Compare commits

..

31 commits

Author SHA1 Message Date
Ishaan Jaff
d2a76c6c45 Resolved merge conflicts 2024-11-24 16:35:16 -08:00
Ishaan Jaff
530946d169 Merge branch 'main' into litellm_provider_budget_improvements 2024-11-24 16:32:27 -08:00
Ishaan Jaff
f80f4b0f9e test_redis_increment_pipeline 2024-11-24 16:31:47 -08:00
Ishaan Jaff
4ff941eeba unit testing for provider budgets 2024-11-24 16:22:32 -08:00
Ishaan Jaff
d27b527477 add clear doc strings 2024-11-24 16:17:07 -08:00
Ishaan Jaff
2fb9b245a1 fix set attr 2024-11-24 15:54:28 -08:00
Ishaan Jaff
ac57638434 fix typing async_increment_pipeline 2024-11-24 15:50:57 -08:00
Ishaan Jaff
8aa8f2e4ab add handling for budget windows 2024-11-24 15:47:56 -08:00
Ishaan Jaff
be25706736 use consistent key name for increment op 2024-11-24 10:22:00 -08:00
Ishaan Jaff
c4937dffe2 use redis async_increment_pipeline 2024-11-24 09:45:33 -08:00
Ishaan Jaff
87e30cd562 use lower value for testing 2024-11-24 09:42:40 -08:00
Ishaan Jaff
24ab979486 use redis async_increment_pipeline 2024-11-24 09:42:25 -08:00
Ishaan Jaff
5dd8726685 add redis async_increment_pipeline 2024-11-24 09:40:26 -08:00
Ishaan Jaff
8f74da6438 use RedisPipelineIncrementOperation 2024-11-24 09:38:47 -08:00
Ishaan Jaff
a061f0e39c add comments on provider budget routing 2024-11-23 18:25:28 -08:00
Ishaan Jaff
6db00270c1 fix router testing for provider budgets 2024-11-23 18:20:56 -08:00
Ishaan Jaff
face50edad add fixture for provider budget routing 2024-11-23 18:16:20 -08:00
Ishaan Jaff
6f4fdc58c7 working provider budget tests 2024-11-23 18:09:47 -08:00
Ishaan Jaff
a40b3bcbbd fix test provider budgets 2024-11-23 18:07:56 -08:00
Ishaan Jaff
d86a7c3702 fix code quality check 2024-11-23 16:52:45 -08:00
Ishaan Jaff
e5c7189922 fix test_in_memory_redis_sync_e2e 2024-11-23 16:48:36 -08:00
Ishaan Jaff
33a0744abe test_in_memory_redis_sync_e2e 2024-11-23 16:24:13 -08:00
Ishaan Jaff
5f04c04cc5 test_in_memory_redis_sync_e2e 2024-11-23 16:20:41 -08:00
Ishaan Jaff
84395e7a19 add support for using in multi instance environments 2024-11-23 15:46:39 -08:00
Ishaan Jaff
94e2e292cd fix - remove dup test 2024-11-23 13:27:56 -08:00
Ishaan Jaff
ac4ecce2bc update provider budget routing 2024-11-23 12:49:13 -08:00
Ishaan Jaff
cf76f308de fix import 2024-11-23 12:47:06 -08:00
Ishaan Jaff
c88048ae5c fix importing _extract_from_regex, get_last_day_of_month 2024-11-23 12:46:49 -08:00
Ishaan Jaff
2b9ff03cd0 re use duration_in_seconds 2024-11-23 12:44:28 -08:00
Ishaan Jaff
653d16e158 add to readme.md 2024-11-23 12:43:01 -08:00
Ishaan Jaff
37462ea55c use 1 file for duration_in_seconds 2024-11-23 12:42:33 -08:00
133 changed files with 2859 additions and 6570 deletions

View file

@ -807,12 +807,11 @@ jobs:
curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash
- run: python -c "from litellm import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
- run: ruff check ./litellm
# - run: python ./tests/documentation_tests/test_general_setting_keys.py
- run: python ./tests/documentation_tests/test_general_setting_keys.py
- run: python ./tests/code_coverage_tests/router_code_coverage.py
- run: python ./tests/code_coverage_tests/test_router_strategy_async.py
- run: python ./tests/code_coverage_tests/litellm_logging_code_coverage.py
- run: python ./tests/documentation_tests/test_env_keys.py
- run: python ./tests/documentation_tests/test_router_settings.py
- run: python ./tests/documentation_tests/test_api_docs.py
- run: python ./tests/code_coverage_tests/ensure_async_clients_test.py
- run: helm lint ./deploy/charts/litellm-helm
@ -1192,7 +1191,6 @@ jobs:
-e DATABASE_URL=$PROXY_DATABASE_URL \
-e LITELLM_MASTER_KEY="sk-1234" \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
-e GEMINI_API_KEY=$GEMINI_API_KEY \
-e ANTHROPIC_API_KEY=$ANTHROPIC_API_KEY \
-e LITELLM_LICENSE=$LITELLM_LICENSE \
--name my-app \
@ -1230,13 +1228,12 @@ jobs:
name: Install Node.js dependencies
command: |
npm install @google-cloud/vertexai
npm install @google/generative-ai
npm install --save-dev jest
- run:
name: Run Vertex AI, Google AI Studio Node.js tests
name: Run Vertex AI tests
command: |
npx jest tests/pass_through_tests --verbose
npx jest tests/pass_through_tests/test_vertex.test.js --verbose
no_output_timeout: 30m
- run:
name: Run tests
@ -1408,7 +1405,7 @@ jobs:
command: |
docker run -d \
-p 4000:4000 \
-e DATABASE_URL=$PROXY_DATABASE_URL_2 \
-e DATABASE_URL=$PROXY_DATABASE_URL \
-e LITELLM_MASTER_KEY="sk-1234" \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
-e UI_USERNAME="admin" \

View file

@ -1,135 +0,0 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Moderation
### Usage
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python
from litellm import moderation
response = moderation(
input="hello from litellm",
model="text-moderation-stable"
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy Server">
For `/moderations` endpoint, there is **no need to specify `model` in the request or on the litellm config.yaml**
Start litellm proxy server
```
litellm
```
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.moderations.create(
input="hello from litellm",
model="text-moderation-stable" # optional, defaults to `omni-moderation-latest`
)
print(response)
```
</TabItem>
<TabItem value="curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/moderations' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{"input": "Sample text goes here", "model": "text-moderation-stable"}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Input Params
LiteLLM accepts and translates the [OpenAI Moderation params](https://platform.openai.com/docs/api-reference/moderations) across all supported providers.
### Required Fields
- `input`: *string or array* - Input (or inputs) to classify. Can be a single string, an array of strings, or an array of multi-modal input objects similar to other models.
- If string: A string of text to classify for moderation
- If array of strings: An array of strings to classify for moderation
- If array of objects: An array of multi-modal inputs to the moderation model, where each object can be:
- An object describing an image to classify with:
- `type`: *string, required* - Always `image_url`
- `image_url`: *object, required* - Contains either an image URL or a data URL for a base64 encoded image
- An object describing text to classify with:
- `type`: *string, required* - Always `text`
- `text`: *string, required* - A string of text to classify
### Optional Fields
- `model`: *string (optional)* - The moderation model to use. Defaults to `omni-moderation-latest`.
## Output Format
Here's the exact json output and type you can expect from all moderation calls:
[**LiteLLM follows OpenAI's output format**](https://platform.openai.com/docs/api-reference/moderations/object)
```python
{
"id": "modr-AB8CjOTu2jiq12hp1AQPfeqFWaORR",
"model": "text-moderation-007",
"results": [
{
"flagged": true,
"categories": {
"sexual": false,
"hate": false,
"harassment": true,
"self-harm": false,
"sexual/minors": false,
"hate/threatening": false,
"violence/graphic": false,
"self-harm/intent": false,
"self-harm/instructions": false,
"harassment/threatening": true,
"violence": true
},
"category_scores": {
"sexual": 0.000011726012417057063,
"hate": 0.22706663608551025,
"harassment": 0.5215635299682617,
"self-harm": 2.227119921371923e-6,
"sexual/minors": 7.107352217872176e-8,
"hate/threatening": 0.023547329008579254,
"violence/graphic": 0.00003391829886822961,
"self-harm/intent": 1.646940972932498e-6,
"self-harm/instructions": 1.1198755256458526e-9,
"harassment/threatening": 0.5694745779037476,
"violence": 0.9971134662628174
}
}
]
}
```
## **Supported Providers**
| Provider |
|-------------|
| OpenAI |

View file

@ -4,63 +4,24 @@ import TabItem from '@theme/TabItem';
# Argilla
Argilla is a collaborative annotation tool for AI engineers and domain experts who need to build high-quality datasets for their projects.
Argilla is a tool for annotating datasets.
## Getting Started
To log the data to Argilla, first you need to deploy the Argilla server. If you have not deployed the Argilla server, please follow the instructions [here](https://docs.argilla.io/latest/getting_started/quickstart/).
Next, you will need to configure and create the Argilla dataset.
```python
import argilla as rg
client = rg.Argilla(api_url="<api_url>", api_key="<api_key>")
settings = rg.Settings(
guidelines="These are some guidelines.",
fields=[
rg.ChatField(
name="user_input",
),
rg.TextField(
name="llm_output",
),
],
questions=[
rg.RatingQuestion(
name="rating",
values=[1, 2, 3, 4, 5, 6, 7],
),
],
)
dataset = rg.Dataset(
name="my_first_dataset",
settings=settings,
)
dataset.create()
```
For further configuration, please refer to the [Argilla documentation](https://docs.argilla.io/latest/how_to_guides/dataset/).
## Usage
## Usage
<Tabs>
<Tab value="sdk" label="SDK">
```python
import os
import litellm
from litellm import completion
import litellm
import os
# add env vars
os.environ["ARGILLA_API_KEY"]="argilla.apikey"
os.environ["ARGILLA_BASE_URL"]="http://localhost:6900"
os.environ["ARGILLA_DATASET_NAME"]="my_first_dataset"
os.environ["ARGILLA_DATASET_NAME"]="my_second_dataset"
os.environ["OPENAI_API_KEY"]="sk-proj-..."
litellm.callbacks = ["argilla"]

