm_limit and rpm_limit
@ -3000,6 +2930,7 @@ async def test_generate_key_with_guardrails(prisma_client):
assert result["info"]["metadata"] == { assert result["info"]["metadata"] == {
"team": "litellm-team3", "team": "litellm-team3",
"guardrails": ["aporia-pre-call", "aporia-post-call"], "guardrails": ["aporia-pre-call", "aporia-post-call"],
"tags": None,
} }
@ -3619,152 +3550,3 @@ async def test_key_generate_with_secret_manager_call(prisma_client):
################################################################################ ################################################################################
@pytest.mark.asyncio
async def test_key_alias_uniqueness(prisma_client):
"""
Test that:
1. We cannot create two keys with the same alias
2. We cannot update a key to use an alias that's already taken
3. We can update a key while keeping its existing alias
"""
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
await litellm.proxy.proxy_server.prisma_client.connect()
try:
# Create first key with an alias
unique_alias = f"test-alias-{uuid.uuid4()}"
key1 = await generate_key_fn(
data=GenerateKeyRequest(key_alias=unique_alias),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
# Try to create second key with same alias - should fail
try:
key2 = await generate_key_fn(
data=GenerateKeyRequest(key_alias=unique_alias),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
pytest.fail("Should not be able to create a second key with the same alias")
except Exception as e:
print("vars(e)=", vars(e))
assert "Unique key aliases across all keys are required" in str(e.message)
# Create another key with different alias
another_alias = f"test-alias-{uuid.uuid4()}"
key3 = await generate_key_fn(
data=GenerateKeyRequest(key_alias=another_alias),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
# Try to update key3 to use key1's alias - should fail
try:
await update_key_fn(
data=UpdateKeyRequest(key=key3.key, key_alias=unique_alias),
request=Request(scope={"type": "http"}),
)
pytest.fail("Should not be able to update a key to use an existing alias")
except Exception as e:
assert "Unique key aliases across all keys are required" in str(e.message)
# Update key1 with its own existing alias - should succeed
updated_key = await update_key_fn(
data=UpdateKeyRequest(key=key1.key, key_alias=unique_alias),
request=Request(scope={"type": "http"}),
)
assert updated_key is not None
except Exception as e:
print("got exceptions, e=", e)
print("vars(e)=", vars(e))
pytest.fail(f"An unexpected error occurred: {str(e)}")
@pytest.mark.asyncio
async def test_enforce_unique_key_alias(prisma_client):
"""
Unit test the _enforce_unique_key_alias function:
1. Test it allows unique aliases
2. Test it blocks duplicate aliases for new keys
3. Test it allows updating a key with its own existing alias
4. Test it blocks updating a key with another key's alias
"""
from litellm.proxy.management_endpoints.key_management_endpoints import (
_enforce_unique_key_alias,
)
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
await litellm.proxy.proxy_server.prisma_client.connect()
try:
# Test 1: Allow unique alias
unique_alias = f"test-alias-{uuid.uuid4()}"
await _enforce_unique_key_alias(
key_alias=unique_alias,
prisma_client=prisma_client,
) # Should pass
# Create a key with this alias in the database
key1 = await generate_key_fn(
data=GenerateKeyRequest(key_alias=unique_alias),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
# Test 2: Block duplicate alias for new key
try:
await _enforce_unique_key_alias(
key_alias=unique_alias,
prisma_client=prisma_client,
)
pytest.fail("Should not allow duplicate alias")
except Exception as e:
assert "Unique key aliases across all keys are required" in str(e.message)
# Test 3: Allow updating key with its own alias
await _enforce_unique_key_alias(
key_alias=unique_alias,
existing_key_token=hash_token(key1.key),
prisma_client=prisma_client,
) # Should pass
# Test 4: Block updating with another key's alias
another_key = await generate_key_fn(
data=GenerateKeyRequest(key_alias=f"test-alias-{uuid.uuid4()}"),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
try:
await _enforce_unique_key_alias(
key_alias=unique_alias,
existing_key_token=another_key.key,
prisma_client=prisma_client,
)
pytest.fail("Should not allow using another key's alias")
except Exception as e:
assert "Unique key aliases across all keys are required" in str(e.message)
except Exception as e:
print("Unexpected error:", e)
pytest.fail(f"An unexpected error occurred: {str(e)}")