View file

@ -1,21 +1,12 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Google AI Studio SDK
Pass-through endpoints for Google AI Studio - call provider-specific endpoint, in native format (no translation).
Just replace `https://generativelanguage.googleapis.com` with `LITELLM_PROXY_BASE_URL/gemini`
Just replace `https://generativelanguage.googleapis.com` with `LITELLM_PROXY_BASE_URL/gemini` 🚀
#### **Example Usage**
<Tabs>
<TabItem value="curl" label="curl">
```bash
curl 'http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=sk-anything' \
http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=sk-anything' \
-H 'Content-Type: application/json' \
-d '{
"contents": [{
@ -26,53 +17,6 @@ curl 'http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=
}'
```
</TabItem>
<TabItem value="js" label="Google AI Node.js SDK">
```javascript
const { GoogleGenerativeAI } = require("@google/generative-ai");
const modelParams = {
model: 'gemini-pro',
};
const requestOptions = {
baseUrl: 'http://localhost:4000/gemini', // http://<proxy-base-url>/gemini
};
const genAI = new GoogleGenerativeAI("sk-1234"); // litellm proxy API key
const model = genAI.getGenerativeModel(modelParams, requestOptions);
async function main() {
try {
const result = await model.generateContent("Explain how AI works");
console.log(result.response.text());
} catch (error) {
console.error('Error:', error);
}
}
// For streaming responses
async function main_streaming() {
try {
const streamingResult = await model.generateContentStream("Explain how AI works");
for await (const chunk of streamingResult.stream) {
console.log('Stream chunk:', JSON.stringify(chunk));
}
const aggregatedResponse = await streamingResult.response;
console.log('Aggregated response:', JSON.stringify(aggregatedResponse));
} catch (error) {
console.error('Error:', error);
}
}
main();
// main_streaming();
```
</TabItem>
</Tabs>
Supports **ALL** Google AI Studio Endpoints (including streaming).
[**See All Google AI Studio Endpoints**](https://ai.google.dev/api)
@ -222,14 +166,14 @@ curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5
```
## Advanced
## Advanced - Use with Virtual Keys
Pre-requisites
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
Use this, to avoid giving developers the raw Google AI Studio key, but still letting them use Google AI Studio endpoints.
### Use with Virtual Keys
### Usage
1. Setup environment
@ -276,66 +220,4 @@ http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=sk-123
}]
}]
}'
```
### Send `tags` in request headers
Use this if you want `tags` to be tracked in the LiteLLM DB and on logging callbacks.
Pass tags in request headers as a comma separated list. In the example below the following tags will be tracked
```
tags: ["gemini-js-sdk", "pass-through-endpoint"]
```
<Tabs>
<TabItem value="curl" label="curl">
```bash
curl 'http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:generateContent?key=sk-anything' \
-H 'Content-Type: application/json' \
-H 'tags: gemini-js-sdk,pass-through-endpoint' \
-d '{
"contents": [{
"parts":[{
"text": "The quick brown fox jumps over the lazy dog."
}]
}]
}'
```
</TabItem>
<TabItem value="js" label="Google AI Node.js SDK">
```javascript
const { GoogleGenerativeAI } = require("@google/generative-ai");
const modelParams = {
model: 'gemini-pro',
};
const requestOptions = {
baseUrl: 'http://localhost:4000/gemini', // http://<proxy-base-url>/gemini
customHeaders: {
"tags": "gemini-js-sdk,pass-through-endpoint"
}
};
const genAI = new GoogleGenerativeAI("sk-1234");
const model = genAI.getGenerativeModel(modelParams, requestOptions);
async function main() {
try {
const result = await model.generateContent("Explain how AI works");
console.log(result.response.text());
} catch (error) {
console.error('Error:', error);
}
}
main();
```
</TabItem>
</Tabs>
```

File diff suppressed because it is too large Load diff

View file

@ -1,59 +0,0 @@
# File Management
## `include` external YAML files in a config.yaml
You can use `include` to include external YAML files in a config.yaml.
**Quick Start Usage:**
To include a config file, use `include` with either a single file or a list of files.
Contents of `parent_config.yaml`:
```yaml
include:
- model_config.yaml # 👈 Key change, will include the contents of model_config.yaml
litellm_settings:
callbacks: ["prometheus"]
```
Contents of `model_config.yaml`:
```yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/
```
Start proxy server
This will start the proxy server with config `parent_config.yaml`. Since the `include` directive is used, the server will also include the contents of `model_config.yaml`.
```
litellm --config parent_config.yaml --detailed_debug
```
## Examples using `include`
Include a single file:
```yaml
include:
- model_config.yaml
```
Include multiple files:
```yaml
include:
- model_config.yaml
- another_config.yaml
```

View file

@ -1,507 +0,0 @@
# All settings
```yaml
environment_variables: {}
model_list:
- model_name: string
litellm_params: {}
model_info:
id: string
mode: embedding
input_cost_per_token: 0
output_cost_per_token: 0
max_tokens: 2048
base_model: gpt-4-1106-preview
additionalProp1: {}
litellm_settings:
# Logging/Callback settings
success_callback: ["langfuse"] # list of success callbacks
failure_callback: ["sentry"] # list of failure callbacks
callbacks: ["otel"] # list of callbacks - runs on success and failure
service_callbacks: ["datadog", "prometheus"] # logs redis, postgres failures on datadog, prometheus
turn_off_message_logging: boolean # prevent the messages and responses from being logged to on your callbacks, but request metadata will still be logged.
redact_user_api_key_info: boolean # Redact information about the user api key (hashed token, user_id, team id, etc.), from logs. Currently supported for Langfuse, OpenTelemetry, Logfire, ArizeAI logging.
langfuse_default_tags: ["cache_hit", "cache_key", "proxy_base_url", "user_api_key_alias", "user_api_key_user_id", "user_api_key_user_email", "user_api_key_team_alias", "semantic-similarity", "proxy_base_url"] # default tags for Langfuse Logging
# Networking settings
request_timeout: 10 # (int) llm requesttimeout in seconds. Raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout
force_ipv4: boolean # If true, litellm will force ipv4 for all LLM requests. Some users have seen httpx ConnectionError when using ipv6 + Anthropic API
set_verbose: boolean # sets litellm.set_verbose=True to view verbose debug logs. DO NOT LEAVE THIS ON IN PRODUCTION
json_logs: boolean # if true, logs will be in json format
# Fallbacks, reliability
default_fallbacks: ["claude-opus"] # set default_fallbacks, in case a specific model group is misconfigured / bad.
content_policy_fallbacks: [{"gpt-3.5-turbo-small": ["claude-opus"]}] # fallbacks for ContentPolicyErrors
context_window_fallbacks: [{"gpt-3.5-turbo-small": ["gpt-3.5-turbo-large", "claude-opus"]}] # fallbacks for ContextWindowExceededErrors
# Caching settings
cache: true
cache_params: # set cache params for redis
type: redis # type of cache to initialize
# Optional - Redis Settings
host: "localhost" # The host address for the Redis cache. Required if type is "redis".
port: 6379 # The port number for the Redis cache. Required if type is "redis".
password: "your_password" # The password for the Redis cache. Required if type is "redis".
namespace: "litellm.caching.caching" # namespace for redis cache
# Optional - Redis Cluster Settings
redis_startup_nodes: [{"host": "127.0.0.1", "port": "7001"}]
# Optional - Redis Sentinel Settings
service_name: "mymaster"
sentinel_nodes: [["localhost", 26379]]
# Optional - Qdrant Semantic Cache Settings
qdrant_semantic_cache_embedding_model: openai-embedding # the model should be defined on the model_list
qdrant_collection_name: test_collection
qdrant_quantization_config: binary
similarity_threshold: 0.8 # similarity threshold for semantic cache
# Optional - S3 Cache Settings
s3_bucket_name: cache-bucket-litellm # AWS Bucket Name for S3
s3_region_name: us-west-2 # AWS Region Name for S3
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3
s3_endpoint_url: https://s3.amazonaws.com # [OPTIONAL] S3 endpoint URL, if you want to use Backblaze/cloudflare s3 bucket
# Common Cache settings
# Optional - Supported call types for caching
supported_call_types: ["acompletion", "atext_completion", "aembedding", "atranscription"]
# /chat/completions, /completions, /embeddings, /audio/transcriptions
mode: default_off # if default_off, you need to opt in to caching on a per call basis
ttl: 600 # ttl for caching
callback_settings:
otel:
message_logging: boolean # OTEL logging callback specific settings
general_settings:
completion_model: string
disable_spend_logs: boolean # turn off writing each transaction to the db
disable_master_key_return: boolean # turn off returning master key on UI (checked on '/user/info' endpoint)
disable_retry_on_max_parallel_request_limit_error: boolean # turn off retries when max parallel request limit is reached
disable_reset_budget: boolean # turn off reset budget scheduled task
disable_adding_master_key_hash_to_db: boolean # turn off storing master key hash in db, for spend tracking
enable_jwt_auth: boolean # allow proxy admin to auth in via jwt tokens with 'litellm_proxy_admin' in claims
enforce_user_param: boolean # requires all openai endpoint requests to have a 'user' param
allowed_routes: ["route1", "route2"] # list of allowed proxy API routes - a user can access. (currently JWT-Auth only)
key_management_system: google_kms # either google_kms or azure_kms
master_key: string
# Database Settings
database_url: string
database_connection_pool_limit: 0 # default 100
database_connection_timeout: 0 # default 60s
allow_requests_on_db_unavailable: boolean # if true, will allow requests that can not connect to the DB to verify Virtual Key to still work
custom_auth: string
max_parallel_requests: 0 # the max parallel requests allowed per deployment
global_max_parallel_requests: 0 # the max parallel requests allowed on the proxy all up
infer_model_from_keys: true
background_health_checks: true
health_check_interval: 300
alerting: ["slack", "email"]
alerting_threshold: 0
use_client_credentials_pass_through_routes: boolean # use client credentials for all pass through routes like "/vertex-ai", /bedrock/. When this is True Virtual Key auth will not be applied on these endpoints
```
### litellm_settings - Reference
| Name | Type | Description |
|------|------|-------------|
| success_callback | array of strings | List of success callbacks. [Doc Proxy logging callbacks](logging), [Doc Metrics](prometheus) |
| failure_callback | array of strings | List of failure callbacks [Doc Proxy logging callbacks](logging), [Doc Metrics](prometheus) |
| callbacks | array of strings | List of callbacks - runs on success and failure [Doc Proxy logging callbacks](logging), [Doc Metrics](prometheus) |
| service_callbacks | array of strings | System health monitoring - Logs redis, postgres failures on specified services (e.g. datadog, prometheus) [Doc Metrics](prometheus) |
| turn_off_message_logging | boolean | If true, prevents messages and responses from being logged to callbacks, but request metadata will still be logged [Proxy Logging](logging) |
| modify_params | boolean | If true, allows modifying the parameters of the request before it is sent to the LLM provider |
| enable_preview_features | boolean | If true, enables preview features - e.g. Azure O1 Models with streaming support.|
| redact_user_api_key_info | boolean | If true, redacts information about the user api key from logs [Proxy Logging](logging#redacting-userapikeyinfo) |
| langfuse_default_tags | array of strings | Default tags for Langfuse Logging. Use this if you want to control which LiteLLM-specific fields are logged as tags by the LiteLLM proxy. By default LiteLLM Proxy logs no LiteLLM-specific fields as tags. [Further docs](./logging#litellm-specific-tags-on-langfuse---cache_hit-cache_key) |
| set_verbose | boolean | If true, sets litellm.set_verbose=True to view verbose debug logs. DO NOT LEAVE THIS ON IN PRODUCTION |
| json_logs | boolean | If true, logs will be in json format. If you need to store the logs as JSON, just set the `litellm.json_logs = True`. We currently just log the raw POST request from litellm as a JSON [Further docs](./debugging) |
| default_fallbacks | array of strings | List of fallback models to use if a specific model group is misconfigured / bad. [Further docs](./reliability#default-fallbacks) |
| request_timeout | integer | The timeout for requests in seconds. If not set, the default value is `6000 seconds`. [For reference OpenAI Python SDK defaults to `600 seconds`.](https://github.com/openai/openai-python/blob/main/src/openai/_constants.py) |
| force_ipv4 | boolean | If true, litellm will force ipv4 for all LLM requests. Some users have seen httpx ConnectionError when using ipv6 + Anthropic API |
| content_policy_fallbacks | array of objects | Fallbacks to use when a ContentPolicyViolationError is encountered. [Further docs](./reliability#content-policy-fallbacks) |
| context_window_fallbacks | array of objects | Fallbacks to use when a ContextWindowExceededError is encountered. [Further docs](./reliability#context-window-fallbacks) |
| cache | boolean | If true, enables caching. [Further docs](./caching) |
| cache_params | object | Parameters for the cache. [Further docs](./caching) |
| cache_params.type | string | The type of cache to initialize. Can be one of ["local", "redis", "redis-semantic", "s3", "disk", "qdrant-semantic"]. Defaults to "redis". [Furher docs](./caching) |
| cache_params.host | string | The host address for the Redis cache. Required if type is "redis". |
| cache_params.port | integer | The port number for the Redis cache. Required if type is "redis". |
| cache_params.password | string | The password for the Redis cache. Required if type is "redis". |
| cache_params.namespace | string | The namespace for the Redis cache. |
| cache_params.redis_startup_nodes | array of objects | Redis Cluster Settings. [Further docs](./caching) |
| cache_params.service_name | string | Redis Sentinel Settings. [Further docs](./caching) |
| cache_params.sentinel_nodes | array of arrays | Redis Sentinel Settings. [Further docs](./caching) |
| cache_params.ttl | integer | The time (in seconds) to store entries in cache. |
| cache_params.qdrant_semantic_cache_embedding_model | string | The embedding model to use for qdrant semantic cache. |
| cache_params.qdrant_collection_name | string | The name of the collection to use for qdrant semantic cache. |
| cache_params.qdrant_quantization_config | string | The quantization configuration for the qdrant semantic cache. |
| cache_params.similarity_threshold | float | The similarity threshold for the semantic cache. |
| cache_params.s3_bucket_name | string | The name of the S3 bucket to use for the semantic cache. |
| cache_params.s3_region_name | string | The region name for the S3 bucket. |
| cache_params.s3_aws_access_key_id | string | The AWS access key ID for the S3 bucket. |
| cache_params.s3_aws_secret_access_key | string | The AWS secret access key for the S3 bucket. |
| cache_params.s3_endpoint_url | string | Optional - The endpoint URL for the S3 bucket. |
| cache_params.supported_call_types | array of strings | The types of calls to cache. [Further docs](./caching) |
| cache_params.mode | string | The mode of the cache. [Further docs](./caching) |
| disable_end_user_cost_tracking | boolean | If true, turns off end user cost tracking on prometheus metrics + litellm spend logs table on proxy. |
| key_generation_settings | object | Restricts who can generate keys. [Further docs](./virtual_keys.md#restricting-key-generation) |
### general_settings - Reference
| Name | Type | Description |
|------|------|-------------|
| completion_model | string | The default model to use for completions when `model` is not specified in the request |
| disable_spend_logs | boolean | If true, turns off writing each transaction to the database |
| disable_master_key_return | boolean | If true, turns off returning master key on UI. (checked on '/user/info' endpoint) |
| disable_retry_on_max_parallel_request_limit_error | boolean | If true, turns off retries when max parallel request limit is reached |
| disable_reset_budget | boolean | If true, turns off reset budget scheduled task |
| disable_adding_master_key_hash_to_db | boolean | If true, turns off storing master key hash in db |
| enable_jwt_auth | boolean | allow proxy admin to auth in via jwt tokens with 'litellm_proxy_admin' in claims. [Doc on JWT Tokens](token_auth) |
| enforce_user_param | boolean | If true, requires all OpenAI endpoint requests to have a 'user' param. [Doc on call hooks](call_hooks)|
| allowed_routes | array of strings | List of allowed proxy API routes a user can access [Doc on controlling allowed routes](enterprise#control-available-public-private-routes)|
| key_management_system | string | Specifies the key management system. [Doc Secret Managers](../secret) |
| master_key | string | The master key for the proxy [Set up Virtual Keys](virtual_keys) |
| database_url | string | The URL for the database connection [Set up Virtual Keys](virtual_keys) |
| database_connection_pool_limit | integer | The limit for database connection pool [Setting DB Connection Pool limit](#configure-db-pool-limits--connection-timeouts) |
| database_connection_timeout | integer | The timeout for database connections in seconds [Setting DB Connection Pool limit, timeout](#configure-db-pool-limits--connection-timeouts) |
| allow_requests_on_db_unavailable | boolean | If true, allows requests to succeed even if DB is unreachable. **Only use this if running LiteLLM in your VPC** This will allow requests to work even when LiteLLM cannot connect to the DB to verify a Virtual Key |
| custom_auth | string | Write your own custom authentication logic [Doc Custom Auth](virtual_keys#custom-auth) |
| max_parallel_requests | integer | The max parallel requests allowed per deployment |
| global_max_parallel_requests | integer | The max parallel requests allowed on the proxy overall |
| infer_model_from_keys | boolean | If true, infers the model from the provided keys |
| background_health_checks | boolean | If true, enables background health checks. [Doc on health checks](health) |
| health_check_interval | integer | The interval for health checks in seconds [Doc on health checks](health) |
| alerting | array of strings | List of alerting methods [Doc on Slack Alerting](alerting) |
| alerting_threshold | integer | The threshold for triggering alerts [Doc on Slack Alerting](alerting) |
| use_client_credentials_pass_through_routes | boolean | If true, uses client credentials for all pass-through routes. [Doc on pass through routes](pass_through) |
| health_check_details | boolean | If false, hides health check details (e.g. remaining rate limit). [Doc on health checks](health) |
| public_routes | List[str] | (Enterprise Feature) Control list of public routes |
| alert_types | List[str] | Control list of alert types to send to slack (Doc on alert types)[./alerting.md] |
| enforced_params | List[str] | (Enterprise Feature) List of params that must be included in all requests to the proxy |
| enable_oauth2_auth | boolean | (Enterprise Feature) If true, enables oauth2.0 authentication |
| use_x_forwarded_for | str | If true, uses the X-Forwarded-For header to get the client IP address |
| service_account_settings | List[Dict[str, Any]] | Set `service_account_settings` if you want to create settings that only apply to service account keys (Doc on service accounts)[./service_accounts.md] |
| image_generation_model | str | The default model to use for image generation - ignores model set in request |
| store_model_in_db | boolean | If true, allows `/model/new` endpoint to store model information in db. Endpoint disabled by default. [Doc on `/model/new` endpoint](./model_management.md#create-a-new-model) |
| max_request_size_mb | int | The maximum size for requests in MB. Requests above this size will be rejected. |
| max_response_size_mb | int | The maximum size for responses in MB. LLM Responses above this size will not be sent. |
| proxy_budget_rescheduler_min_time | int | The minimum time (in seconds) to wait before checking db for budget resets. **Default is 597 seconds** |
| proxy_budget_rescheduler_max_time | int | The maximum time (in seconds) to wait before checking db for budget resets. **Default is 605 seconds** |
| proxy_batch_write_at | int | Time (in seconds) to wait before batch writing spend logs to the db. **Default is 10 seconds** |
| alerting_args | dict | Args for Slack Alerting [Doc on Slack Alerting](./alerting.md) |
| custom_key_generate | str | Custom function for key generation [Doc on custom key generation](./virtual_keys.md#custom--key-generate) |
| allowed_ips | List[str] | List of IPs allowed to access the proxy. If not set, all IPs are allowed. |
| embedding_model | str | The default model to use for embeddings - ignores model set in request |
| default_team_disabled | boolean | If true, users cannot create 'personal' keys (keys with no team_id). |
| alert_to_webhook_url | Dict[str] | [Specify a webhook url for each alert type.](./alerting.md#set-specific-slack-channels-per-alert-type) |
| key_management_settings | List[Dict[str, Any]] | Settings for key management system (e.g. AWS KMS, Azure Key Vault) [Doc on key management](../secret.md) |
| allow_user_auth | boolean | (Deprecated) old approach for user authentication. |
| user_api_key_cache_ttl | int | The time (in seconds) to cache user api keys in memory. |
| disable_prisma_schema_update | boolean | If true, turns off automatic schema updates to DB |
| litellm_key_header_name | str | If set, allows passing LiteLLM keys as a custom header. [Doc on custom headers](./virtual_keys.md#custom-headers) |
| moderation_model | str | The default model to use for moderation. |
| custom_sso | str | Path to a python file that implements custom SSO logic. [Doc on custom SSO](./custom_sso.md) |
| allow_client_side_credentials | boolean | If true, allows passing client side credentials to the proxy. (Useful when testing finetuning models) [Doc on client side credentials](./virtual_keys.md#client-side-credentials) |
| admin_only_routes | List[str] | (Enterprise Feature) List of routes that are only accessible to admin users. [Doc on admin only routes](./enterprise#control-available-public-private-routes) |
| use_azure_key_vault | boolean | If true, load keys from azure key vault |
| use_google_kms | boolean | If true, load keys from google kms |
| spend_report_frequency | str | Specify how often you want a Spend Report to be sent (e.g. "1d", "2d", "30d") [More on this](./alerting.md#spend-report-frequency) |
| ui_access_mode | Literal["admin_only"] | If set, restricts access to the UI to admin users only. [Docs](./ui.md#restrict-ui-access) |
| litellm_jwtauth | Dict[str, Any] | Settings for JWT authentication. [Docs](./token_auth.md) |
| litellm_license | str | The license key for the proxy. [Docs](../enterprise.md#how-does-deployment-with-enterprise-license-work) |
| oauth2_config_mappings | Dict[str, str] | Define the OAuth2 config mappings |
| pass_through_endpoints | List[Dict[str, Any]] | Define the pass through endpoints. [Docs](./pass_through) |
| enable_oauth2_proxy_auth | boolean | (Enterprise Feature) If true, enables oauth2.0 authentication |
| forward_openai_org_id | boolean | If true, forwards the OpenAI Organization ID to the backend LLM call (if it's OpenAI). |
| forward_client_headers_to_llm_api | boolean | If true, forwards the client headers (any `x-` headers) to the backend LLM call |
### router_settings - Reference
:::info
Most values can also be set via `litellm_settings`. If you see overlapping values, settings on `router_settings` will override those on `litellm_settings`.
:::
```yaml
router_settings:
routing_strategy: usage-based-routing-v2 # Literal["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"
redis_host: <your-redis-host> # string
redis_password: <your-redis-password> # string
redis_port: <your-redis-port> # string
enable_pre_call_check: true # bool - Before call is made check if a call is within model context window
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
cooldown_time: 30 # (in seconds) how long to cooldown model if fails/min > allowed_fails
disable_cooldowns: True # bool - Disable cooldowns for all models
enable_tag_filtering: True # bool - Use tag based routing for requests
retry_policy: { # Dict[str, int]: retry policy for different types of exceptions
"AuthenticationErrorRetries": 3,
"TimeoutErrorRetries": 3,
"RateLimitErrorRetries": 3,
"ContentPolicyViolationErrorRetries": 4,
"InternalServerErrorRetries": 4
}
allowed_fails_policy: {
"BadRequestErrorAllowedFails": 1000, # Allow 1000 BadRequestErrors before cooling down a deployment
"AuthenticationErrorAllowedFails": 10, # int
"TimeoutErrorAllowedFails": 12, # int
"RateLimitErrorAllowedFails": 10000, # int
"ContentPolicyViolationErrorAllowedFails": 15, # int
"InternalServerErrorAllowedFails": 20, # int
}
content_policy_fallbacks=[{"claude-2": ["my-fallback-model"]}] # List[Dict[str, List[str]]]: Fallback model for content policy violations
fallbacks=[{"claude-2": ["my-fallback-model"]}] # List[Dict[str, List[str]]]: Fallback model for all errors
```
| Name | Type | Description |
|------|------|-------------|
| routing_strategy | string | The strategy used for routing requests. Options: "simple-shuffle", "least-busy", "usage-based-routing", "latency-based-routing". Default is "simple-shuffle". [More information here](../routing) |
| redis_host | string | The host address for the Redis server. **Only set this if you have multiple instances of LiteLLM Proxy and want current tpm/rpm tracking to be shared across them** |
| redis_password | string | The password for the Redis server. **Only set this if you have multiple instances of LiteLLM Proxy and want current tpm/rpm tracking to be shared across them** |
| redis_port | string | The port number for the Redis server. **Only set this if you have multiple instances of LiteLLM Proxy and want current tpm/rpm tracking to be shared across them**|
| enable_pre_call_check | boolean | If true, checks if a call is within the model's context window before making the call. [More information here](reliability) |
| content_policy_fallbacks | array of objects | Specifies fallback models for content policy violations. [More information here](reliability) |
| fallbacks | array of objects | Specifies fallback models for all types of errors. [More information here](reliability) |
| enable_tag_filtering | boolean | If true, uses tag based routing for requests [Tag Based Routing](tag_routing) |
| cooldown_time | integer | The duration (in seconds) to cooldown a model if it exceeds the allowed failures. |
| disable_cooldowns | boolean | If true, disables cooldowns for all models. [More information here](reliability) |
| retry_policy | object | Specifies the number of retries for different types of exceptions. [More information here](reliability) |
| allowed_fails | integer | The number of failures allowed before cooling down a model. [More information here](reliability) |
| allowed_fails_policy | object | Specifies the number of allowed failures for different error types before cooling down a deployment. [More information here](reliability) |
| default_max_parallel_requests | Optional[int] | The default maximum number of parallel requests for a deployment. |
| default_priority | (Optional[int]) | The default priority for a request. Only for '.scheduler_acompletion()'. Default is None. |
| polling_interval | (Optional[float]) | frequency of polling queue. Only for '.scheduler_acompletion()'. Default is 3ms. |
| max_fallbacks | Optional[int] | The maximum number of fallbacks to try before exiting the call. Defaults to 5. |
| default_litellm_params | Optional[dict] | The default litellm parameters to add to all requests (e.g. `temperature`, `max_tokens`). |
| timeout | Optional[float] | The default timeout for a request. |
| debug_level | Literal["DEBUG", "INFO"] | The debug level for the logging library in the router. Defaults to "INFO". |
| client_ttl | int | Time-to-live for cached clients in seconds. Defaults to 3600. |
| cache_kwargs | dict | Additional keyword arguments for the cache initialization. |
| routing_strategy_args | dict | Additional keyword arguments for the routing strategy - e.g. lowest latency routing default ttl |
| model_group_alias | dict | Model group alias mapping. E.g. `{"claude-3-haiku": "claude-3-haiku-20240229"}` |
| num_retries | int | Number of retries for a request. Defaults to 3. |
| default_fallbacks | Optional[List[str]] | Fallbacks to try if no model group-specific fallbacks are defined. |
| caching_groups | Optional[List[tuple]] | List of model groups for caching across model groups. Defaults to None. - e.g. caching_groups=[("openai-gpt-3.5-turbo", "azure-gpt-3.5-turbo")]|
| alerting_config | AlertingConfig | [SDK-only arg] Slack alerting configuration. Defaults to None. [Further Docs](../routing.md#alerting-) |
| assistants_config | AssistantsConfig | Set on proxy via `assistant_settings`. [Further docs](../assistants.md) |
| set_verbose | boolean | [DEPRECATED PARAM - see debug docs](./debugging.md) If true, sets the logging level to verbose. |
| retry_after | int | Time to wait before retrying a request in seconds. Defaults to 0. If `x-retry-after` is received from LLM API, this value is overridden. |
| provider_budget_config | ProviderBudgetConfig | Provider budget configuration. Use this to set llm_provider budget limits. example $100/day to OpenAI, $100/day to Azure, etc. Defaults to None. [Further Docs](./provider_budget_routing.md) |
| enable_pre_call_checks | boolean | If true, checks if a call is within the model's context window before making the call. [More information here](reliability) |
| model_group_retry_policy | Dict[str, RetryPolicy] | [SDK-only arg] Set retry policy for model groups. |
| context_window_fallbacks | List[Dict[str, List[str]]] | Fallback models for context window violations. |
| redis_url | str | URL for Redis server. **Known performance issue with Redis URL.** |
| cache_responses | boolean | Flag to enable caching LLM Responses, if cache set under `router_settings`. If true, caches responses. Defaults to False. |
| router_general_settings | RouterGeneralSettings | [SDK-Only] Router general settings - contains optimizations like 'async_only_mode'. [Docs](../routing.md#router-general-settings) |
### environment variables - Reference
| Name | Description |
|------|-------------|
| ACTIONS_ID_TOKEN_REQUEST_TOKEN | Token for requesting ID in GitHub Actions
| ACTIONS_ID_TOKEN_REQUEST_URL | URL for requesting ID token in GitHub Actions
| AISPEND_ACCOUNT_ID | Account ID for AI Spend
| AISPEND_API_KEY | API Key for AI Spend
| ALLOWED_EMAIL_DOMAINS | List of email domains allowed for access
| ARIZE_API_KEY | API key for Arize platform integration
| ARIZE_SPACE_KEY | Space key for Arize platform
| ARGILLA_BATCH_SIZE | Batch size for Argilla logging
| ARGILLA_API_KEY | API key for Argilla platform
| ARGILLA_SAMPLING_RATE | Sampling rate for Argilla logging
| ARGILLA_DATASET_NAME | Dataset name for Argilla logging
| ARGILLA_BASE_URL | Base URL for Argilla service
| ATHINA_API_KEY | API key for Athina service
| AUTH_STRATEGY | Strategy used for authentication (e.g., OAuth, API key)
| AWS_ACCESS_KEY_ID | Access Key ID for AWS services
| AWS_PROFILE_NAME | AWS CLI profile name to be used
| AWS_REGION_NAME | Default AWS region for service interactions
| AWS_ROLE_NAME | Role name for AWS IAM usage
| AWS_SECRET_ACCESS_KEY | Secret Access Key for AWS services
| AWS_SESSION_NAME | Name for AWS session
| AWS_WEB_IDENTITY_TOKEN | Web identity token for AWS
| AZURE_API_VERSION | Version of the Azure API being used
| AZURE_AUTHORITY_HOST | Azure authority host URL
| AZURE_CLIENT_ID | Client ID for Azure services
| AZURE_CLIENT_SECRET | Client secret for Azure services
| AZURE_FEDERATED_TOKEN_FILE | File path to Azure federated token
| AZURE_KEY_VAULT_URI | URI for Azure Key Vault
| AZURE_TENANT_ID | Tenant ID for Azure Active Directory
| BERRISPEND_ACCOUNT_ID | Account ID for BerriSpend service
| BRAINTRUST_API_KEY | API key for Braintrust integration
| CIRCLE_OIDC_TOKEN | OpenID Connect token for CircleCI
| CIRCLE_OIDC_TOKEN_V2 | Version 2 of the OpenID Connect token for CircleCI
| CONFIG_FILE_PATH | File path for configuration file
| CUSTOM_TIKTOKEN_CACHE_DIR | Custom directory for Tiktoken cache
| DATABASE_HOST | Hostname for the database server
| DATABASE_NAME | Name of the database
| DATABASE_PASSWORD | Password for the database user
| DATABASE_PORT | Port number for database connection
| DATABASE_SCHEMA | Schema name used in the database
| DATABASE_URL | Connection URL for the database
| DATABASE_USER | Username for database connection
| DATABASE_USERNAME | Alias for database user
| DATABRICKS_API_BASE | Base URL for Databricks API
| DD_BASE_URL | Base URL for Datadog integration
| DATADOG_BASE_URL | (Alternative to DD_BASE_URL) Base URL for Datadog integration
| _DATADOG_BASE_URL | (Alternative to DD_BASE_URL) Base URL for Datadog integration
| DD_API_KEY | API key for Datadog integration
| DD_SITE | Site URL for Datadog (e.g., datadoghq.com)
| DD_SOURCE | Source identifier for Datadog logs
| DD_ENV | Environment identifier for Datadog logs. Only supported for `datadog_llm_observability` callback
| DD_SERVICE | Service identifier for Datadog logs. Defaults to "litellm-server"
| DD_VERSION | Version identifier for Datadog logs. Defaults to "unknown"
| DEBUG_OTEL | Enable debug mode for OpenTelemetry
| DIRECT_URL | Direct URL for service endpoint
| DISABLE_ADMIN_UI | Toggle to disable the admin UI
| DISABLE_SCHEMA_UPDATE | Toggle to disable schema updates
| DOCS_DESCRIPTION | Description text for documentation pages
| DOCS_FILTERED | Flag indicating filtered documentation
| DOCS_TITLE | Title of the documentation pages
| DOCS_URL | The path to the Swagger API documentation. **By default this is "/"**
| EMAIL_SUPPORT_CONTACT | Support contact email address
| GCS_BUCKET_NAME | Name of the Google Cloud Storage bucket
| GCS_PATH_SERVICE_ACCOUNT | Path to the Google Cloud service account JSON file
| GCS_FLUSH_INTERVAL | Flush interval for GCS logging (in seconds). Specify how often you want a log to be sent to GCS. **Default is 20 seconds**
| GCS_BATCH_SIZE | Batch size for GCS logging. Specify after how many logs you want to flush to GCS. If `BATCH_SIZE` is set to 10, logs are flushed every 10 logs. **Default is 2048**
| GENERIC_AUTHORIZATION_ENDPOINT | Authorization endpoint for generic OAuth providers
| GENERIC_CLIENT_ID | Client ID for generic OAuth providers
| GENERIC_CLIENT_SECRET | Client secret for generic OAuth providers
| GENERIC_CLIENT_STATE | State parameter for generic client authentication
| GENERIC_INCLUDE_CLIENT_ID | Include client ID in requests for OAuth
| GENERIC_SCOPE | Scope settings for generic OAuth providers
| GENERIC_TOKEN_ENDPOINT | Token endpoint for generic OAuth providers
| GENERIC_USER_DISPLAY_NAME_ATTRIBUTE | Attribute for user's display name in generic auth
| GENERIC_USER_EMAIL_ATTRIBUTE | Attribute for user's email in generic auth
| GENERIC_USER_FIRST_NAME_ATTRIBUTE | Attribute for user's first name in generic auth
| GENERIC_USER_ID_ATTRIBUTE | Attribute for user ID in generic auth
| GENERIC_USER_LAST_NAME_ATTRIBUTE | Attribute for user's last name in generic auth
| GENERIC_USER_PROVIDER_ATTRIBUTE | Attribute specifying the user's provider
| GENERIC_USER_ROLE_ATTRIBUTE | Attribute specifying the user's role
| GENERIC_USERINFO_ENDPOINT | Endpoint to fetch user information in generic OAuth
| GALILEO_BASE_URL | Base URL for Galileo platform
| GALILEO_PASSWORD | Password for Galileo authentication
| GALILEO_PROJECT_ID | Project ID for Galileo usage
| GALILEO_USERNAME | Username for Galileo authentication
| GREENSCALE_API_KEY | API key for Greenscale service
| GREENSCALE_ENDPOINT | Endpoint URL for Greenscale service
| GOOGLE_APPLICATION_CREDENTIALS | Path to Google Cloud credentials JSON file
| GOOGLE_CLIENT_ID | Client ID for Google OAuth
| GOOGLE_CLIENT_SECRET | Client secret for Google OAuth
| GOOGLE_KMS_RESOURCE_NAME | Name of the resource in Google KMS
| HF_API_BASE | Base URL for Hugging Face API
| HELICONE_API_KEY | API key for Helicone service
| HUGGINGFACE_API_BASE | Base URL for Hugging Face API
| IAM_TOKEN_DB_AUTH | IAM token for database authentication
| JSON_LOGS | Enable JSON formatted logging
| JWT_AUDIENCE | Expected audience for JWT tokens
| JWT_PUBLIC_KEY_URL | URL to fetch public key for JWT verification
| LAGO_API_BASE | Base URL for Lago API
| LAGO_API_CHARGE_BY | Parameter to determine charge basis in Lago
| LAGO_API_EVENT_CODE | Event code for Lago API events
| LAGO_API_KEY | API key for accessing Lago services
| LANGFUSE_DEBUG | Toggle debug mode for Langfuse
| LANGFUSE_FLUSH_INTERVAL | Interval for flushing Langfuse logs
| LANGFUSE_HOST | Host URL for Langfuse service
| LANGFUSE_PUBLIC_KEY | Public key for Langfuse authentication
| LANGFUSE_RELEASE | Release version of Langfuse integration
| LANGFUSE_SECRET_KEY | Secret key for Langfuse authentication
| LANGSMITH_API_KEY | API key for Langsmith platform
| LANGSMITH_BASE_URL | Base URL for Langsmith service
| LANGSMITH_BATCH_SIZE | Batch size for operations in Langsmith
| LANGSMITH_DEFAULT_RUN_NAME | Default name for Langsmith run
| LANGSMITH_PROJECT | Project name for Langsmith integration
| LANGSMITH_SAMPLING_RATE | Sampling rate for Langsmith logging
| LANGTRACE_API_KEY | API key for Langtrace service
| LITERAL_API_KEY | API key for Literal integration
| LITERAL_API_URL | API URL for Literal service
| LITERAL_BATCH_SIZE | Batch size for Literal operations
| LITELLM_DONT_SHOW_FEEDBACK_BOX | Flag to hide feedback box in LiteLLM UI
| LITELLM_DROP_PARAMS | Parameters to drop in LiteLLM requests
| LITELLM_EMAIL | Email associated with LiteLLM account
| LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRIES | Maximum retries for parallel requests in LiteLLM
| LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRY_TIMEOUT | Timeout for retries of parallel requests in LiteLLM
| LITELLM_HOSTED_UI | URL of the hosted UI for LiteLLM
| LITELLM_LICENSE | License key for LiteLLM usage
| LITELLM_LOCAL_MODEL_COST_MAP | Local configuration for model cost mapping in LiteLLM
| LITELLM_LOG | Enable detailed logging for LiteLLM
| LITELLM_MODE | Operating mode for LiteLLM (e.g., production, development)
| LITELLM_SALT_KEY | Salt key for encryption in LiteLLM
| LITELLM_SECRET_AWS_KMS_LITELLM_LICENSE | AWS KMS encrypted license for LiteLLM
| LITELLM_TOKEN | Access token for LiteLLM integration
| LOGFIRE_TOKEN | Token for Logfire logging service
| MICROSOFT_CLIENT_ID | Client ID for Microsoft services
| MICROSOFT_CLIENT_SECRET | Client secret for Microsoft services
| MICROSOFT_TENANT | Tenant ID for Microsoft Azure
| NO_DOCS | Flag to disable documentation generation
| NO_PROXY | List of addresses to bypass proxy
| OAUTH_TOKEN_INFO_ENDPOINT | Endpoint for OAuth token info retrieval
| OPENAI_API_BASE | Base URL for OpenAI API
| OPENAI_API_KEY | API key for OpenAI services
| OPENAI_ORGANIZATION | Organization identifier for OpenAI
| OPENID_BASE_URL | Base URL for OpenID Connect services
| OPENID_CLIENT_ID | Client ID for OpenID Connect authentication
| OPENID_CLIENT_SECRET | Client secret for OpenID Connect authentication
| OPENMETER_API_ENDPOINT | API endpoint for OpenMeter integration
| OPENMETER_API_KEY | API key for OpenMeter services
| OPENMETER_EVENT_TYPE | Type of events sent to OpenMeter
| OTEL_ENDPOINT | OpenTelemetry endpoint for traces
| OTEL_ENVIRONMENT_NAME | Environment name for OpenTelemetry
| OTEL_EXPORTER | Exporter type for OpenTelemetry
| OTEL_HEADERS | Headers for OpenTelemetry requests
| OTEL_SERVICE_NAME | Service name identifier for OpenTelemetry
| OTEL_TRACER_NAME | Tracer name for OpenTelemetry tracing
| PREDIBASE_API_BASE | Base URL for Predibase API
| PRESIDIO_ANALYZER_API_BASE | Base URL for Presidio Analyzer service
| PRESIDIO_ANONYMIZER_API_BASE | Base URL for Presidio Anonymizer service
| PROMETHEUS_URL | URL for Prometheus service
| PROMPTLAYER_API_KEY | API key for PromptLayer integration
| PROXY_ADMIN_ID | Admin identifier for proxy server
| PROXY_BASE_URL | Base URL for proxy service
| PROXY_LOGOUT_URL | URL for logging out of the proxy service
| PROXY_MASTER_KEY | Master key for proxy authentication
| QDRANT_API_BASE | Base URL for Qdrant API
| QDRANT_API_KEY | API key for Qdrant service
| QDRANT_URL | Connection URL for Qdrant database
| REDIS_HOST | Hostname for Redis server
| REDIS_PASSWORD | Password for Redis service
| REDIS_PORT | Port number for Redis server
| REDOC_URL | The path to the Redoc Fast API documentation. **By default this is "/redoc"**
| SERVER_ROOT_PATH | Root path for the server application
| SET_VERBOSE | Flag to enable verbose logging
| SLACK_DAILY_REPORT_FREQUENCY | Frequency of daily Slack reports (e.g., daily, weekly)
| SLACK_WEBHOOK_URL | Webhook URL for Slack integration
| SMTP_HOST | Hostname for the SMTP server
| SMTP_PASSWORD | Password for SMTP authentication
| SMTP_PORT | Port number for SMTP server
| SMTP_SENDER_EMAIL | Email address used as the sender in SMTP transactions
| SMTP_SENDER_LOGO | Logo used in emails sent via SMTP
| SMTP_TLS | Flag to enable or disable TLS for SMTP connections
| SMTP_USERNAME | Username for SMTP authentication
| SPEND_LOGS_URL | URL for retrieving spend logs
| SSL_CERTIFICATE | Path to the SSL certificate file
| SSL_VERIFY | Flag to enable or disable SSL certificate verification
| SUPABASE_KEY | API key for Supabase service
| SUPABASE_URL | Base URL for Supabase instance
| TEST_EMAIL_ADDRESS | Email address used for testing purposes
| UI_LOGO_PATH | Path to the logo image used in the UI
| UI_PASSWORD | Password for accessing the UI
| UI_USERNAME | Username for accessing the UI
| UPSTREAM_LANGFUSE_DEBUG | Flag to enable debugging for upstream Langfuse
| UPSTREAM_LANGFUSE_HOST | Host URL for upstream Langfuse service
| UPSTREAM_LANGFUSE_PUBLIC_KEY | Public key for upstream Langfuse authentication
| UPSTREAM_LANGFUSE_RELEASE | Release version identifier for upstream Langfuse
| UPSTREAM_LANGFUSE_SECRET_KEY | Secret key for upstream Langfuse authentication
| USE_AWS_KMS | Flag to enable AWS Key Management Service for encryption
| WEBHOOK_URL | URL for receiving webhooks from external services

View file

@ -2,7 +2,7 @@ import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Overview
# Proxy Config.yaml
Set model list, `api_base`, `api_key`, `temperature` & proxy server settings (`master-key`) on the config.yaml.
| Param Name | Description |
@ -357,6 +357,77 @@ curl --location 'http://0.0.0.0:4000/v1/model/info' \
--data ''
```
### Provider specific wildcard routing
**Proxy all models from a provider**
Use this if you want to **proxy all models from a specific provider without defining them on the config.yaml**
**Step 1** - define provider specific routing on config.yaml
```yaml
model_list:
# provider specific wildcard routing
- model_name: "anthropic/*"
litellm_params:
model: "anthropic/*"
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: "groq/*"
litellm_params:
model: "groq/*"
api_key: os.environ/GROQ_API_KEY
- model_name: "fo::*:static::*" # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
litellm_params:
model: "openai/fo::*:static::*"
api_key: os.environ/OPENAI_API_KEY
```
Step 2 - Run litellm proxy
```shell
$ litellm --config /path/to/config.yaml
```
Step 3 Test it
Test with `anthropic/` - all models with `anthropic/` prefix will get routed to `anthropic/*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "anthropic/claude-3-sonnet-20240229",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `groq/` - all models with `groq/` prefix will get routed to `groq/*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "groq/llama3-8b-8192",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `fo::*::static::*` - all requests matching this pattern will be routed to `openai/fo::*:static::*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "fo::hi::static::hi",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
### Load Balancing
:::info
@ -526,6 +597,481 @@ general_settings:
database_connection_timeout: 60 # sets a 60s timeout for any connection call to the db
```
## **All settings**
```yaml
environment_variables: {}
model_list:
- model_name: string
litellm_params: {}
model_info:
id: string
mode: embedding
input_cost_per_token: 0
output_cost_per_token: 0
max_tokens: 2048
base_model: gpt-4-1106-preview
additionalProp1: {}
litellm_settings:
# Logging/Callback settings
success_callback: ["langfuse"] # list of success callbacks
failure_callback: ["sentry"] # list of failure callbacks
callbacks: ["otel"] # list of callbacks - runs on success and failure
service_callbacks: ["datadog", "prometheus"] # logs redis, postgres failures on datadog, prometheus
turn_off_message_logging: boolean # prevent the messages and responses from being logged to on your callbacks, but request metadata will still be logged.
redact_user_api_key_info: boolean # Redact information about the user api key (hashed token, user_id, team id, etc.), from logs. Currently supported for Langfuse, OpenTelemetry, Logfire, ArizeAI logging.
langfuse_default_tags: ["cache_hit", "cache_key", "proxy_base_url", "user_api_key_alias", "user_api_key_user_id", "user_api_key_user_email", "user_api_key_team_alias", "semantic-similarity", "proxy_base_url"] # default tags for Langfuse Logging
# Networking settings
request_timeout: 10 # (int) llm requesttimeout in seconds. Raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout
force_ipv4: boolean # If true, litellm will force ipv4 for all LLM requests. Some users have seen httpx ConnectionError when using ipv6 + Anthropic API
set_verbose: boolean # sets litellm.set_verbose=True to view verbose debug logs. DO NOT LEAVE THIS ON IN PRODUCTION
json_logs: boolean # if true, logs will be in json format
# Fallbacks, reliability
default_fallbacks: ["claude-opus"] # set default_fallbacks, in case a specific model group is misconfigured / bad.
content_policy_fallbacks: [{"gpt-3.5-turbo-small": ["claude-opus"]}] # fallbacks for ContentPolicyErrors
context_window_fallbacks: [{"gpt-3.5-turbo-small": ["gpt-3.5-turbo-large", "claude-opus"]}] # fallbacks for ContextWindowExceededErrors
# Caching settings
cache: true
cache_params: # set cache params for redis
type: redis # type of cache to initialize
# Optional - Redis Settings
host: "localhost" # The host address for the Redis cache. Required if type is "redis".
port: 6379 # The port number for the Redis cache. Required if type is "redis".
password: "your_password" # The password for the Redis cache. Required if type is "redis".
namespace: "litellm.caching.caching" # namespace for redis cache
# Optional - Redis Cluster Settings
redis_startup_nodes: [{"host": "127.0.0.1", "port": "7001"}]
# Optional - Redis Sentinel Settings
service_name: "mymaster"
sentinel_nodes: [["localhost", 26379]]
# Optional - Qdrant Semantic Cache Settings
qdrant_semantic_cache_embedding_model: openai-embedding # the model should be defined on the model_list
qdrant_collection_name: test_collection
qdrant_quantization_config: binary
similarity_threshold: 0.8 # similarity threshold for semantic cache
# Optional - S3 Cache Settings
s3_bucket_name: cache-bucket-litellm # AWS Bucket Name for S3
s3_region_name: us-west-2 # AWS Region Name for S3
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3
s3_endpoint_url: https://s3.amazonaws.com # [OPTIONAL] S3 endpoint URL, if you want to use Backblaze/cloudflare s3 bucket
# Common Cache settings
# Optional - Supported call types for caching
supported_call_types: ["acompletion", "atext_completion", "aembedding", "atranscription"]
# /chat/completions, /completions, /embeddings, /audio/transcriptions
mode: default_off # if default_off, you need to opt in to caching on a per call basis
ttl: 600 # ttl for caching
callback_settings:
otel:
message_logging: boolean # OTEL logging callback specific settings
general_settings:
completion_model: string
disable_spend_logs: boolean # turn off writing each transaction to the db
disable_master_key_return: boolean # turn off returning master key on UI (checked on '/user/info' endpoint)
disable_retry_on_max_parallel_request_limit_error: boolean # turn off retries when max parallel request limit is reached
disable_reset_budget: boolean # turn off reset budget scheduled task
disable_adding_master_key_hash_to_db: boolean # turn off storing master key hash in db, for spend tracking
enable_jwt_auth: boolean # allow proxy admin to auth in via jwt tokens with 'litellm_proxy_admin' in claims
enforce_user_param: boolean # requires all openai endpoint requests to have a 'user' param
allowed_routes: ["route1", "route2"] # list of allowed proxy API routes - a user can access. (currently JWT-Auth only)
key_management_system: google_kms # either google_kms or azure_kms
master_key: string
# Database Settings
database_url: string
database_connection_pool_limit: 0 # default 100
database_connection_timeout: 0 # default 60s
allow_requests_on_db_unavailable: boolean # if true, will allow requests that can not connect to the DB to verify Virtual Key to still work
custom_auth: string
max_parallel_requests: 0 # the max parallel requests allowed per deployment
global_max_parallel_requests: 0 # the max parallel requests allowed on the proxy all up
infer_model_from_keys: true
background_health_checks: true
health_check_interval: 300
alerting: ["slack", "email"]
alerting_threshold: 0
use_client_credentials_pass_through_routes: boolean # use client credentials for all pass through routes like "/vertex-ai", /bedrock/. When this is True Virtual Key auth will not be applied on these endpoints
```
### litellm_settings - Reference
| Name | Type | Description |
|------|------|-------------|
| success_callback | array of strings | List of success callbacks. [Doc Proxy logging callbacks](logging), [Doc Metrics](prometheus) |
| failure_callback | array of strings | List of failure callbacks [Doc Proxy logging callbacks](logging), [Doc Metrics](prometheus) |
| callbacks | array of strings | List of callbacks - runs on success and failure [Doc Proxy logging callbacks](logging), [Doc Metrics](prometheus) |
| service_callbacks | array of strings | System health monitoring - Logs redis, postgres failures on specified services (e.g. datadog, prometheus) [Doc Metrics](prometheus) |
| turn_off_message_logging | boolean | If true, prevents messages and responses from being logged to callbacks, but request metadata will still be logged [Proxy Logging](logging) |
| modify_params | boolean | If true, allows modifying the parameters of the request before it is sent to the LLM provider |
| enable_preview_features | boolean | If true, enables preview features - e.g. Azure O1 Models with streaming support.|
| redact_user_api_key_info | boolean | If true, redacts information about the user api key from logs [Proxy Logging](logging#redacting-userapikeyinfo) |
| langfuse_default_tags | array of strings | Default tags for Langfuse Logging. Use this if you want to control which LiteLLM-specific fields are logged as tags by the LiteLLM proxy. By default LiteLLM Proxy logs no LiteLLM-specific fields as tags. [Further docs](./logging#litellm-specific-tags-on-langfuse---cache_hit-cache_key) |
| set_verbose | boolean | If true, sets litellm.set_verbose=True to view verbose debug logs. DO NOT LEAVE THIS ON IN PRODUCTION |
| json_logs | boolean | If true, logs will be in json format. If you need to store the logs as JSON, just set the `litellm.json_logs = True`. We currently just log the raw POST request from litellm as a JSON [Further docs](./debugging) |
| default_fallbacks | array of strings | List of fallback models to use if a specific model group is misconfigured / bad. [Further docs](./reliability#default-fallbacks) |
| request_timeout | integer | The timeout for requests in seconds. If not set, the default value is `6000 seconds`. [For reference OpenAI Python SDK defaults to `600 seconds`.](https://github.com/openai/openai-python/blob/main/src/openai/_constants.py) |
| force_ipv4 | boolean | If true, litellm will force ipv4 for all LLM requests. Some users have seen httpx ConnectionError when using ipv6 + Anthropic API |
| content_policy_fallbacks | array of objects | Fallbacks to use when a ContentPolicyViolationError is encountered. [Further docs](./reliability#content-policy-fallbacks) |
| context_window_fallbacks | array of objects | Fallbacks to use when a ContextWindowExceededError is encountered. [Further docs](./reliability#context-window-fallbacks) |
| cache | boolean | If true, enables caching. [Further docs](./caching) |
| cache_params | object | Parameters for the cache. [Further docs](./caching) |
| cache_params.type | string | The type of cache to initialize. Can be one of ["local", "redis", "redis-semantic", "s3", "disk", "qdrant-semantic"]. Defaults to "redis". [Furher docs](./caching) |
| cache_params.host | string | The host address for the Redis cache. Required if type is "redis". |
| cache_params.port | integer | The port number for the Redis cache. Required if type is "redis". |
| cache_params.password | string | The password for the Redis cache. Required if type is "redis". |
| cache_params.namespace | string | The namespace for the Redis cache. |
| cache_params.redis_startup_nodes | array of objects | Redis Cluster Settings. [Further docs](./caching) |
| cache_params.service_name | string | Redis Sentinel Settings. [Further docs](./caching) |
| cache_params.sentinel_nodes | array of arrays | Redis Sentinel Settings. [Further docs](./caching) |
| cache_params.ttl | integer | The time (in seconds) to store entries in cache. |
| cache_params.qdrant_semantic_cache_embedding_model | string | The embedding model to use for qdrant semantic cache. |
| cache_params.qdrant_collection_name | string | The name of the collection to use for qdrant semantic cache. |
| cache_params.qdrant_quantization_config | string | The quantization configuration for the qdrant semantic cache. |
| cache_params.similarity_threshold | float | The similarity threshold for the semantic cache. |
| cache_params.s3_bucket_name | string | The name of the S3 bucket to use for the semantic cache. |
| cache_params.s3_region_name | string | The region name for the S3 bucket. |
| cache_params.s3_aws_access_key_id | string | The AWS access key ID for the S3 bucket. |
| cache_params.s3_aws_secret_access_key | string | The AWS secret access key for the S3 bucket. |
| cache_params.s3_endpoint_url | string | Optional - The endpoint URL for the S3 bucket. |
| cache_params.supported_call_types | array of strings | The types of calls to cache. [Further docs](./caching) |