View file

@ -2195,126 +2195,3 @@ async def test_async_log_proxy_authentication_errors():
assert ( assert (
mock_logger.user_api_key_dict_logged.token is not None mock_logger.user_api_key_dict_logged.token is not None
) # token should be hashed ) # token should be hashed
@pytest.mark.asyncio
async def test_async_log_proxy_authentication_errors_get_request():
"""
Test if async_log_proxy_authentication_errors correctly handles GET requests
that don't have a JSON body
"""
import json
from fastapi import Request
from litellm.proxy.utils import ProxyLogging
from litellm.caching import DualCache
from litellm.integrations.custom_logger import CustomLogger
class MockCustomLogger(CustomLogger):
def __init__(self):
self.called = False
self.exception_logged = None
self.request_data_logged = None
self.user_api_key_dict_logged = None
async def async_post_call_failure_hook(
self,
request_data: dict,
original_exception: Exception,
user_api_key_dict: UserAPIKeyAuth,
):
self.called = True
self.exception_logged = original_exception
self.request_data_logged = request_data
self.user_api_key_dict_logged = user_api_key_dict
# Create a mock GET request
request = Request(scope={"type": "http", "method": "GET"})
# Mock the json() method to raise JSONDecodeError
async def mock_json():
raise json.JSONDecodeError("Expecting value", "", 0)
request.json = mock_json
# Create a test exception
test_exception = Exception("Invalid API Key")
# Initialize ProxyLogging
mock_logger = MockCustomLogger()
litellm.callbacks = [mock_logger]
proxy_logging_obj = ProxyLogging(user_api_key_cache=DualCache())
# Call the method
await proxy_logging_obj.async_log_proxy_authentication_errors(
original_exception=test_exception,
request=request,
parent_otel_span=None,
api_key="test-key",
)
# Verify the mock logger was called with correct parameters
assert mock_logger.called == True
assert mock_logger.exception_logged == test_exception
assert mock_logger.user_api_key_dict_logged is not None
assert mock_logger.user_api_key_dict_logged.token is not None
@pytest.mark.asyncio
async def test_async_log_proxy_authentication_errors_no_api_key():
"""
Test if async_log_proxy_authentication_errors correctly handles requests
with no API key provided
"""
from fastapi import Request
from litellm.proxy.utils import ProxyLogging
from litellm.caching import DualCache
from litellm.integrations.custom_logger import CustomLogger
class MockCustomLogger(CustomLogger):
def __init__(self):
self.called = False
self.exception_logged = None
self.request_data_logged = None
self.user_api_key_dict_logged = None
async def async_post_call_failure_hook(
self,
request_data: dict,
original_exception: Exception,
user_api_key_dict: UserAPIKeyAuth,
):
self.called = True
self.exception_logged = original_exception
self.request_data_logged = request_data
self.user_api_key_dict_logged = user_api_key_dict
# Create test data
test_data = {"model": "gpt-4", "messages": [{"role": "user", "content": "Hello"}]}
# Create a mock request
request = Request(scope={"type": "http", "method": "POST"})
request._json = AsyncMock(return_value=test_data)
# Create a test exception
test_exception = Exception("No API Key Provided")
# Initialize ProxyLogging
mock_logger = MockCustomLogger()
litellm.callbacks = [mock_logger]
proxy_logging_obj = ProxyLogging(user_api_key_cache=DualCache())
# Call the method with api_key=None
await proxy_logging_obj.async_log_proxy_authentication_errors(
original_exception=test_exception,
request=request,
parent_otel_span=None,
api_key=None,
)
# Verify the mock logger was called with correct parameters
assert mock_logger.called == True
assert mock_logger.exception_logged == test_exception
assert mock_logger.user_api_key_dict_logged is not None
assert (
mock_logger.user_api_key_dict_logged.token == ""
) # Empty token for no API key