| cache_params.mode | string | The mode of the cache. [Further docs](./caching) |
| disable_end_user_cost_tracking | boolean | If true, turns off end user cost tracking on prometheus metrics + litellm spend logs table on proxy. |
| key_generation_settings | object | Restricts who can generate keys. [Further docs](./virtual_keys.md#restricting-key-generation) |
### general_settings - Reference
| Name | Type | Description |
|------|------|-------------|
| completion_model | string | The default model to use for completions when `model` is not specified in the request |
| disable_spend_logs | boolean | If true, turns off writing each transaction to the database |
| disable_master_key_return | boolean | If true, turns off returning master key on UI. (checked on '/user/info' endpoint) |
| disable_retry_on_max_parallel_request_limit_error | boolean | If true, turns off retries when max parallel request limit is reached |
| disable_reset_budget | boolean | If true, turns off reset budget scheduled task |
| disable_adding_master_key_hash_to_db | boolean | If true, turns off storing master key hash in db |
| enable_jwt_auth | boolean | allow proxy admin to auth in via jwt tokens with 'litellm_proxy_admin' in claims. [Doc on JWT Tokens](token_auth) |
| enforce_user_param | boolean | If true, requires all OpenAI endpoint requests to have a 'user' param. [Doc on call hooks](call_hooks)|
| allowed_routes | array of strings | List of allowed proxy API routes a user can access [Doc on controlling allowed routes](enterprise#control-available-public-private-routes)|
| key_management_system | string | Specifies the key management system. [Doc Secret Managers](../secret) |
| master_key | string | The master key for the proxy [Set up Virtual Keys](virtual_keys) |
| database_url | string | The URL for the database connection [Set up Virtual Keys](virtual_keys) |
| database_connection_pool_limit | integer | The limit for database connection pool [Setting DB Connection Pool limit](#configure-db-pool-limits--connection-timeouts) |
| database_connection_timeout | integer | The timeout for database connections in seconds [Setting DB Connection Pool limit, timeout](#configure-db-pool-limits--connection-timeouts) |
| allow_requests_on_db_unavailable | boolean | If true, allows requests to succeed even if DB is unreachable. **Only use this if running LiteLLM in your VPC** This will allow requests to work even when LiteLLM cannot connect to the DB to verify a Virtual Key |
| custom_auth | string | Write your own custom authentication logic [Doc Custom Auth](virtual_keys#custom-auth) |
| max_parallel_requests | integer | The max parallel requests allowed per deployment |
| global_max_parallel_requests | integer | The max parallel requests allowed on the proxy overall |
| infer_model_from_keys | boolean | If true, infers the model from the provided keys |
| background_health_checks | boolean | If true, enables background health checks. [Doc on health checks](health) |
| health_check_interval | integer | The interval for health checks in seconds [Doc on health checks](health) |
| alerting | array of strings | List of alerting methods [Doc on Slack Alerting](alerting) |
| alerting_threshold | integer | The threshold for triggering alerts [Doc on Slack Alerting](alerting) |
| use_client_credentials_pass_through_routes | boolean | If true, uses client credentials for all pass-through routes. [Doc on pass through routes](pass_through) |
| health_check_details | boolean | If false, hides health check details (e.g. remaining rate limit). [Doc on health checks](health) |
| public_routes | List[str] | (Enterprise Feature) Control list of public routes |
| alert_types | List[str] | Control list of alert types to send to slack (Doc on alert types)[./alerting.md] |
| enforced_params | List[str] | (Enterprise Feature) List of params that must be included in all requests to the proxy |
| enable_oauth2_auth | boolean | (Enterprise Feature) If true, enables oauth2.0 authentication |
| use_x_forwarded_for | str | If true, uses the X-Forwarded-For header to get the client IP address |
| service_account_settings | List[Dict[str, Any]] | Set `service_account_settings` if you want to create settings that only apply to service account keys (Doc on service accounts)[./service_accounts.md] |
| image_generation_model | str | The default model to use for image generation - ignores model set in request |
| store_model_in_db | boolean | If true, allows `/model/new` endpoint to store model information in db. Endpoint disabled by default. [Doc on `/model/new` endpoint](./model_management.md#create-a-new-model) |
| max_request_size_mb | int | The maximum size for requests in MB. Requests above this size will be rejected. |
| max_response_size_mb | int | The maximum size for responses in MB. LLM Responses above this size will not be sent. |
| proxy_budget_rescheduler_min_time | int | The minimum time (in seconds) to wait before checking db for budget resets. **Default is 597 seconds** |
| proxy_budget_rescheduler_max_time | int | The maximum time (in seconds) to wait before checking db for budget resets. **Default is 605 seconds** |
| proxy_batch_write_at | int | Time (in seconds) to wait before batch writing spend logs to the db. **Default is 10 seconds** |
| alerting_args | dict | Args for Slack Alerting [Doc on Slack Alerting](./alerting.md) |
| custom_key_generate | str | Custom function for key generation [Doc on custom key generation](./virtual_keys.md#custom--key-generate) |
| allowed_ips | List[str] | List of IPs allowed to access the proxy. If not set, all IPs are allowed. |
| embedding_model | str | The default model to use for embeddings - ignores model set in request |
| default_team_disabled | boolean | If true, users cannot create 'personal' keys (keys with no team_id). |
| alert_to_webhook_url | Dict[str] | [Specify a webhook url for each alert type.](./alerting.md#set-specific-slack-channels-per-alert-type) |
| key_management_settings | List[Dict[str, Any]] | Settings for key management system (e.g. AWS KMS, Azure Key Vault) [Doc on key management](../secret.md) |
| allow_user_auth | boolean | (Deprecated) old approach for user authentication. |
| user_api_key_cache_ttl | int | The time (in seconds) to cache user api keys in memory. |
| disable_prisma_schema_update | boolean | If true, turns off automatic schema updates to DB |
| litellm_key_header_name | str | If set, allows passing LiteLLM keys as a custom header. [Doc on custom headers](./virtual_keys.md#custom-headers) |
| moderation_model | str | The default model to use for moderation. |
| custom_sso | str | Path to a python file that implements custom SSO logic. [Doc on custom SSO](./custom_sso.md) |
| allow_client_side_credentials | boolean | If true, allows passing client side credentials to the proxy. (Useful when testing finetuning models) [Doc on client side credentials](./virtual_keys.md#client-side-credentials) |
| admin_only_routes | List[str] | (Enterprise Feature) List of routes that are only accessible to admin users. [Doc on admin only routes](./enterprise#control-available-public-private-routes) |
| use_azure_key_vault | boolean | If true, load keys from azure key vault |
| use_google_kms | boolean | If true, load keys from google kms |
| spend_report_frequency | str | Specify how often you want a Spend Report to be sent (e.g. "1d", "2d", "30d") [More on this](./alerting.md#spend-report-frequency) |
| ui_access_mode | Literal["admin_only"] | If set, restricts access to the UI to admin users only. [Docs](./ui.md#restrict-ui-access) |
| litellm_jwtauth | Dict[str, Any] | Settings for JWT authentication. [Docs](./token_auth.md) |
| litellm_license | str | The license key for the proxy. [Docs](../enterprise.md#how-does-deployment-with-enterprise-license-work) |
| oauth2_config_mappings | Dict[str, str] | Define the OAuth2 config mappings |
| pass_through_endpoints | List[Dict[str, Any]] | Define the pass through endpoints. [Docs](./pass_through) |
| enable_oauth2_proxy_auth | boolean | (Enterprise Feature) If true, enables oauth2.0 authentication |
| forward_openai_org_id | boolean | If true, forwards the OpenAI Organization ID to the backend LLM call (if it's OpenAI). |
| forward_client_headers_to_llm_api | boolean | If true, forwards the client headers (any `x-` headers) to the backend LLM call |
### router_settings - Reference
```yaml
router_settings:
routing_strategy: usage-based-routing-v2 # Literal["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"
redis_host: <your-redis-host> # string
redis_password: <your-redis-password> # string
redis_port: <your-redis-port> # string
enable_pre_call_check: true # bool - Before call is made check if a call is within model context window
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
cooldown_time: 30 # (in seconds) how long to cooldown model if fails/min > allowed_fails
disable_cooldowns: True # bool - Disable cooldowns for all models
enable_tag_filtering: True # bool - Use tag based routing for requests
retry_policy: { # Dict[str, int]: retry policy for different types of exceptions
"AuthenticationErrorRetries": 3,
"TimeoutErrorRetries": 3,
"RateLimitErrorRetries": 3,
"ContentPolicyViolationErrorRetries": 4,
"InternalServerErrorRetries": 4
}
allowed_fails_policy: {
"BadRequestErrorAllowedFails": 1000, # Allow 1000 BadRequestErrors before cooling down a deployment
"AuthenticationErrorAllowedFails": 10, # int
"TimeoutErrorAllowedFails": 12, # int
"RateLimitErrorAllowedFails": 10000, # int
"ContentPolicyViolationErrorAllowedFails": 15, # int
"InternalServerErrorAllowedFails": 20, # int
}
content_policy_fallbacks=[{"claude-2": ["my-fallback-model"]}] # List[Dict[str, List[str]]]: Fallback model for content policy violations
fallbacks=[{"claude-2": ["my-fallback-model"]}] # List[Dict[str, List[str]]]: Fallback model for all errors
```
| Name | Type | Description |
|------|------|-------------|
| routing_strategy | string | The strategy used for routing requests. Options: "simple-shuffle", "least-busy", "usage-based-routing", "latency-based-routing". Default is "simple-shuffle". [More information here](../routing) |
| redis_host | string | The host address for the Redis server. **Only set this if you have multiple instances of LiteLLM Proxy and want current tpm/rpm tracking to be shared across them** |
| redis_password | string | The password for the Redis server. **Only set this if you have multiple instances of LiteLLM Proxy and want current tpm/rpm tracking to be shared across them** |
| redis_port | string | The port number for the Redis server. **Only set this if you have multiple instances of LiteLLM Proxy and want current tpm/rpm tracking to be shared across them**|
| enable_pre_call_check | boolean | If true, checks if a call is within the model's context window before making the call. [More information here](reliability) |
| content_policy_fallbacks | array of objects | Specifies fallback models for content policy violations. [More information here](reliability) |
| fallbacks | array of objects | Specifies fallback models for all types of errors. [More information here](reliability) |
| enable_tag_filtering | boolean | If true, uses tag based routing for requests [Tag Based Routing](tag_routing) |
| cooldown_time | integer | The duration (in seconds) to cooldown a model if it exceeds the allowed failures. |
| disable_cooldowns | boolean | If true, disables cooldowns for all models. [More information here](reliability) |
| retry_policy | object | Specifies the number of retries for different types of exceptions. [More information here](reliability) |
| allowed_fails | integer | The number of failures allowed before cooling down a model. [More information here](reliability) |
| allowed_fails_policy | object | Specifies the number of allowed failures for different error types before cooling down a deployment. [More information here](reliability) |
### environment variables - Reference
| Name | Description |
|------|-------------|
| ACTIONS_ID_TOKEN_REQUEST_TOKEN | Token for requesting ID in GitHub Actions
| ACTIONS_ID_TOKEN_REQUEST_URL | URL for requesting ID token in GitHub Actions
| AISPEND_ACCOUNT_ID | Account ID for AI Spend
| AISPEND_API_KEY | API Key for AI Spend
| ALLOWED_EMAIL_DOMAINS | List of email domains allowed for access
| ARIZE_API_KEY | API key for Arize platform integration
| ARIZE_SPACE_KEY | Space key for Arize platform
| ARGILLA_BATCH_SIZE | Batch size for Argilla logging
| ARGILLA_API_KEY | API key for Argilla platform
| ARGILLA_SAMPLING_RATE | Sampling rate for Argilla logging
| ARGILLA_DATASET_NAME | Dataset name for Argilla logging
| ARGILLA_BASE_URL | Base URL for Argilla service
| ATHINA_API_KEY | API key for Athina service
| AUTH_STRATEGY | Strategy used for authentication (e.g., OAuth, API key)
| AWS_ACCESS_KEY_ID | Access Key ID for AWS services
| AWS_PROFILE_NAME | AWS CLI profile name to be used
| AWS_REGION_NAME | Default AWS region for service interactions
| AWS_ROLE_NAME | Role name for AWS IAM usage
| AWS_SECRET_ACCESS_KEY | Secret Access Key for AWS services
| AWS_SESSION_NAME | Name for AWS session
| AWS_WEB_IDENTITY_TOKEN | Web identity token for AWS
| AZURE_API_VERSION | Version of the Azure API being used
| AZURE_AUTHORITY_HOST | Azure authority host URL
| AZURE_CLIENT_ID | Client ID for Azure services
| AZURE_CLIENT_SECRET | Client secret for Azure services
| AZURE_FEDERATED_TOKEN_FILE | File path to Azure federated token
| AZURE_KEY_VAULT_URI | URI for Azure Key Vault
| AZURE_TENANT_ID | Tenant ID for Azure Active Directory
| BERRISPEND_ACCOUNT_ID | Account ID for BerriSpend service
| BRAINTRUST_API_KEY | API key for Braintrust integration
| CIRCLE_OIDC_TOKEN | OpenID Connect token for CircleCI
| CIRCLE_OIDC_TOKEN_V2 | Version 2 of the OpenID Connect token for CircleCI
| CONFIG_FILE_PATH | File path for configuration file
| CUSTOM_TIKTOKEN_CACHE_DIR | Custom directory for Tiktoken cache
| DATABASE_HOST | Hostname for the database server
| DATABASE_NAME | Name of the database
| DATABASE_PASSWORD | Password for the database user
| DATABASE_PORT | Port number for database connection
| DATABASE_SCHEMA | Schema name used in the database
| DATABASE_URL | Connection URL for the database
| DATABASE_USER | Username for database connection
| DATABASE_USERNAME | Alias for database user
| DATABRICKS_API_BASE | Base URL for Databricks API
| DD_BASE_URL | Base URL for Datadog integration
| DATADOG_BASE_URL | (Alternative to DD_BASE_URL) Base URL for Datadog integration
| _DATADOG_BASE_URL | (Alternative to DD_BASE_URL) Base URL for Datadog integration
| DD_API_KEY | API key for Datadog integration
| DD_SITE | Site URL for Datadog (e.g., datadoghq.com)
| DD_SOURCE | Source identifier for Datadog logs
| DD_ENV | Environment identifier for Datadog logs. Only supported for `datadog_llm_observability` callback
| DEBUG_OTEL | Enable debug mode for OpenTelemetry
| DIRECT_URL | Direct URL for service endpoint
| DISABLE_ADMIN_UI | Toggle to disable the admin UI
| DISABLE_SCHEMA_UPDATE | Toggle to disable schema updates
| DOCS_DESCRIPTION | Description text for documentation pages
| DOCS_FILTERED | Flag indicating filtered documentation
| DOCS_TITLE | Title of the documentation pages
| DOCS_URL | The path to the Swagger API documentation. **By default this is "/"**
| EMAIL_SUPPORT_CONTACT | Support contact email address
| GCS_BUCKET_NAME | Name of the Google Cloud Storage bucket
| GCS_PATH_SERVICE_ACCOUNT | Path to the Google Cloud service account JSON file
| GCS_FLUSH_INTERVAL | Flush interval for GCS logging (in seconds). Specify how often you want a log to be sent to GCS. **Default is 20 seconds**
| GCS_BATCH_SIZE | Batch size for GCS logging. Specify after how many logs you want to flush to GCS. If `BATCH_SIZE` is set to 10, logs are flushed every 10 logs. **Default is 2048**
| GENERIC_AUTHORIZATION_ENDPOINT | Authorization endpoint for generic OAuth providers
| GENERIC_CLIENT_ID | Client ID for generic OAuth providers
| GENERIC_CLIENT_SECRET | Client secret for generic OAuth providers
| GENERIC_CLIENT_STATE | State parameter for generic client authentication
| GENERIC_INCLUDE_CLIENT_ID | Include client ID in requests for OAuth
| GENERIC_SCOPE | Scope settings for generic OAuth providers
| GENERIC_TOKEN_ENDPOINT | Token endpoint for generic OAuth providers
| GENERIC_USER_DISPLAY_NAME_ATTRIBUTE | Attribute for user's display name in generic auth
| GENERIC_USER_EMAIL_ATTRIBUTE | Attribute for user's email in generic auth
| GENERIC_USER_FIRST_NAME_ATTRIBUTE | Attribute for user's first name in generic auth
| GENERIC_USER_ID_ATTRIBUTE | Attribute for user ID in generic auth
| GENERIC_USER_LAST_NAME_ATTRIBUTE | Attribute for user's last name in generic auth
| GENERIC_USER_PROVIDER_ATTRIBUTE | Attribute specifying the user's provider
| GENERIC_USER_ROLE_ATTRIBUTE | Attribute specifying the user's role
| GENERIC_USERINFO_ENDPOINT | Endpoint to fetch user information in generic OAuth
| GALILEO_BASE_URL | Base URL for Galileo platform
| GALILEO_PASSWORD | Password for Galileo authentication
| GALILEO_PROJECT_ID | Project ID for Galileo usage
| GALILEO_USERNAME | Username for Galileo authentication
| GREENSCALE_API_KEY | API key for Greenscale service
| GREENSCALE_ENDPOINT | Endpoint URL for Greenscale service
| GOOGLE_APPLICATION_CREDENTIALS | Path to Google Cloud credentials JSON file
| GOOGLE_CLIENT_ID | Client ID for Google OAuth
| GOOGLE_CLIENT_SECRET | Client secret for Google OAuth
| GOOGLE_KMS_RESOURCE_NAME | Name of the resource in Google KMS
| HF_API_BASE | Base URL for Hugging Face API
| HELICONE_API_KEY | API key for Helicone service
| HUGGINGFACE_API_BASE | Base URL for Hugging Face API
| IAM_TOKEN_DB_AUTH | IAM token for database authentication
| JSON_LOGS | Enable JSON formatted logging
| JWT_AUDIENCE | Expected audience for JWT tokens
| JWT_PUBLIC_KEY_URL | URL to fetch public key for JWT verification
| LAGO_API_BASE | Base URL for Lago API
| LAGO_API_CHARGE_BY | Parameter to determine charge basis in Lago
| LAGO_API_EVENT_CODE | Event code for Lago API events
| LAGO_API_KEY | API key for accessing Lago services
| LANGFUSE_DEBUG | Toggle debug mode for Langfuse
| LANGFUSE_FLUSH_INTERVAL | Interval for flushing Langfuse logs
| LANGFUSE_HOST | Host URL for Langfuse service
| LANGFUSE_PUBLIC_KEY | Public key for Langfuse authentication
| LANGFUSE_RELEASE | Release version of Langfuse integration
| LANGFUSE_SECRET_KEY | Secret key for Langfuse authentication
| LANGSMITH_API_KEY | API key for Langsmith platform
| LANGSMITH_BASE_URL | Base URL for Langsmith service
| LANGSMITH_BATCH_SIZE | Batch size for operations in Langsmith
| LANGSMITH_DEFAULT_RUN_NAME | Default name for Langsmith run
| LANGSMITH_PROJECT | Project name for Langsmith integration
| LANGSMITH_SAMPLING_RATE | Sampling rate for Langsmith logging
| LANGTRACE_API_KEY | API key for Langtrace service
| LITERAL_API_KEY | API key for Literal integration
| LITERAL_API_URL | API URL for Literal service
| LITERAL_BATCH_SIZE | Batch size for Literal operations
| LITELLM_DONT_SHOW_FEEDBACK_BOX | Flag to hide feedback box in LiteLLM UI
| LITELLM_DROP_PARAMS | Parameters to drop in LiteLLM requests
| LITELLM_EMAIL | Email associated with LiteLLM account
| LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRIES | Maximum retries for parallel requests in LiteLLM
| LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRY_TIMEOUT | Timeout for retries of parallel requests in LiteLLM
| LITELLM_HOSTED_UI | URL of the hosted UI for LiteLLM
| LITELLM_LICENSE | License key for LiteLLM usage
| LITELLM_LOCAL_MODEL_COST_MAP | Local configuration for model cost mapping in LiteLLM
| LITELLM_LOG | Enable detailed logging for LiteLLM
| LITELLM_MODE | Operating mode for LiteLLM (e.g., production, development)
| LITELLM_SALT_KEY | Salt key for encryption in LiteLLM
| LITELLM_SECRET_AWS_KMS_LITELLM_LICENSE | AWS KMS encrypted license for LiteLLM
| LITELLM_TOKEN | Access token for LiteLLM integration
| LOGFIRE_TOKEN | Token for Logfire logging service
| MICROSOFT_CLIENT_ID | Client ID for Microsoft services
| MICROSOFT_CLIENT_SECRET | Client secret for Microsoft services
| MICROSOFT_TENANT | Tenant ID for Microsoft Azure
| NO_DOCS | Flag to disable documentation generation
| NO_PROXY | List of addresses to bypass proxy
| OAUTH_TOKEN_INFO_ENDPOINT | Endpoint for OAuth token info retrieval
| OPENAI_API_BASE | Base URL for OpenAI API
| OPENAI_API_KEY | API key for OpenAI services
| OPENAI_ORGANIZATION | Organization identifier for OpenAI
| OPENID_BASE_URL | Base URL for OpenID Connect services
| OPENID_CLIENT_ID | Client ID for OpenID Connect authentication
| OPENID_CLIENT_SECRET | Client secret for OpenID Connect authentication
| OPENMETER_API_ENDPOINT | API endpoint for OpenMeter integration
| OPENMETER_API_KEY | API key for OpenMeter services
| OPENMETER_EVENT_TYPE | Type of events sent to OpenMeter
| OTEL_ENDPOINT | OpenTelemetry endpoint for traces
| OTEL_ENVIRONMENT_NAME | Environment name for OpenTelemetry
| OTEL_EXPORTER | Exporter type for OpenTelemetry
| OTEL_HEADERS | Headers for OpenTelemetry requests
| OTEL_SERVICE_NAME | Service name identifier for OpenTelemetry
| OTEL_TRACER_NAME | Tracer name for OpenTelemetry tracing
| PREDIBASE_API_BASE | Base URL for Predibase API
| PRESIDIO_ANALYZER_API_BASE | Base URL for Presidio Analyzer service
| PRESIDIO_ANONYMIZER_API_BASE | Base URL for Presidio Anonymizer service
| PROMETHEUS_URL | URL for Prometheus service
| PROMPTLAYER_API_KEY | API key for PromptLayer integration
| PROXY_ADMIN_ID | Admin identifier for proxy server
| PROXY_BASE_URL | Base URL for proxy service
| PROXY_LOGOUT_URL | URL for logging out of the proxy service
| PROXY_MASTER_KEY | Master key for proxy authentication
| QDRANT_API_BASE | Base URL for Qdrant API
| QDRANT_API_KEY | API key for Qdrant service
| QDRANT_URL | Connection URL for Qdrant database
| REDIS_HOST | Hostname for Redis server
| REDIS_PASSWORD | Password for Redis service
| REDIS_PORT | Port number for Redis server
| REDOC_URL | The path to the Redoc Fast API documentation. **By default this is "/redoc"**
| SERVER_ROOT_PATH | Root path for the server application
| SET_VERBOSE | Flag to enable verbose logging
| SLACK_DAILY_REPORT_FREQUENCY | Frequency of daily Slack reports (e.g., daily, weekly)
| SLACK_WEBHOOK_URL | Webhook URL for Slack integration
| SMTP_HOST | Hostname for the SMTP server
| SMTP_PASSWORD | Password for SMTP authentication
| SMTP_PORT | Port number for SMTP server
| SMTP_SENDER_EMAIL | Email address used as the sender in SMTP transactions
| SMTP_SENDER_LOGO | Logo used in emails sent via SMTP
| SMTP_TLS | Flag to enable or disable TLS for SMTP connections
| SMTP_USERNAME | Username for SMTP authentication
| SPEND_LOGS_URL | URL for retrieving spend logs
| SSL_CERTIFICATE | Path to the SSL certificate file
| SSL_VERIFY | Flag to enable or disable SSL certificate verification
| SUPABASE_KEY | API key for Supabase service
| SUPABASE_URL | Base URL for Supabase instance
| TEST_EMAIL_ADDRESS | Email address used for testing purposes
| UI_LOGO_PATH | Path to the logo image used in the UI
| UI_PASSWORD | Password for accessing the UI
| UI_USERNAME | Username for accessing the UI
| UPSTREAM_LANGFUSE_DEBUG | Flag to enable debugging for upstream Langfuse
| UPSTREAM_LANGFUSE_HOST | Host URL for upstream Langfuse service
| UPSTREAM_LANGFUSE_PUBLIC_KEY | Public key for upstream Langfuse authentication
| UPSTREAM_LANGFUSE_RELEASE | Release version identifier for upstream Langfuse
| UPSTREAM_LANGFUSE_SECRET_KEY | Secret key for upstream Langfuse authentication
| USE_AWS_KMS | Flag to enable AWS Key Management Service for encryption
| WEBHOOK_URL | URL for receiving webhooks from external services
## Extras

View file

@ -50,22 +50,18 @@ You can see the full DB Schema [here](https://github.com/BerriAI/litellm/blob/ma
| LiteLLM_ErrorLogs | Captures failed requests and errors. Stores exception details and request information. Helps with debugging and monitoring. | **Medium - on errors only** |
| LiteLLM_AuditLog | Tracks changes to system configuration. Records who made changes and what was modified. Maintains history of updates to teams, users, and models. | **Off by default**, **High - when enabled** |
## Disable `LiteLLM_SpendLogs` & `LiteLLM_ErrorLogs`
## How to Disable `LiteLLM_SpendLogs`
You can disable spend_logs and error_logs by setting `disable_spend_logs` and `disable_error_logs` to `True` on the `general_settings` section of your proxy_config.yaml file.
You can disable spend_logs by setting `disable_spend_logs` to `True` on the `general_settings` section of your proxy_config.yaml file.
```yaml
general_settings:
disable_spend_logs: True # Disable writing spend logs to DB
disable_error_logs: True # Disable writing error logs to DB
disable_spend_logs: True
```
### What is the impact of disabling these logs?
When disabling spend logs (`disable_spend_logs: True`):
### What is the impact of disabling `LiteLLM_SpendLogs`?
- You **will not** be able to view Usage on the LiteLLM UI
- You **will** continue seeing cost metrics on s3, Prometheus, Langfuse (any other Logging integration you are using)
When disabling error logs (`disable_error_logs: True`):
- You **will not** be able to view Errors on the LiteLLM UI
- You **will** continue seeing error logs in your application logs and any other logging integrations you are using

View file

@ -23,7 +23,6 @@ general_settings:
# OPTIONAL Best Practices
disable_spend_logs: True # turn off writing each transaction to the db. We recommend doing this is you don't need to see Usage on the LiteLLM UI and are tracking metrics via Prometheus
disable_error_logs: True # turn off writing LLM Exceptions to DB
allow_requests_on_db_unavailable: True # Only USE when running LiteLLM on your VPC. Allow requests to still be processed even if the DB is unavailable. We recommend doing this if you're running LiteLLM on VPC that cannot be accessed from the public internet.
litellm_settings:
@ -103,22 +102,17 @@ general_settings:
allow_requests_on_db_unavailable: True
```
## 6. Disable spend_logs & error_logs if not using the LiteLLM UI
## 6. Disable spend_logs if you're not using the LiteLLM UI
By default, LiteLLM writes several types of logs to the database:
- Every LLM API request to the `LiteLLM_SpendLogs` table
- LLM Exceptions to the `LiteLLM_LogsErrors` table
By default LiteLLM will write every request to the `LiteLLM_SpendLogs` table. This is used for viewing Usage on the LiteLLM UI.
If you're not viewing these logs on the LiteLLM UI (most users use Prometheus for monitoring), you can disable them by setting the following flags to `True`:
If you're not viewing Usage on the LiteLLM UI (most users use Prometheus when this is disabled), you can disable spend_logs by setting `disable_spend_logs` to `True`.
```yaml
general_settings:
disable_spend_logs: True # Disable writing spend logs to DB
disable_error_logs: True # Disable writing error logs to DB
disable_spend_logs: True
```
[More information about what the Database is used for here](db_info)
## 7. Use Helm PreSync Hook for Database Migrations [BETA]
To ensure only one service manages database migrations, use our [Helm PreSync hook for Database Migrations](https://github.com/BerriAI/litellm/blob/main/deploy/charts/litellm-helm/templates/migrations-job.yaml). This ensures migrations are handled during `helm upgrade` or `helm install`, while LiteLLM pods explicitly disable migrations.

View file

@ -192,13 +192,3 @@ Here is a screenshot of the metrics you can monitor with the LiteLLM Grafana Das
|----------------------|--------------------------------------|
| `litellm_llm_api_failed_requests_metric` | **deprecated** use `litellm_proxy_failed_requests_metric` |
| `litellm_requests_metric` | **deprecated** use `litellm_proxy_total_requests_metric` |
## FAQ
### What are `_created` vs. `_total` metrics?
- `_created` metrics are metrics that are created when the proxy starts
- `_total` metrics are metrics that are incremented for each request
You should consume the `_total` metrics for your counting purposes

View file

@ -1,24 +0,0 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Router Architecture (Fallbacks / Retries)
## High Level architecture
<Image img={require('../img/router_architecture.png')} style={{ width: '100%', maxWidth: '4000px' }} />
### Request Flow
1. **User Sends Request**: The process begins when a user sends a request to the LiteLLM Router endpoint. All unified endpoints (`.completion`, `.embeddings`, etc) are supported by LiteLLM Router.
2. **function_with_fallbacks**: The initial request is sent to the `function_with_fallbacks` function. This function wraps the initial request in a try-except block, to handle any exceptions - doing fallbacks if needed. This request is then sent to the `function_with_retries` function.
3. **function_with_retries**: The `function_with_retries` function wraps the request in a try-except block and passes the initial request to a base litellm unified function (`litellm.completion`, `litellm.embeddings`, etc) to handle LLM API calling. `function_with_retries` handles any exceptions - doing retries on the model group if needed (i.e. if the request fails, it will retry on an available model within the model group).
4. **litellm.completion**: The `litellm.completion` function is a base function that handles the LLM API calling. It is used by `function_with_retries` to make the actual request to the LLM API.
## Legend
**model_group**: A group of LLM API deployments that share the same `model_name`, are part of the same `model_group`, and can be load balanced across.

View file

@ -1891,22 +1891,3 @@ router = Router(
debug_level="DEBUG" # defaults to INFO
)
```
## Router General Settings
### Usage
```python
router = Router(model_list=..., router_general_settings=RouterGeneralSettings(async_only_mode=True))
```
### Spec
```python
class RouterGeneralSettings(BaseModel):
async_only_mode: bool = Field(
default=False
) # this will only initialize async clients. Good for memory utils
pass_through_all_models: bool = Field(
default=False
) # if passed a model not llm_router model list, pass through the request to litellm.acompletion/embedding
```

View file

@ -1,174 +0,0 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Text Completion
### Usage
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python
from litellm import text_completion
response = text_completion(
model="gpt-3.5-turbo-instruct",
prompt="Say this is a test",
max_tokens=7
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy Server">
1. Define models on config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo-instruct
litellm_params:
model: text-completion-openai/gpt-3.5-turbo-instruct # The `text-completion-openai/` prefix will call openai.completions.create
api_key: os.environ/OPENAI_API_KEY
- model_name: text-davinci-003
litellm_params:
model: text-completion-openai/text-davinci-003
api_key: os.environ/OPENAI_API_KEY
```
2. Start litellm proxy server
```
litellm --config config.yaml
```
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt="Say this is a test",
max_tokens=7
)
print(response)
```
</TabItem>
<TabItem value="curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{
"model": "gpt-3.5-turbo-instruct",
"prompt": "Say this is a test",
"max_tokens": 7
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Input Params
LiteLLM accepts and translates the [OpenAI Text Completion params](https://platform.openai.com/docs/api-reference/completions) across all supported providers.
### Required Fields
- `model`: *string* - ID of the model to use
- `prompt`: *string or array* - The prompt(s) to generate completions for
### Optional Fields
- `best_of`: *integer* - Generates best_of completions server-side and returns the "best" one
- `echo`: *boolean* - Echo back the prompt in addition to the completion.
- `frequency_penalty`: *number* - Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency.
- `logit_bias`: *map* - Modify the likelihood of specified tokens appearing in the completion
- `logprobs`: *integer* - Include the log probabilities on the logprobs most likely tokens. Max value of 5
- `max_tokens`: *integer* - The maximum number of tokens to generate.
- `n`: *integer* - How many completions to generate for each prompt.
- `presence_penalty`: *number* - Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far.
- `seed`: *integer* - If specified, system will attempt to make deterministic samples
- `stop`: *string or array* - Up to 4 sequences where the API will stop generating tokens
- `stream`: *boolean* - Whether to stream back partial progress. Defaults to false
- `suffix`: *string* - The suffix that comes after a completion of inserted text
- `temperature`: *number* - What sampling temperature to use, between 0 and 2.
- `top_p`: *number* - An alternative to sampling with temperature, called nucleus sampling.
- `user`: *string* - A unique identifier representing your end-user
## Output Format
Here's the exact JSON output format you can expect from completion calls:
[**Follows OpenAI's output format**](https://platform.openai.com/docs/api-reference/completions/object)
<Tabs>
<TabItem value="non-streaming" label="Non-Streaming Response">
```python
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "gpt-3.5-turbo-instruct",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
```
</TabItem>
<TabItem value="streaming" label="Streaming Response">
```python
{
"id": "cmpl-7iA7iJjj8V2zOkCGvWF2hAkDWBQZe",
"object": "text_completion",
"created": 1690759702,
"choices": [
{
"text": "This",
"index": 0,
"logprobs": null,
"finish_reason": null
}
],
"model": "gpt-3.5-turbo-instruct"
"system_fingerprint": "fp_44709d6fcb",
}
```
</TabItem>
</Tabs>
## **Supported Providers**
| Provider | Link to Usage |
|-------------|--------------------|
| OpenAI | [Usage](../docs/providers/text_completion_openai) |
| Azure OpenAI| [Usage](../docs/providers/azure) |

View file

@ -1,140 +0,0 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Provider specific Wildcard routing
**Proxy all models from a provider**
Use this if you want to **proxy all models from a specific provider without defining them on the config.yaml**
## Step 1. Define provider specific routing
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import Router
router = Router(
model_list=[
{
"model_name": "anthropic/*",
"litellm_params": {
"model": "anthropic/*",
"api_key": os.environ["ANTHROPIC_API_KEY"]
}
},
{
"model_name": "groq/*",
"litellm_params": {
"model": "groq/*",
"api_key": os.environ["GROQ_API_KEY"]
}
},
{
"model_name": "fo::*:static::*", # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
"litellm_params": {
"model": "openai/fo::*:static::*",
"api_key": os.environ["OPENAI_API_KEY"]
}
}
]
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
**Step 1** - define provider specific routing on config.yaml
```yaml
model_list:
# provider specific wildcard routing
- model_name: "anthropic/*"
litellm_params:
model: "anthropic/*"
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: "groq/*"
litellm_params:
model: "groq/*"
api_key: os.environ/GROQ_API_KEY
- model_name: "fo::*:static::*" # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
litellm_params:
model: "openai/fo::*:static::*"
api_key: os.environ/OPENAI_API_KEY
```
</TabItem>
</Tabs>
## [PROXY-Only] Step 2 - Run litellm proxy
```shell
$ litellm --config /path/to/config.yaml
```
## Step 3 - Test it
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import Router
router = Router(model_list=...)
# Test with `anthropic/` - all models with `anthropic/` prefix will get routed to `anthropic/*`
resp = completion(model="anthropic/claude-3-sonnet-20240229", messages=[{"role": "user", "content": "Hello, Claude!"}])
print(resp)
# Test with `groq/` - all models with `groq/` prefix will get routed to `groq/*`
resp = completion(model="groq/llama3-8b-8192", messages=[{"role": "user", "content": "Hello, Groq!"}])
print(resp)
# Test with `fo::*::static::*` - all requests matching this pattern will be routed to `openai/fo::*:static::*`
resp = completion(model="fo::hi::static::hi", messages=[{"role": "user", "content": "Hello, Claude!"}])
print(resp)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
Test with `anthropic/` - all models with `anthropic/` prefix will get routed to `anthropic/*`
```bash
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "anthropic/claude-3-sonnet-20240229",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `groq/` - all models with `groq/` prefix will get routed to `groq/*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "groq/llama3-8b-8192",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
Test with `fo::*::static::*` - all requests matching this pattern will be routed to `openai/fo::*:static::*`
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "fo::hi::static::hi",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
</TabItem>
</Tabs>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 59 KiB

View file

@ -29,17 +29,13 @@ const sidebars = {
},
items: [
"proxy/docker_quick_start",
{
"type": "category",
"label": "Config.yaml",
"items": ["proxy/configs", "proxy/config_management", "proxy/config_settings"]
},
{
type: "category",
label: "Setup & Deployment",
items: [
"proxy/deploy",
"proxy/prod",
"proxy/configs",
"proxy/cli",
"proxy/model_management",
"proxy/health",
@ -51,7 +47,7 @@ const sidebars = {
{
type: "category",
label: "Architecture",
items: ["proxy/architecture", "proxy/db_info", "router_architecture"],
items: ["proxy/architecture", "proxy/db_info"],
},
{
type: "link",
@ -246,7 +242,6 @@ const sidebars = {
"completion/usage",
],
},
"text_completion",
"embedding/supported_embedding",
"image_generation",
{
@ -262,7 +257,6 @@ const sidebars = {
"batches",
"realtime",
"fine_tuning",
"moderation",
{
type: "link",
label: "Use LiteLLM Proxy with Vertex, Bedrock SDK",
@ -279,7 +273,7 @@ const sidebars = {
description: "Learn how to load balance, route, and set fallbacks for your LLM requests",
slug: "/routing-load-balancing",
},
items: ["routing", "scheduler", "proxy/load_balancing", "proxy/reliability", "proxy/tag_routing", "proxy/provider_budget_routing", "proxy/team_based_routing", "proxy/customer_routing", "wildcard_routing"],
items: ["routing", "scheduler", "proxy/load_balancing", "proxy/reliability", "proxy/tag_routing", "proxy/provider_budget_routing", "proxy/team_based_routing", "proxy/customer_routing"],
},
{
type: "category",