View file

@ -444,7 +444,7 @@ def test_foward_litellm_user_info_to_backend_llm_call():
def test_update_internal_user_params(): def test_update_internal_user_params():
from litellm.proxy.management_endpoints.internal_user_endpoints import ( from litellm.proxy.management_endpoints.internal_user_endpoints import (
_update_internal_new_user_params, _update_internal_user_params,
) )
from litellm.proxy._types import NewUserRequest from litellm.proxy._types import NewUserRequest
@ -456,7 +456,7 @@ def test_update_internal_user_params():
data = NewUserRequest(user_role="internal_user", user_email="krrish3@berri.ai") data = NewUserRequest(user_role="internal_user", user_email="krrish3@berri.ai")
data_json = data.model_dump() data_json = data.model_dump()
updated_data_json = _update_internal_new_user_params(data_json, data) updated_data_json = _update_internal_user_params(data_json, data)
assert updated_data_json["models"] == litellm.default_internal_user_params["models"] assert updated_data_json["models"] == litellm.default_internal_user_params["models"]
assert ( assert (
updated_data_json["max_budget"] updated_data_json["max_budget"]
@ -530,7 +530,7 @@ def test_prepare_key_update_data():
data = UpdateKeyRequest(key="test_key", metadata=None) data = UpdateKeyRequest(key="test_key", metadata=None)
updated_data = prepare_key_update_data(data, existing_key_row) updated_data = prepare_key_update_data(data, existing_key_row)
assert updated_data["metadata"] is None assert updated_data["metadata"] == None
@pytest.mark.parametrize( @pytest.mark.parametrize(
@ -574,108 +574,3 @@ def test_get_docs_url(env_vars, expected_url):
result = _get_docs_url() result = _get_docs_url()
assert result == expected_url assert result == expected_url
@pytest.mark.parametrize(
"request_tags, tags_to_add, expected_tags",
[
(None, None, []), # both None
(["tag1", "tag2"], None, ["tag1", "tag2"]), # tags_to_add is None
(None, ["tag3", "tag4"], ["tag3", "tag4"]), # request_tags is None
(
["tag1", "tag2"],
["tag3", "tag4"],
["tag1", "tag2", "tag3", "tag4"],
), # both have unique tags
(
["tag1", "tag2"],
["tag2", "tag3"],
["tag1", "tag2", "tag3"],
), # overlapping tags
([], [], []), # both empty lists
("not_a_list", ["tag1"], ["tag1"]), # request_tags invalid type
(["tag1"], "not_a_list", ["tag1"]), # tags_to_add invalid type
(
["tag1"],
["tag1", "tag2"],
["tag1", "tag2"],
), # duplicate tags in inputs
],
)
def test_merge_tags(request_tags, tags_to_add, expected_tags):
from litellm.proxy.litellm_pre_call_utils import LiteLLMProxyRequestSetup
result = LiteLLMProxyRequestSetup._merge_tags(
request_tags=request_tags, tags_to_add=tags_to_add
)
assert isinstance(result, list)
assert sorted(result) == sorted(expected_tags)
@pytest.mark.asyncio
@pytest.mark.parametrize(
"key_tags, request_tags, expected_tags",
[
# exact duplicates
(["tag1", "tag2", "tag3"], ["tag1", "tag2", "tag3"], ["tag1", "tag2", "tag3"]),
# partial duplicates
(
["tag1", "tag2", "tag3"],
["tag2", "tag3", "tag4"],
["tag1", "tag2", "tag3", "tag4"],
),
# duplicates within key tags
(["tag1", "tag2"], ["tag3", "tag4"], ["tag1", "tag2", "tag3", "tag4"]),
# duplicates within request tags
(["tag1", "tag2"], ["tag2", "tag3", "tag4"], ["tag1", "tag2", "tag3", "tag4"]),
# case sensitive duplicates
(["Tag1", "TAG2"], ["tag1", "tag2"], ["Tag1", "TAG2", "tag1", "tag2"]),
],
)
async def test_add_litellm_data_to_request_duplicate_tags(
key_tags, request_tags, expected_tags
):
"""
Test to verify duplicate tags between request and key metadata are handled correctly
Aggregation logic when checking spend can be impacted if duplicate tags are not handled correctly.
User feedback:
"If I register my key with tag1 and
also pass the same tag1 when using the key
then I see tag1 twice in the
LiteLLM_SpendLogs table request_tags column. This can mess up aggregation logic"
"""
mock_request = Mock(spec=Request)
mock_request.url.path = "/chat/completions"
mock_request.query_params = {}
mock_request.headers = {}
# Setup key with tags in metadata
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key",
user_id="test_user_id",
org_id="test_org_id",
metadata={"tags": key_tags},
)
# Setup request data with tags
data = {"metadata": {"tags": request_tags}}
# Process request
proxy_config = Mock()
result = await add_litellm_data_to_request(
data=data,
request=mock_request,
user_api_key_dict=user_api_key_dict,
proxy_config=proxy_config,
)
# Verify results
assert "metadata" in result
assert "tags" in result["metadata"]
assert sorted(result["metadata"]["tags"]) == sorted(
expected_tags
), f"Expected {expected_tags}, got {result['metadata']['tags']}"