View file

@ -2,9 +2,7 @@
from typing import Optional, List
from litellm._logging import verbose_logger
from litellm.proxy.proxy_server import PrismaClient, HTTPException
from litellm.llms.custom_httpx.http_handler import HTTPHandler
import collections
import httpx
from datetime import datetime
@ -116,6 +114,7 @@ async def ui_get_spend_by_tags(
def _forecast_daily_cost(data: list):
import requests # type: ignore
from datetime import datetime, timedelta
if len(data) == 0:
@ -137,17 +136,17 @@ def _forecast_daily_cost(data: list):
print("last entry date", last_entry_date)
# Assuming today_date is a datetime object
today_date = datetime.now()
# Calculate the last day of the month
last_day_of_todays_month = datetime(
today_date.year, today_date.month % 12 + 1, 1
) - timedelta(days=1)
print("last day of todays month", last_day_of_todays_month)
# Calculate the remaining days in the month
remaining_days = (last_day_of_todays_month - last_entry_date).days
print("remaining days", remaining_days)
current_spend_this_month = 0
series = {}
for entry in data:
@ -177,19 +176,13 @@ def _forecast_daily_cost(data: list):
"Content-Type": "application/json",
}
client = HTTPHandler()
try:
response = client.post(
url="https://trend-api-production.up.railway.app/forecast",
json=payload,
headers=headers,
)
except httpx.HTTPStatusError as e:
raise HTTPException(
status_code=500,
detail={"error": f"Error getting forecast: {e.response.text}"},
)
response = requests.post(
url="https://trend-api-production.up.railway.app/forecast",
json=payload,
headers=headers,
)
# check the status code
response.raise_for_status()
json_response = response.json()
forecast_data = json_response["forecast"]
@ -213,3 +206,13 @@ def _forecast_daily_cost(data: list):
f"Predicted Spend for { today_month } 2024, ${total_predicted_spend}"
)
return {"response": response_data, "predicted_spend": predicted_spend}
# print(f"Date: {entry['date']}, Spend: {entry['spend']}, Response: {response.text}")
# _forecast_daily_cost(
# [
# {"date": "2022-01-01", "spend": 100},
# ]
# )

View file

@ -68,7 +68,6 @@ callbacks: List[Union[Callable, _custom_logger_compatible_callbacks_literal]] =
langfuse_default_tags: Optional[List[str]] = None
langsmith_batch_size: Optional[int] = None
argilla_batch_size: Optional[int] = None
datadog_use_v1: Optional[bool] = False # if you want to use v1 datadog logged payload
argilla_transformation_object: Optional[Dict[str, Any]] = None
_async_input_callback: List[Callable] = (
[]

View file

@ -313,13 +313,12 @@ def get_redis_async_client(**env_overrides) -> async_redis.Redis:
def get_redis_connection_pool(**env_overrides):
redis_kwargs = _get_redis_client_logic(**env_overrides)
verbose_logger.debug("get_redis_connection_pool: redis_kwargs", redis_kwargs)
if "url" in redis_kwargs and redis_kwargs["url"] is not None:
return async_redis.BlockingConnectionPool.from_url(
timeout=5, url=redis_kwargs["url"]
)
connection_class = async_redis.Connection
if "ssl" in redis_kwargs:
if "ssl" in redis_kwargs and redis_kwargs["ssl"] is not None:
connection_class = async_redis.SSLConnection
redis_kwargs.pop("ssl", None)
redis_kwargs["connection_class"] = connection_class

View file

@ -32,11 +32,9 @@ from litellm.llms.custom_httpx.http_handler import (
get_async_httpx_client,
httpxSpecialProvider,
)
from litellm.proxy._types import UserAPIKeyAuth
from litellm.types.integrations.datadog import *
from litellm.types.services import ServiceLoggerPayload
from litellm.types.utils import StandardLoggingPayload
from .types import DD_ERRORS, DatadogPayload, DataDogStatus
from .utils import make_json_serializable
DD_MAX_BATCH_SIZE = 1000 # max number of logs DD API can accept
@ -108,20 +106,20 @@ class DataDogLogger(CustomBatchLogger):
verbose_logger.debug(
"Datadog: Logging - Enters logging function for model %s", kwargs
)
await self._log_async_event(kwargs, response_obj, start_time, end_time)
except Exception as e:
verbose_logger.exception(
f"Datadog Layer Error - {str(e)}\n{traceback.format_exc()}"
dd_payload = self.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
pass
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
try:
self.log_queue.append(dd_payload)
verbose_logger.debug(
"Datadog: Logging - Enters logging function for model %s", kwargs
f"Datadog, event added to queue. Will flush in {self.flush_interval} seconds..."
)
await self._log_async_event(kwargs, response_obj, start_time, end_time)
if len(self.log_queue) >= self.batch_size:
await self.async_send_batch()
except Exception as e:
verbose_logger.exception(
@ -183,20 +181,12 @@ class DataDogLogger(CustomBatchLogger):
verbose_logger.debug(
"Datadog: Logging - Enters logging function for model %s", kwargs
)
if litellm.datadog_use_v1 is True:
dd_payload = self._create_v0_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
else:
dd_payload = self.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
dd_payload = self.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
response = self.sync_client.post(
url=self.intake_url,
@ -225,22 +215,6 @@ class DataDogLogger(CustomBatchLogger):
pass
pass
async def _log_async_event(self, kwargs, response_obj, start_time, end_time):
dd_payload = self.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
self.log_queue.append(dd_payload)
verbose_logger.debug(
f"Datadog, event added to queue. Will flush in {self.flush_interval} seconds..."
)
if len(self.log_queue) >= self.batch_size:
await self.async_send_batch()
def create_datadog_logging_payload(
self,
kwargs: Union[dict, Any],
@ -262,29 +236,73 @@ class DataDogLogger(CustomBatchLogger):
"""
import json
standard_logging_object: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
if standard_logging_object is None:
raise ValueError("standard_logging_object not found in kwargs")
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
messages = kwargs.get("messages")
optional_params = kwargs.get("optional_params", {})
call_type = kwargs.get("call_type", "litellm.completion")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj["usage"]
id = response_obj.get("id", str(uuid.uuid4()))
usage = dict(usage)
try:
response_time = (end_time - start_time).total_seconds() * 1000
except Exception:
response_time = None
status = DataDogStatus.INFO
if standard_logging_object.get("status") == "failure":
status = DataDogStatus.ERROR
try:
response_obj = dict(response_obj)
except Exception:
response_obj = response_obj
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# clean litellm metadata before logging
if key in [
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
# Build the initial payload
make_json_serializable(standard_logging_object)
json_payload = json.dumps(standard_logging_object)
payload = {
"id": id,
"call_type": call_type,
"cache_hit": cache_hit,
"start_time": start_time,
"end_time": end_time,
"response_time": response_time,
"model": kwargs.get("model", ""),
"user": kwargs.get("user", ""),
"model_parameters": optional_params,
"spend": kwargs.get("response_cost", 0),
"messages": messages,
"response": response_obj,
"usage": usage,
"metadata": clean_metadata,
}
make_json_serializable(payload)
json_payload = json.dumps(payload)
verbose_logger.debug("Datadog: Logger - Logging payload = %s", json_payload)
dd_payload = DatadogPayload(
ddsource=self._get_datadog_source(),
ddtags=self._get_datadog_tags(),
hostname=self._get_datadog_hostname(),
ddsource=os.getenv("DD_SOURCE", "litellm"),
ddtags="",
hostname="",
message=json_payload,
service=self._get_datadog_service(),
status=status,
service="litellm-server",
status=DataDogStatus.INFO,
)
return dd_payload
@ -364,140 +382,3 @@ class DataDogLogger(CustomBatchLogger):
No user has asked for this so far, this might be spammy on datatdog. If need arises we can implement this
"""
return
async def async_post_call_failure_hook(
self,
request_data: dict,
original_exception: Exception,
user_api_key_dict: UserAPIKeyAuth,
):
"""
Handles Proxy Errors (not-related to LLM API), ex: Authentication Errors
"""
import json
_exception_payload = DatadogProxyFailureHookJsonMessage(
exception=str(original_exception),
error_class=str(original_exception.__class__.__name__),
status_code=getattr(original_exception, "status_code", None),
traceback=traceback.format_exc(),
user_api_key_dict=user_api_key_dict.model_dump(),
)
json_payload = json.dumps(_exception_payload)
verbose_logger.debug("Datadog: Logger - Logging payload = %s", json_payload)
dd_payload = DatadogPayload(
ddsource=self._get_datadog_source(),
ddtags=self._get_datadog_tags(),
hostname=self._get_datadog_hostname(),
message=json_payload,
service=self._get_datadog_service(),
status=DataDogStatus.ERROR,
)
self.log_queue.append(dd_payload)
def _create_v0_logging_payload(
self,
kwargs: Union[dict, Any],
response_obj: Any,
start_time: datetime.datetime,
end_time: datetime.datetime,
) -> DatadogPayload:
"""
Note: This is our V1 Version of DataDog Logging Payload
(Not Recommended) If you want this to get logged set `litellm.datadog_use_v1 = True`
"""
import json
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
messages = kwargs.get("messages")
optional_params = kwargs.get("optional_params", {})
call_type = kwargs.get("call_type", "litellm.completion")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj["usage"]
id = response_obj.get("id", str(uuid.uuid4()))
usage = dict(usage)
try:
response_time = (end_time - start_time).total_seconds() * 1000
except Exception:
response_time = None
try:
response_obj = dict(response_obj)
except Exception:
response_obj = response_obj
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# clean litellm metadata before logging
if key in [
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
# Build the initial payload
payload = {
"id": id,
"call_type": call_type,
"cache_hit": cache_hit,
"start_time": start_time,
"end_time": end_time,
"response_time": response_time,
"model": kwargs.get("model", ""),
"user": kwargs.get("user", ""),
"model_parameters": optional_params,
"spend": kwargs.get("response_cost", 0),
"messages": messages,
"response": response_obj,
"usage": usage,
"metadata": clean_metadata,
}
make_json_serializable(payload)
json_payload = json.dumps(payload)
verbose_logger.debug("Datadog: Logger - Logging payload = %s", json_payload)
dd_payload = DatadogPayload(
ddsource=self._get_datadog_source(),
ddtags=self._get_datadog_tags(),
hostname=self._get_datadog_hostname(),
message=json_payload,
service=self._get_datadog_service(),
status=DataDogStatus.INFO,
)
return dd_payload
@staticmethod
def _get_datadog_tags():
return f"env:{os.getenv('DD_ENV', 'unknown')},service:{os.getenv('DD_SERVICE', 'litellm')},version:{os.getenv('DD_VERSION', 'unknown')}"
@staticmethod
def _get_datadog_source():
return os.getenv("DD_SOURCE", "litellm")
@staticmethod
def _get_datadog_service():
return os.getenv("DD_SERVICE", "litellm-server")
@staticmethod
def _get_datadog_hostname():
return ""
@staticmethod
def _get_datadog_env():
return os.getenv("DD_ENV", "unknown")

View file

@ -1,5 +1,5 @@
from enum import Enum
from typing import Optional, TypedDict
from typing import TypedDict
class DataDogStatus(str, Enum):
@ -19,11 +19,3 @@ class DatadogPayload(TypedDict, total=False):
class DD_ERRORS(Enum):
DATADOG_413_ERROR = "Datadog API Error - Payload too large (batch is above 5MB uncompressed). If you want this logged either disable request/response logging or set `DD_BATCH_SIZE=50`"
class DatadogProxyFailureHookJsonMessage(TypedDict, total=False):
exception: str
error_class: str
status_code: Optional[int]
traceback: str
user_api_key_dict: dict

View file

@ -458,7 +458,7 @@ class AmazonConverseConfig:
"""
Abbreviations of regions AWS Bedrock supports for cross region inference
"""
return ["us", "eu", "apac"]
return ["us", "eu"]
def _get_base_model(self, model: str) -> str:
"""

View file

@ -28,62 +28,6 @@ headers = {
_DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0)
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
import re
def mask_sensitive_info(error_message):
# Find the start of the key parameter
if isinstance(error_message, str):
key_index = error_message.find("key=")
else:
return error_message
# If key is found
if key_index != -1:
# Find the end of the key parameter (next & or end of string)
next_param = error_message.find("&", key_index)
if next_param == -1:
# If no more parameters, mask until the end of the string
masked_message = error_message[: key_index + 4] + "[REDACTED_API_KEY]"
else:
# Replace the key with redacted value, keeping other parameters
masked_message = (
error_message[: key_index + 4]
+ "[REDACTED_API_KEY]"
+ error_message[next_param:]
)
return masked_message
return error_message
class MaskedHTTPStatusError(httpx.HTTPStatusError):
def __init__(
self, original_error, message: Optional[str] = None, text: Optional[str] = None
):
# Create a new error with the masked URL
masked_url = mask_sensitive_info(str(original_error.request.url))
# Create a new error that looks like the original, but with a masked URL
super().__init__(
message=original_error.message,
request=httpx.Request(
method=original_error.request.method,
url=masked_url,
headers=original_error.request.headers,
content=original_error.request.content,
),
response=httpx.Response(
status_code=original_error.response.status_code,
content=original_error.response.content,
headers=original_error.response.headers,
),
)
self.message = message
self.text = text
class AsyncHTTPHandler:
def __init__(
@ -211,16 +155,13 @@ class AsyncHTTPHandler:
headers=headers,
)
except httpx.HTTPStatusError as e:
setattr(e, "status_code", e.response.status_code)
if stream is True:
setattr(e, "message", await e.response.aread())
setattr(e, "text", await e.response.aread())
else:
setattr(e, "message", mask_sensitive_info(e.response.text))
setattr(e, "text", mask_sensitive_info(e.response.text))
setattr(e, "status_code", e.response.status_code)
setattr(e, "message", e.response.text)
setattr(e, "text", e.response.text)
raise e
except Exception as e:
raise e
@ -458,17 +399,11 @@ class HTTPHandler:
llm_provider="litellm-httpx-handler",
)
except httpx.HTTPStatusError as e:
if stream is True:
setattr(e, "message", mask_sensitive_info(e.response.read()))
setattr(e, "text", mask_sensitive_info(e.response.read()))
else:
error_text = mask_sensitive_info(e.response.text)
setattr(e, "message", error_text)
setattr(e, "text", error_text)
setattr(e, "status_code", e.response.status_code)
if stream is True:
setattr(e, "message", e.response.read())
else:
setattr(e, "message", e.response.text)
raise e
except Exception as e:
raise e

View file

@ -33,7 +33,6 @@ from litellm.types.llms.openai import (
ChatCompletionAssistantToolCall,
ChatCompletionFunctionMessage,
ChatCompletionImageObject,
ChatCompletionImageUrlObject,
ChatCompletionTextObject,
ChatCompletionToolCallFunctionChunk,
ChatCompletionToolMessage,
@ -682,27 +681,6 @@ def construct_tool_use_system_prompt(
return tool_use_system_prompt
def convert_generic_image_chunk_to_openai_image_obj(
image_chunk: GenericImageParsingChunk,
) -> str:
"""
Convert a generic image chunk to an OpenAI image object.
Input:
GenericImageParsingChunk(
type="base64",
media_type="image/jpeg",
data="...",
)
Return:
"data:image/jpeg;base64,{base64_image}"
"""
return "data:{};{},{}".format(
image_chunk["media_type"], image_chunk["type"], image_chunk["data"]
)
def convert_to_anthropic_image_obj(openai_image_url: str) -> GenericImageParsingChunk:
"""
Input:
@ -728,7 +706,6 @@ def convert_to_anthropic_image_obj(openai_image_url: str) -> GenericImageParsing
data=base64_data,
)
except Exception as e:
traceback.print_exc()
if "Error: Unable to fetch image from URL" in str(e):
raise e
raise Exception(
@ -1159,44 +1136,15 @@ def convert_to_anthropic_tool_result(
]
}
"""
anthropic_content: Union[
str,
List[Union[AnthropicMessagesToolResultContent, AnthropicMessagesImageParam]],
] = ""
content_str: str = ""
if isinstance(message["content"], str):
anthropic_content = message["content"]
content_str = message["content"]
elif isinstance(message["content"], List):
content_list = message["content"]
anthropic_content_list: List[
Union[AnthropicMessagesToolResultContent, AnthropicMessagesImageParam]
] = []
for content in content_list:
if content["type"] == "text":
anthropic_content_list.append(
AnthropicMessagesToolResultContent(
type="text",
text=content["text"],
)
)
elif content["type"] == "image_url":
if isinstance(content["image_url"], str):
image_chunk = convert_to_anthropic_image_obj(content["image_url"])
else:
image_chunk = convert_to_anthropic_image_obj(
content["image_url"]["url"]
)
anthropic_content_list.append(
AnthropicMessagesImageParam(
type="image",
source=AnthropicContentParamSource(
type="base64",
media_type=image_chunk["media_type"],
data=image_chunk["data"],
),
)
)
content_str += content["text"]
anthropic_content = anthropic_content_list
anthropic_tool_result: Optional[AnthropicMessagesToolResultParam] = None
## PROMPT CACHING CHECK ##
cache_control = message.get("cache_control", None)
@ -1207,14 +1155,14 @@ def convert_to_anthropic_tool_result(
# We can't determine from openai message format whether it's a successful or
# error call result so default to the successful result template
anthropic_tool_result = AnthropicMessagesToolResultParam(
type="tool_result", tool_use_id=tool_call_id, content=anthropic_content
type="tool_result", tool_use_id=tool_call_id, content=content_str
)
if message["role"] == "function":
function_message: ChatCompletionFunctionMessage = message
tool_call_id = function_message.get("tool_call_id") or str(uuid.uuid4())
anthropic_tool_result = AnthropicMessagesToolResultParam(
type="tool_result", tool_use_id=tool_call_id, content=anthropic_content
type="tool_result", tool_use_id=tool_call_id, content=content_str
)
if anthropic_tool_result is None:

View file

@ -107,10 +107,6 @@ def _get_image_mime_type_from_url(url: str) -> Optional[str]:
return "image/png"
elif url.endswith(".webp"):
return "image/webp"
elif url.endswith(".mp4"):
return "video/mp4"
elif url.endswith(".pdf"):
return "application/pdf"
return None
@ -298,12 +294,7 @@ def _transform_request_body(
optional_params = {k: v for k, v in optional_params.items() if k not in remove_keys}
try:
if custom_llm_provider == "gemini":
content = litellm.GoogleAIStudioGeminiConfig._transform_messages(
messages=messages
)
else:
content = litellm.VertexGeminiConfig._transform_messages(messages=messages)
content = _gemini_convert_messages_with_history(messages=messages)
tools: Optional[Tools] = optional_params.pop("tools", None)
tool_choice: Optional[ToolConfig] = optional_params.pop("tool_choice", None)
safety_settings: Optional[List[SafetSettingsConfig]] = optional_params.pop(

View file

@ -35,12 +35,7 @@ from litellm.llms.custom_httpx.http_handler import (
HTTPHandler,
get_async_httpx_client,
)
from litellm.llms.prompt_templates.factory import (
convert_generic_image_chunk_to_openai_image_obj,
convert_to_anthropic_image_obj,
)
from litellm.types.llms.openai import (
AllMessageValues,
ChatCompletionResponseMessage,
ChatCompletionToolCallChunk,
ChatCompletionToolCallFunctionChunk,
@ -83,8 +78,6 @@ from ..common_utils import (
)
from ..vertex_llm_base import VertexBase
from .transformation import (
_gemini_convert_messages_with_history,
_process_gemini_image,
async_transform_request_body,
set_headers,
sync_transform_request_body,
@ -919,10 +912,6 @@ class VertexGeminiConfig:
return model_response
@staticmethod
def _transform_messages(messages: List[AllMessageValues]) -> List[ContentType]:
return _gemini_convert_messages_with_history(messages=messages)
class GoogleAIStudioGeminiConfig(
VertexGeminiConfig
@ -1026,32 +1015,6 @@ class GoogleAIStudioGeminiConfig(
model, non_default_params, optional_params, drop_params
)
@staticmethod
def _transform_messages(messages: List[AllMessageValues]) -> List[ContentType]:
"""
Google AI Studio Gemini does not support image urls in messages.
"""
for message in messages:
_message_content = message.get("content")
if _message_content is not None and isinstance(_message_content, list):
_parts: List[PartType] = []
for element in _message_content:
if element.get("type") == "image_url":
img_element = element
_image_url: Optional[str] = None
if isinstance(img_element.get("image_url"), dict):
_image_url = img_element["image_url"].get("url") # type: ignore
else:
_image_url = img_element.get("image_url") # type: ignore
if _image_url and "https://" in _image_url:
image_obj = convert_to_anthropic_image_obj(_image_url)
img_element["image_url"] = ( # type: ignore
convert_generic_image_chunk_to_openai_image_obj(
image_obj
)
)
return _gemini_convert_messages_with_history(messages=messages)
async def make_call(
client: Optional[AsyncHTTPHandler],