View file

@ -1,111 +0,0 @@
import asyncio
import os
import sys
from unittest.mock import Mock, patch, AsyncMock
import pytest
from fastapi import Request
from litellm.proxy.utils import _get_redoc_url, _get_docs_url
sys.path.insert(0, os.path.abspath("../.."))
import litellm
@pytest.mark.asyncio
async def test_disable_error_logs():
"""
Test that the error logs are not written to the database when disable_error_logs is True
"""
# Mock the necessary components
mock_prisma_client = AsyncMock()
mock_general_settings = {"disable_error_logs": True}
with patch(
"litellm.proxy.proxy_server.general_settings", mock_general_settings
), patch("litellm.proxy.proxy_server.prisma_client", mock_prisma_client):
# Create a test exception
test_exception = Exception("Test error")
test_kwargs = {
"model": "gpt-4",
"exception": test_exception,
"optional_params": {},
"litellm_params": {"metadata": {}},
}
# Call the failure handler
from litellm.proxy.proxy_server import _PROXY_failure_handler
await _PROXY_failure_handler(
kwargs=test_kwargs,
completion_response=None,
start_time="2024-01-01",
end_time="2024-01-01",
)
# Verify prisma client was not called to create error logs
if hasattr(mock_prisma_client, "db"):
assert not mock_prisma_client.db.litellm_errorlogs.create.called
@pytest.mark.asyncio
async def test_disable_spend_logs():
"""
Test that the spend logs are not written to the database when disable_spend_logs is True
"""
# Mock the necessary components
mock_prisma_client = Mock()
mock_prisma_client.spend_log_transactions = []
with patch("litellm.proxy.proxy_server.disable_spend_logs", True), patch(
"litellm.proxy.proxy_server.prisma_client", mock_prisma_client
):
from litellm.proxy.proxy_server import update_database
# Call update_database with disable_spend_logs=True
await update_database(
token="fake-token",
response_cost=0.1,
user_id="user123",
completion_response=None,
start_time="2024-01-01",
end_time="2024-01-01",
)
# Verify no spend logs were added
assert len(mock_prisma_client.spend_log_transactions) == 0
@pytest.mark.asyncio
async def test_enable_error_logs():
"""
Test that the error logs are written to the database when disable_error_logs is False
"""
# Mock the necessary components
mock_prisma_client = AsyncMock()
mock_general_settings = {"disable_error_logs": False}
with patch(
"litellm.proxy.proxy_server.general_settings", mock_general_settings
), patch("litellm.proxy.proxy_server.prisma_client", mock_prisma_client):
# Create a test exception
test_exception = Exception("Test error")
test_kwargs = {
"model": "gpt-4",
"exception": test_exception,
"optional_params": {},
"litellm_params": {"metadata": {}},
}
# Call the failure handler
from litellm.proxy.proxy_server import _PROXY_failure_handler
await _PROXY_failure_handler(
kwargs=test_kwargs,
completion_response=None,
start_time="2024-01-01",
end_time="2024-01-01",
)
# Verify prisma client was called to create error logs
if hasattr(mock_prisma_client, "db"):
assert mock_prisma_client.db.litellm_errorlogs.create.called

Some files were not shown because too many files have changed in this diff Show more