View file

@ -2032,6 +2032,7 @@
"tool_use_system_prompt_tokens": 264,
"supports_assistant_prefill": true,
"supports_prompt_caching": true,
"supports_pdf_input": true,
"supports_response_schema": true
},
"claude-3-opus-20240229": {
@ -2097,7 +2098,6 @@
"supports_vision": true,
"tool_use_system_prompt_tokens": 159,
"supports_assistant_prefill": true,
"supports_pdf_input": true,
"supports_prompt_caching": true,
"supports_response_schema": true
},
@ -3383,8 +3383,6 @@
"supports_vision": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-001": {
@ -3408,8 +3406,6 @@
"supports_vision": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash": {
@ -3432,8 +3428,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-latest": {
@ -3456,32 +3450,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b": {
"max_tokens": 8192,
"max_input_tokens": 1048576,
"max_output_tokens": 8192,
"max_images_per_prompt": 3000,
"max_videos_per_prompt": 10,
"max_video_length": 1,
"max_audio_length_hours": 8.4,
"max_audio_per_prompt": 1,
"max_pdf_size_mb": 30,
"input_cost_per_token": 0,
"input_cost_per_token_above_128k_tokens": 0,
"output_cost_per_token": 0,
"output_cost_per_token_above_128k_tokens": 0,
"litellm_provider": "gemini",
"mode": "chat",
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b-exp-0924": {
@ -3504,8 +3472,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-exp-1114": {
@ -3528,12 +3494,7 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing",
"metadata": {
"notes": "Rate limits not documented for gemini-exp-1114. Assuming same as gemini-1.5-pro."
}
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-exp-0827": {
"max_tokens": 8192,
@ -3555,8 +3516,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b-exp-0827": {
@ -3578,9 +3537,6 @@
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-pro": {
@ -3594,10 +3550,7 @@
"litellm_provider": "gemini",
"mode": "chat",
"supports_function_calling": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://ai.google.dev/gemini-api/docs/models/gemini"
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
},
"gemini/gemini-1.5-pro": {
"max_tokens": 8192,
@ -3614,8 +3567,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-002": {
@ -3634,8 +3585,6 @@
"supports_tool_choice": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-001": {
@ -3654,8 +3603,6 @@
"supports_tool_choice": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-exp-0801": {
@ -3673,8 +3620,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-exp-0827": {
@ -3692,8 +3637,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-latest": {
@ -3711,8 +3654,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-pro-vision": {
@ -3727,9 +3668,6 @@
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
},
"gemini/gemini-gemma-2-27b-it": {

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-f593049e31b05aeb.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-8316d07d1f41e39f.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[82989,[\"665\",\"static/chunks/3014691f-b24e8254c7593934.js\",\"936\",\"static/chunks/2f6dbc85-cac2949a76539886.js\",\"902\",\"static/chunks/902-292bb6a83427dbc7.js\",\"131\",\"static/chunks/131-4ee1d633e8928742.js\",\"684\",\"static/chunks/684-16b194c83a169f6d.js\",\"626\",\"static/chunks/626-0c564a21577c9c53.js\",\"777\",\"static/chunks/777-9d9df0b75010dbf9.js\",\"931\",\"static/chunks/app/page-a952da77e0730c7c.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"pDx3dChtj-paUmJExuV6u\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_12bbc4\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-f593049e31b05aeb.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-8316d07d1f41e39f.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[82989,[\"665\",\"static/chunks/3014691f-b24e8254c7593934.js\",\"936\",\"static/chunks/2f6dbc85-cac2949a76539886.js\",\"902\",\"static/chunks/902-58bf23027703b2e8.js\",\"131\",\"static/chunks/131-3d2257b0ff5aadb2.js\",\"684\",\"static/chunks/684-16b194c83a169f6d.js\",\"626\",\"static/chunks/626-fc3969bfc35ead00.js\",\"777\",\"static/chunks/777-9d9df0b75010dbf9.js\",\"931\",\"static/chunks/app/page-bd2e157c2bc2f150.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"e-Zsp_y3gSAoiJHmJByXA\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_12bbc4\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[82989,["665","static/chunks/3014691f-b24e8254c7593934.js","936","static/chunks/2f6dbc85-cac2949a76539886.js","902","static/chunks/902-292bb6a83427dbc7.js","131","static/chunks/131-4ee1d633e8928742.js","684","static/chunks/684-16b194c83a169f6d.js","626","static/chunks/626-0c564a21577c9c53.js","777","static/chunks/777-9d9df0b75010dbf9.js","931","static/chunks/app/page-a952da77e0730c7c.js"],""]
3:I[82989,["665","static/chunks/3014691f-b24e8254c7593934.js","936","static/chunks/2f6dbc85-cac2949a76539886.js","902","static/chunks/902-58bf23027703b2e8.js","131","static/chunks/131-3d2257b0ff5aadb2.js","684","static/chunks/684-16b194c83a169f6d.js","626","static/chunks/626-fc3969bfc35ead00.js","777","static/chunks/777-9d9df0b75010dbf9.js","931","static/chunks/app/page-bd2e157c2bc2f150.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["pDx3dChtj-paUmJExuV6u",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["e-Zsp_y3gSAoiJHmJByXA",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[87494,["902","static/chunks/902-292bb6a83427dbc7.js","131","static/chunks/131-4ee1d633e8928742.js","777","static/chunks/777-9d9df0b75010dbf9.js","418","static/chunks/app/model_hub/page-748a83a8e772a56b.js"],""]
3:I[87494,["902","static/chunks/902-58bf23027703b2e8.js","131","static/chunks/131-3d2257b0ff5aadb2.js","777","static/chunks/777-9d9df0b75010dbf9.js","418","static/chunks/app/model_hub/page-748a83a8e772a56b.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["pDx3dChtj-paUmJExuV6u",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["e-Zsp_y3gSAoiJHmJByXA",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[667,["665","static/chunks/3014691f-b24e8254c7593934.js","902","static/chunks/902-292bb6a83427dbc7.js","684","static/chunks/684-16b194c83a169f6d.js","777","static/chunks/777-9d9df0b75010dbf9.js","461","static/chunks/app/onboarding/page-884a15d08f8be397.js"],""]
3:I[667,["665","static/chunks/3014691f-b24e8254c7593934.js","902","static/chunks/902-58bf23027703b2e8.js","684","static/chunks/684-16b194c83a169f6d.js","777","static/chunks/777-9d9df0b75010dbf9.js","461","static/chunks/app/onboarding/page-884a15d08f8be397.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["pDx3dChtj-paUmJExuV6u",[[["",{"children":["onboarding",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["onboarding",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","onboarding","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["e-Zsp_y3gSAoiJHmJByXA",[[["",{"children":["onboarding",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["onboarding",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","onboarding","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -11,44 +11,4 @@ model_list:
model: vertex_ai/claude-3-5-sonnet-v2
vertex_ai_project: "adroit-crow-413218"
vertex_ai_location: "us-east5"
- model_name: openai-gpt-4o-realtime-audio
litellm_params:
model: openai/gpt-4o-realtime-preview-2024-10-01
api_key: os.environ/OPENAI_API_KEY
- model_name: openai/*
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
- model_name: openai/*
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
model_info:
access_groups: ["public-openai-models"]
- model_name: openai/gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
model_info:
access_groups: ["private-openai-models"]
router_settings:
routing_strategy: usage-based-routing-v2
#redis_url: "os.environ/REDIS_URL"
redis_host: "os.environ/REDIS_HOST"
redis_port: "os.environ/REDIS_PORT"
litellm_settings:
cache: true
cache_params:
type: redis
host: "os.environ/REDIS_HOST"
port: "os.environ/REDIS_PORT"
namespace: "litellm.caching"
ttl: 600
# key_generation_settings:
# team_key_generation:
# allowed_team_member_roles: ["admin"]
# required_params: ["tags"] # require team admins to set tags for cost-tracking when generating a team key
# personal_key_generation: # maps to 'Default Team' on UI
# allowed_user_roles: ["proxy_admin"]

View file

@ -1982,6 +1982,7 @@ class MemberAddRequest(LiteLLMBase):
# Replace member_data with the single Member object
data["member"] = member
# Call the superclass __init__ method to initialize the object
traceback.print_stack()
super().__init__(**data)
@ -2110,7 +2111,6 @@ class SpecialHeaders(enum.Enum):
openai_authorization = "Authorization"
azure_authorization = "API-Key"
anthropic_authorization = "x-api-key"
google_ai_studio_authorization = "x-goog-api-key"
class LitellmDataForBackendLLMCall(TypedDict, total=False):
@ -2183,11 +2183,3 @@ PassThroughEndpointLoggingResultValues = Union[
class PassThroughEndpointLoggingTypedDict(TypedDict):
result: Optional[PassThroughEndpointLoggingResultValues]
kwargs: dict
LiteLLM_ManagementEndpoint_MetadataFields = [
"model_rpm_limit",
"model_tpm_limit",
"guardrails",
"tags",
]

View file

@ -60,7 +60,6 @@ def common_checks( # noqa: PLR0915
global_proxy_spend: Optional[float],
general_settings: dict,
route: str,
llm_router: Optional[litellm.Router],
) -> bool:
"""
Common checks across jwt + key-based auth.
@ -98,12 +97,7 @@ def common_checks( # noqa: PLR0915
# this means the team has access to all models on the proxy
pass
# check if the team model is an access_group
elif (
model_in_access_group(
model=_model, team_models=team_object.models, llm_router=llm_router
)
is True
):
elif model_in_access_group(_model, team_object.models) is True:
pass
elif _model and "*" in _model:
pass
@ -379,33 +373,36 @@ async def get_end_user_object(
return None
def model_in_access_group(
model: str, team_models: Optional[List[str]], llm_router: Optional[litellm.Router]
) -> bool:
def model_in_access_group(model: str, team_models: Optional[List[str]]) -> bool:
from collections import defaultdict
from litellm.proxy.proxy_server import llm_router
if team_models is None:
return True
if model in team_models:
return True
access_groups: dict[str, list[str]] = defaultdict(list)
access_groups = defaultdict(list)
if llm_router:
access_groups = llm_router.get_model_access_groups(model_name=model)
access_groups = llm_router.get_model_access_groups()
models_in_current_access_groups = []
if len(access_groups) > 0: # check if token contains any model access groups
for idx, m in enumerate(
team_models
): # loop token models, if any of them are an access group add the access group
if m in access_groups:
return True
# if it is an access group we need to remove it from valid_token.models
models_in_group = access_groups[m]
models_in_current_access_groups.extend(models_in_group)
# Filter out models that are access_groups
filtered_models = [m for m in team_models if m not in access_groups]
filtered_models += models_in_current_access_groups
if model in filtered_models:
return True
return False
@ -589,63 +586,26 @@ async def _get_team_db_check(team_id: str, prisma_client: PrismaClient):
)
async def _get_team_object_from_db(team_id: str, prisma_client: PrismaClient):
return await prisma_client.db.litellm_teamtable.find_unique(
where={"team_id": team_id}
)
async def _get_team_object_from_user_api_key_cache(
async def get_team_object(
team_id: str,
prisma_client: PrismaClient,
prisma_client: Optional[PrismaClient],
user_api_key_cache: DualCache,
last_db_access_time: LimitedSizeOrderedDict,
db_cache_expiry: int,
proxy_logging_obj: Optional[ProxyLogging],
key: str,
parent_otel_span: Optional[Span] = None,
proxy_logging_obj: Optional[ProxyLogging] = None,
check_cache_only: Optional[bool] = None,
) -> LiteLLM_TeamTableCachedObj:
db_access_time_key = key
should_check_db = _should_check_db(
key=db_access_time_key,
last_db_access_time=last_db_access_time,
db_cache_expiry=db_cache_expiry,
)
if should_check_db:
response = await _get_team_db_check(
team_id=team_id, prisma_client=prisma_client
"""
- Check if team id in proxy Team Table
- if valid, return LiteLLM_TeamTable object with defined limits
- if not, then raise an error
"""
if prisma_client is None:
raise Exception(
"No DB Connected. See - https://docs.litellm.ai/docs/proxy/virtual_keys"
)
else:
response = None
if response is None:
raise Exception
_response = LiteLLM_TeamTableCachedObj(**response.dict())
# save the team object to cache
await _cache_team_object(
team_id=team_id,
team_table=_response,
user_api_key_cache=user_api_key_cache,
proxy_logging_obj=proxy_logging_obj,
)
# save to db access time
# save to db access time
_update_last_db_access_time(
key=db_access_time_key,
value=_response,
last_db_access_time=last_db_access_time,
)
return _response
async def _get_team_object_from_cache(
key: str,
proxy_logging_obj: Optional[ProxyLogging],
user_api_key_cache: DualCache,
parent_otel_span: Optional[Span],
) -> Optional[LiteLLM_TeamTableCachedObj]:
# check if in cache
key = "team_id:{}".format(team_id)
cached_team_obj: Optional[LiteLLM_TeamTableCachedObj] = None
## CHECK REDIS CACHE ##
@ -653,7 +613,6 @@ async def _get_team_object_from_cache(
proxy_logging_obj is not None
and proxy_logging_obj.internal_usage_cache.dual_cache
):
cached_team_obj = (
await proxy_logging_obj.internal_usage_cache.dual_cache.async_get_cache(
key=key, parent_otel_span=parent_otel_span
@ -669,58 +628,47 @@ async def _get_team_object_from_cache(
elif isinstance(cached_team_obj, LiteLLM_TeamTableCachedObj):
return cached_team_obj
return None
async def get_team_object(
team_id: str,
prisma_client: Optional[PrismaClient],
user_api_key_cache: DualCache,
parent_otel_span: Optional[Span] = None,
proxy_logging_obj: Optional[ProxyLogging] = None,
check_cache_only: Optional[bool] = None,
check_db_only: Optional[bool] = None,
) -> LiteLLM_TeamTableCachedObj:
"""
- Check if team id in proxy Team Table
- if valid, return LiteLLM_TeamTable object with defined limits
- if not, then raise an error
"""
if prisma_client is None:
if check_cache_only:
raise Exception(
"No DB Connected. See - https://docs.litellm.ai/docs/proxy/virtual_keys"
f"Team doesn't exist in cache + check_cache_only=True. Team={team_id}."
)
# check if in cache
key = "team_id:{}".format(team_id)
if not check_db_only:
cached_team_obj = await _get_team_object_from_cache(
key=key,
proxy_logging_obj=proxy_logging_obj,
user_api_key_cache=user_api_key_cache,
parent_otel_span=parent_otel_span,
)
if cached_team_obj is not None:
return cached_team_obj
if check_cache_only:
raise Exception(
f"Team doesn't exist in cache + check_cache_only=True. Team={team_id}."
)
# else, check db
try:
return await _get_team_object_from_user_api_key_cache(
team_id=team_id,
prisma_client=prisma_client,
user_api_key_cache=user_api_key_cache,
proxy_logging_obj=proxy_logging_obj,
db_access_time_key = "team_id:{}".format(team_id)
should_check_db = _should_check_db(
key=db_access_time_key,
last_db_access_time=last_db_access_time,
db_cache_expiry=db_cache_expiry,
key=key,
)
if should_check_db:
response = await _get_team_db_check(
team_id=team_id, prisma_client=prisma_client
)
else:
response = None
if response is None:
raise Exception
_response = LiteLLM_TeamTableCachedObj(**response.dict())
# save the team object to cache
await _cache_team_object(
team_id=team_id,
team_table=_response,
user_api_key_cache=user_api_key_cache,
proxy_logging_obj=proxy_logging_obj,
)
# save to db access time
# save to db access time
_update_last_db_access_time(
key=db_access_time_key,
value=_response,
last_db_access_time=last_db_access_time,
)
return _response
except Exception:
raise Exception(
f"Team doesn't exist in db. Team={team_id}. Create team via `/team/new` call."
@ -877,10 +825,7 @@ async def get_org_object(
async def can_key_call_model(
model: str,
llm_model_list: Optional[list],
valid_token: UserAPIKeyAuth,
llm_router: Optional[litellm.Router],
model: str, llm_model_list: Optional[list], valid_token: UserAPIKeyAuth
) -> Literal[True]:
"""
Checks if token can call a given model
@ -900,29 +845,35 @@ async def can_key_call_model(
)
from collections import defaultdict
from litellm.proxy.proxy_server import llm_router
access_groups = defaultdict(list)
if llm_router:
access_groups = llm_router.get_model_access_groups(model_name=model)
access_groups = llm_router.get_model_access_groups()
if (
len(access_groups) > 0 and llm_router is not None
): # check if token contains any model access groups
models_in_current_access_groups = []
if len(access_groups) > 0: # check if token contains any model access groups
for idx, m in enumerate(
valid_token.models
): # loop token models, if any of them are an access group add the access group
if m in access_groups:
return True
# if it is an access group we need to remove it from valid_token.models
models_in_group = access_groups[m]
models_in_current_access_groups.extend(models_in_group)
# Filter out models that are access_groups
filtered_models = [m for m in valid_token.models if m not in access_groups]
filtered_models += models_in_current_access_groups
verbose_proxy_logger.debug(f"model: {model}; allowed_models: {filtered_models}")
all_model_access: bool = False
if (
len(filtered_models) == 0 and len(valid_token.models) == 0
) or "*" in filtered_models:
len(filtered_models) == 0
or "*" in filtered_models
or "openai/*" in filtered_models
):
all_model_access = True
if model is not None and model not in filtered_models and all_model_access is False:

View file

@ -28,8 +28,6 @@ from fastapi import (
Request,
Response,
UploadFile,
WebSocket,
WebSocketDisconnect,
status,
)
from fastapi.middleware.cors import CORSMiddleware
@ -97,11 +95,6 @@ anthropic_api_key_header = APIKeyHeader(
auto_error=False,
description="If anthropic client used.",
)
google_ai_studio_api_key_header = APIKeyHeader(
name=SpecialHeaders.google_ai_studio_authorization.value,
auto_error=False,
description="If google ai studio client used.",
)
def _get_bearer_token(
@ -197,52 +190,6 @@ def _is_allowed_route(
)
async def user_api_key_auth_websocket(websocket: WebSocket):
# Accept the WebSocket connection
request = Request(scope={"type": "http"})
request._url = websocket.url
query_params = websocket.query_params
model = query_params.get("model")
async def return_body():
return_string = f'{{"model": "{model}"}}'
# return string as bytes
return return_string.encode()
request.body = return_body # type: ignore
# Extract the Authorization header
authorization = websocket.headers.get("authorization")
# If no Authorization header, try the api-key header
if not authorization:
api_key = websocket.headers.get("api-key")
if not api_key:
await websocket.close(code=status.WS_1008_POLICY_VIOLATION)
raise HTTPException(status_code=403, detail="No API key provided")
else:
# Extract the API key from the Bearer token
if not authorization.startswith("Bearer "):
await websocket.close(code=status.WS_1008_POLICY_VIOLATION)
raise HTTPException(
status_code=403, detail="Invalid Authorization header format"
)
api_key = authorization[len("Bearer ") :].strip()
# Call user_api_key_auth with the extracted API key
# Note: You'll need to modify this to work with WebSocket context if needed
try:
return await user_api_key_auth(request=request, api_key=f"Bearer {api_key}")
except Exception as e:
verbose_proxy_logger.exception(e)
await websocket.close(code=status.WS_1008_POLICY_VIOLATION)
raise HTTPException(status_code=403, detail=str(e))
async def user_api_key_auth( # noqa: PLR0915
request: Request,
api_key: str = fastapi.Security(api_key_header),
@ -250,16 +197,12 @@ async def user_api_key_auth( # noqa: PLR0915
anthropic_api_key_header: Optional[str] = fastapi.Security(
anthropic_api_key_header
),
google_ai_studio_api_key_header: Optional[str] = fastapi.Security(
google_ai_studio_api_key_header
),
) -> UserAPIKeyAuth:
from litellm.proxy.proxy_server import (
general_settings,
jwt_handler,
litellm_proxy_admin_name,
llm_model_list,
llm_router,
master_key,
open_telemetry_logger,
prisma_client,
@ -290,8 +233,6 @@ async def user_api_key_auth( # noqa: PLR0915
api_key = azure_api_key_header
elif isinstance(anthropic_api_key_header, str):
api_key = anthropic_api_key_header
elif isinstance(google_ai_studio_api_key_header, str):
api_key = google_ai_studio_api_key_header
elif pass_through_endpoints is not None:
for endpoint in pass_through_endpoints:
if endpoint.get("path", "") == route:
@ -543,7 +484,6 @@ async def user_api_key_auth( # noqa: PLR0915
general_settings=general_settings,
global_proxy_spend=global_proxy_spend,
route=route,
llm_router=llm_router,
)
# return UserAPIKeyAuth object
@ -907,7 +847,6 @@ async def user_api_key_auth( # noqa: PLR0915
model=model,
llm_model_list=llm_model_list,
valid_token=valid_token,
llm_router=llm_router,
)
if fallback_models is not None:
@ -916,7 +855,6 @@ async def user_api_key_auth( # noqa: PLR0915
model=m,
llm_model_list=llm_model_list,
valid_token=valid_token,
llm_router=llm_router,
)
# Check 2. If user_id for this token is in budget - done in common_checks()
@ -1177,7 +1115,6 @@ async def user_api_key_auth( # noqa: PLR0915
general_settings=general_settings,
global_proxy_spend=global_proxy_spend,
route=route,
llm_router=llm_router,
)
# Token passed all checks
if valid_token is None:
@ -1250,15 +1187,13 @@ async def user_api_key_auth( # noqa: PLR0915
extra={"requester_ip": requester_ip},
)
# Log this exception to OTEL, Datadog etc
asyncio.create_task(
proxy_logging_obj.async_log_proxy_authentication_errors(
# Log this exception to OTEL
if open_telemetry_logger is not None:
await open_telemetry_logger.async_post_call_failure_hook( # type: ignore
original_exception=e,
request=request,
parent_otel_span=parent_otel_span,
api_key=api_key,
request_data={},
user_api_key_dict=UserAPIKeyAuth(parent_otel_span=parent_otel_span),
)
)
if isinstance(e, litellm.BudgetExceededError):
raise ProxyException(

View file

@ -1,6 +1,6 @@
import ast
import json
from typing import Dict, List, Optional
from typing import List, Optional
from fastapi import Request, UploadFile, status
@ -8,43 +8,31 @@ from litellm._logging import verbose_proxy_logger
from litellm.types.router import Deployment
async def _read_request_body(request: Optional[Request]) -> Dict:
async def _read_request_body(request: Optional[Request]) -> dict:
"""
Safely read the request body and parse it as JSON.
Asynchronous function to read the request body and parse it as JSON or literal data.
Parameters:
- request: The request object to read the body from
Returns:
- dict: Parsed request data as a dictionary or an empty dictionary if parsing fails
- dict: Parsed request data as a dictionary
"""
try:
request_data: dict = {}
if request is None:
return {}
# Read the request body
return request_data
body = await request.body()
# Return empty dict if body is empty or None
if not body:
return {}
# Decode the body to a string
if body == b"" or body is None:
return request_data
body_str = body.decode()
# Attempt JSON parsing (safe for untrusted input)
return json.loads(body_str)
except json.JSONDecodeError:
# Log detailed information for debugging
verbose_proxy_logger.exception("Invalid JSON payload received.")
return {}
except Exception as e:
# Catch unexpected errors to avoid crashes
verbose_proxy_logger.exception(
"Unexpected error reading request body - {}".format(e)
)
try:
request_data = ast.literal_eval(body_str)
except Exception:
request_data = json.loads(body_str)
return request_data
except Exception:
return {}

View file

@ -214,10 +214,10 @@ class BedrockGuardrail(CustomGuardrail, BaseAWSLLM):
prepared_request.url,
prepared_request.headers,
)
_json_data = json.dumps(request_data) # type: ignore
response = await self.async_handler.post(
url=prepared_request.url,
data=prepared_request.body, # type: ignore
json=request_data, # type: ignore
headers=prepared_request.headers, # type: ignore
)
verbose_proxy_logger.debug("Bedrock AI response: %s", response.text)

View file

@ -1,87 +0,0 @@
"""
Runs when LLM Exceptions occur on LiteLLM Proxy
"""
import copy
import json
import uuid
import litellm
from litellm.proxy._types import LiteLLM_ErrorLogs
async def _PROXY_failure_handler(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time=None,
end_time=None, # start/end time for completion
):
"""
Async Failure Handler - runs when LLM Exceptions occur on LiteLLM Proxy.
This function logs the errors to the Prisma DB
Can be disabled by setting the following on proxy_config.yaml:
```yaml
general_settings:
disable_error_logs: True
```
"""
from litellm._logging import verbose_proxy_logger
from litellm.proxy.proxy_server import general_settings, prisma_client
if general_settings.get("disable_error_logs") is True:
return
if prisma_client is not None:
verbose_proxy_logger.debug(
"inside _PROXY_failure_handler kwargs=", extra=kwargs
)
_exception = kwargs.get("exception")
_exception_type = _exception.__class__.__name__
_model = kwargs.get("model", None)
_optional_params = kwargs.get("optional_params", {})
_optional_params = copy.deepcopy(_optional_params)
for k, v in _optional_params.items():
v = str(v)
v = v[:100]
_status_code = "500"
try:
_status_code = str(_exception.status_code)
except Exception:
# Don't let this fail logging the exception to the dB
pass
_litellm_params = kwargs.get("litellm_params", {}) or {}
_metadata = _litellm_params.get("metadata", {}) or {}
_model_id = _metadata.get("model_info", {}).get("id", "")
_model_group = _metadata.get("model_group", "")
api_base = litellm.get_api_base(model=_model, optional_params=_litellm_params)
_exception_string = str(_exception)
error_log = LiteLLM_ErrorLogs(
request_id=str(uuid.uuid4()),
model_group=_model_group,
model_id=_model_id,
litellm_model_name=kwargs.get("model"),
request_kwargs=_optional_params,
api_base=api_base,
exception_type=_exception_type,
status_code=_status_code,
exception_string=_exception_string,
startTime=kwargs.get("start_time"),
endTime=kwargs.get("end_time"),
)
error_log_dict = error_log.model_dump()
error_log_dict["request_kwargs"] = json.dumps(error_log_dict["request_kwargs"])
await prisma_client.db.litellm_errorlogs.create(
data=error_log_dict # type: ignore
)
pass

View file

@ -288,12 +288,12 @@ class LiteLLMProxyRequestSetup:
## KEY-LEVEL SPEND LOGS / TAGS
if "tags" in key_metadata and key_metadata["tags"] is not None:
data[_metadata_variable_name]["tags"] = (
LiteLLMProxyRequestSetup._merge_tags(
request_tags=data[_metadata_variable_name].get("tags"),
tags_to_add=key_metadata["tags"],
)
)
if "tags" in data[_metadata_variable_name] and isinstance(
data[_metadata_variable_name]["tags"], list
):
data[_metadata_variable_name]["tags"].extend(key_metadata["tags"])
else:
data[_metadata_variable_name]["tags"] = key_metadata["tags"]
if "spend_logs_metadata" in key_metadata and isinstance(
key_metadata["spend_logs_metadata"], dict
):
@ -319,30 +319,6 @@ class LiteLLMProxyRequestSetup:
data["disable_fallbacks"] = key_metadata["disable_fallbacks"]
return data
@staticmethod
def _merge_tags(request_tags: Optional[list], tags_to_add: Optional[list]) -> list:
"""
Helper function to merge two lists of tags, ensuring no duplicates.
Args:
request_tags (Optional[list]): List of tags from the original request
tags_to_add (Optional[list]): List of tags to add
Returns:
list: Combined list of unique tags
"""
final_tags = []
if request_tags and isinstance(request_tags, list):
final_tags.extend(request_tags)
if tags_to_add and isinstance(tags_to_add, list):
for tag in tags_to_add:
if tag not in final_tags:
final_tags.append(tag)
return final_tags
async def add_litellm_data_to_request( # noqa: PLR0915
data: dict,
@ -466,10 +442,12 @@ async def add_litellm_data_to_request( # noqa: PLR0915
## TEAM-LEVEL SPEND LOGS/TAGS
team_metadata = user_api_key_dict.team_metadata or {}
if "tags" in team_metadata and team_metadata["tags"] is not None:
data[_metadata_variable_name]["tags"] = LiteLLMProxyRequestSetup._merge_tags(
request_tags=data[_metadata_variable_name].get("tags"),
tags_to_add=team_metadata["tags"],
)
if "tags" in data[_metadata_variable_name] and isinstance(
data[_metadata_variable_name]["tags"], list
):
data[_metadata_variable_name]["tags"].extend(team_metadata["tags"])
else:
data[_metadata_variable_name]["tags"] = team_metadata["tags"]
if "spend_logs_metadata" in team_metadata and isinstance(
team_metadata["spend_logs_metadata"], dict
):

View file

@ -32,7 +32,6 @@ from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.management_endpoints.key_management_endpoints import (
duration_in_seconds,
generate_key_helper_fn,
prepare_metadata_fields,
)
from litellm.proxy.management_helpers.utils import (
add_new_member,
@ -43,7 +42,7 @@ from litellm.proxy.utils import handle_exception_on_proxy
router = APIRouter()
def _update_internal_new_user_params(data_json: dict, data: NewUserRequest) -> dict:
def _update_internal_user_params(data_json: dict, data: NewUserRequest) -> dict:
if "user_id" in data_json and data_json["user_id"] is None:
data_json["user_id"] = str(uuid.uuid4())
auto_create_key = data_json.pop("auto_create_key", True)
@ -146,7 +145,7 @@ async def new_user(
from litellm.proxy.proxy_server import general_settings, proxy_logging_obj
data_json = data.json() # type: ignore
data_json = _update_internal_new_user_params(data_json, data)
data_json = _update_internal_user_params(data_json, data)
response = await generate_key_helper_fn(request_type="user", **data_json)
# Admin UI Logic
@ -439,52 +438,6 @@ async def user_info( # noqa: PLR0915
raise handle_exception_on_proxy(e)
def _update_internal_user_params(data_json: dict, data: UpdateUserRequest) -> dict:
non_default_values = {}
for k, v in data_json.items():
if (
v is not None
and v
not in (
[],
{},
0,
)
and k not in LiteLLM_ManagementEndpoint_MetadataFields
): # models default to [], spend defaults to 0, we should not reset these values
non_default_values[k] = v
is_internal_user = False
if data.user_role == LitellmUserRoles.INTERNAL_USER:
is_internal_user = True
if "budget_duration" in non_default_values:
duration_s = duration_in_seconds(duration=non_default_values["budget_duration"])
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
if "max_budget" not in non_default_values:
if (
is_internal_user and litellm.max_internal_user_budget is not None
): # applies internal user limits, if user role updated
non_default_values["max_budget"] = litellm.max_internal_user_budget
if (
"budget_duration" not in non_default_values
): # applies internal user limits, if user role updated
if is_internal_user and litellm.internal_user_budget_duration is not None:
non_default_values["budget_duration"] = (
litellm.internal_user_budget_duration
)
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
return non_default_values
@router.post(
"/user/update",
tags=["Internal User management"],
@ -506,8 +459,7 @@ async def user_update(
"user_id": "test-litellm-user-4",
"user_role": "proxy_admin_viewer"
}'
```
Parameters:
- user_id: Optional[str] - Specify a user id. If not set, a unique id will be generated.
- user_email: Optional[str] - Specify a user email.
@ -539,7 +491,7 @@ async def user_update(
- duration: Optional[str] - [NOT IMPLEMENTED].
- key_alias: Optional[str] - [NOT IMPLEMENTED].
```
"""
from litellm.proxy.proxy_server import prisma_client
@ -550,21 +502,46 @@ async def user_update(
raise Exception("Not connected to DB!")
# get non default values for key
non_default_values = _update_internal_user_params(
data_json=data_json, data=data
)
non_default_values = {}
for k, v in data_json.items():
if v is not None and v not in (
[],
{},
0,
): # models default to [], spend defaults to 0, we should not reset these values
non_default_values[k] = v
existing_user_row = await prisma_client.get_data(
user_id=data.user_id, table_name="user", query_type="find_unique"
)
is_internal_user = False
if data.user_role == LitellmUserRoles.INTERNAL_USER:
is_internal_user = True
existing_metadata = existing_user_row.metadata if existing_user_row else {}
if "budget_duration" in non_default_values:
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
non_default_values = prepare_metadata_fields(
data=data,
non_default_values=non_default_values,
existing_metadata=existing_metadata or {},
)
if "max_budget" not in non_default_values:
if (
is_internal_user and litellm.max_internal_user_budget is not None
): # applies internal user limits, if user role updated
non_default_values["max_budget"] = litellm.max_internal_user_budget
if (
"budget_duration" not in non_default_values
): # applies internal user limits, if user role updated
if is_internal_user and litellm.internal_user_budget_duration is not None:
non_default_values["budget_duration"] = (
litellm.internal_user_budget_duration
)
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(
seconds=duration_s
)
non_default_values["budget_reset_at"] = user_reset_at
## ADD USER, IF NEW ##
verbose_proxy_logger.debug("/user/update: Received data = %s", data)

View file

@ -17,7 +17,7 @@ import secrets
import traceback
import uuid
from datetime import datetime, timedelta, timezone
from typing import List, Optional, Tuple, cast
from typing import List, Optional, Tuple
import fastapi
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Request, status
@ -29,7 +29,6 @@ from litellm.proxy.auth.auth_checks import (
_cache_key_object,
_delete_cache_key_object,
get_key_object,
get_team_object,
)
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.hooks.key_management_event_hooks import KeyManagementEventHooks
@ -47,19 +46,7 @@ def _is_team_key(data: GenerateKeyRequest):
return data.team_id is not None
def _get_user_in_team(
team_table: LiteLLM_TeamTableCachedObj, user_id: Optional[str]
) -> Optional[Member]:
if user_id is None:
return None
for member in team_table.members_with_roles:
if member.user_id is not None and member.user_id == user_id:
return member
return None
def _team_key_generation_team_member_check(
team_table: LiteLLM_TeamTableCachedObj,
user_api_key_dict: UserAPIKeyAuth,
team_key_generation: Optional[TeamUIKeyGenerationConfig],
):
@ -69,19 +56,17 @@ def _team_key_generation_team_member_check(
):
return True
user_in_team = _get_user_in_team(
team_table=team_table, user_id=user_api_key_dict.user_id
)
if user_in_team is None:
if user_api_key_dict.team_member is None:
raise HTTPException(
status_code=400,
detail=f"User={user_api_key_dict.user_id} not assigned to team={team_table.team_id}",
detail=f"User not assigned to team. Got team_member={user_api_key_dict.team_member}",
)
if user_in_team.role not in team_key_generation["allowed_team_member_roles"]:
team_member_role = user_api_key_dict.team_member.role
if team_member_role not in team_key_generation["allowed_team_member_roles"]:
raise HTTPException(
status_code=400,
detail=f"Team member role {user_in_team.role} not in allowed_team_member_roles={team_key_generation['allowed_team_member_roles']}",
detail=f"Team member role {team_member_role} not in allowed_team_member_roles={litellm.key_generation_settings['team_key_generation']['allowed_team_member_roles']}", # type: ignore
)
return True
@ -103,9 +88,7 @@ def _key_generation_required_param_check(
def _team_key_generation_check(
team_table: LiteLLM_TeamTableCachedObj,
user_api_key_dict: UserAPIKeyAuth,
data: GenerateKeyRequest,
user_api_key_dict: UserAPIKeyAuth, data: GenerateKeyRequest
):
if (
litellm.key_generation_settings is None
@ -116,8 +99,7 @@ def _team_key_generation_check(
_team_key_generation = litellm.key_generation_settings["team_key_generation"] # type: ignore
_team_key_generation_team_member_check(
team_table=team_table,
user_api_key_dict=user_api_key_dict,
user_api_key_dict,
team_key_generation=_team_key_generation,
)
_key_generation_required_param_check(
@ -173,9 +155,7 @@ def _personal_key_generation_check(
def key_generation_check(
team_table: Optional[LiteLLM_TeamTableCachedObj],
user_api_key_dict: UserAPIKeyAuth,
data: GenerateKeyRequest,
user_api_key_dict: UserAPIKeyAuth, data: GenerateKeyRequest
) -> bool:
"""
Check if admin has restricted key creation to certain roles for teams or individuals
@ -190,15 +170,8 @@ def key_generation_check(
is_team_key = _is_team_key(data=data)
if is_team_key:
if team_table is None:
raise HTTPException(
status_code=400,
detail=f"Unable to find team object in database. Team ID: {data.team_id}",
)
return _team_key_generation_check(
team_table=team_table,
user_api_key_dict=user_api_key_dict,
data=data,
user_api_key_dict=user_api_key_dict, data=data
)
else:
return _personal_key_generation_check(
@ -281,7 +254,6 @@ async def generate_key_fn( # noqa: PLR0915
litellm_proxy_admin_name,
prisma_client,
proxy_logging_obj,
user_api_key_cache,
user_custom_key_generate,
)
@ -299,20 +271,7 @@ async def generate_key_fn( # noqa: PLR0915
status_code=status.HTTP_403_FORBIDDEN, detail=message
)
elif litellm.key_generation_settings is not None:
if data.team_id is None:
team_table: Optional[LiteLLM_TeamTableCachedObj] = None
else:
team_table = await get_team_object(
team_id=data.team_id,
prisma_client=prisma_client,
user_api_key_cache=user_api_key_cache,
parent_otel_span=user_api_key_dict.parent_otel_span,
)
key_generation_check(
team_table=team_table,
user_api_key_dict=user_api_key_dict,
data=data,
)
key_generation_check(user_api_key_dict=user_api_key_dict, data=data)
# check if user set default key/generate params on config.yaml
if litellm.default_key_generate_params is not None:
for elem in data:
@ -394,8 +353,7 @@ async def generate_key_fn( # noqa: PLR0915
}
)
_budget_id = getattr(_budget, "budget_id", None)
data_json = data.model_dump(exclude_unset=True, exclude_none=True) # type: ignore
data_json = data.json() # type: ignore
# if we get max_budget passed to /key/generate, then use it as key_max_budget. Since generate_key_helper_fn is used to make new users
if "max_budget" in data_json:
data_json["key_max_budget"] = data_json.pop("max_budget", None)
@ -421,11 +379,6 @@ async def generate_key_fn( # noqa: PLR0915
data_json.pop("tags")
await _enforce_unique_key_alias(
key_alias=data_json.get("key_alias", None),
prisma_client=prisma_client,
)
response = await generate_key_helper_fn(
request_type="key", **data_json, table_name="key"
)
@ -453,52 +406,12 @@ async def generate_key_fn( # noqa: PLR0915
raise handle_exception_on_proxy(e)
def prepare_metadata_fields(
data: BaseModel, non_default_values: dict, existing_metadata: dict
) -> dict:
"""
Check LiteLLM_ManagementEndpoint_MetadataFields (proxy/_types.py) for fields that are allowed to be updated
"""
if "metadata" not in non_default_values: # allow user to set metadata to none
non_default_values["metadata"] = existing_metadata.copy()
casted_metadata = cast(dict, non_default_values["metadata"])
data_json = data.model_dump(exclude_unset=True, exclude_none=True)
try:
for k, v in data_json.items():
if k == "model_tpm_limit" or k == "model_rpm_limit":
if k not in casted_metadata or casted_metadata[k] is None:
casted_metadata[k] = {}
casted_metadata[k].update(v)
if k == "tags" or k == "guardrails":
if k not in casted_metadata or casted_metadata[k] is None:
casted_metadata[k] = []
seen = set(casted_metadata[k])
casted_metadata[k].extend(
x for x in v if x not in seen and not seen.add(x) # type: ignore
) # prevent duplicates from being added + maintain initial order
except Exception as e:
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.prepare_metadata_fields(): Exception occured - {}".format(
str(e)
)
)
non_default_values["metadata"] = casted_metadata
return non_default_values
def prepare_key_update_data(
data: Union[UpdateKeyRequest, RegenerateKeyRequest], existing_key_row
):
data_json: dict = data.model_dump(exclude_unset=True)
data_json.pop("key", None)
_metadata_fields = ["model_rpm_limit", "model_tpm_limit", "guardrails", "tags"]
_metadata_fields = ["model_rpm_limit", "model_tpm_limit", "guardrails"]
non_default_values = {}
for k, v in data_json.items():
if k in _metadata_fields:
@ -522,13 +435,24 @@ def prepare_key_update_data(
duration_s = duration_in_seconds(duration=budget_duration)
key_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = key_reset_at
non_default_values["budget_duration"] = budget_duration
_metadata = existing_key_row.metadata or {}
non_default_values = prepare_metadata_fields(
data=data, non_default_values=non_default_values, existing_metadata=_metadata
)
if data.model_tpm_limit:
if "model_tpm_limit" not in _metadata:
_metadata["model_tpm_limit"] = {}
_metadata["model_tpm_limit"].update(data.model_tpm_limit)
non_default_values["metadata"] = _metadata
if data.model_rpm_limit:
if "model_rpm_limit" not in _metadata:
_metadata["model_rpm_limit"] = {}
_metadata["model_rpm_limit"].update(data.model_rpm_limit)
non_default_values["metadata"] = _metadata
if data.guardrails:
_metadata["guardrails"] = data.guardrails
non_default_values["metadata"] = _metadata
return non_default_values
@ -620,12 +544,6 @@ async def update_key_fn(
data=data, existing_key_row=existing_key_row
)
await _enforce_unique_key_alias(
key_alias=non_default_values.get("key_alias", None),
prisma_client=prisma_client,
existing_key_token=existing_key_row.token,
)
response = await prisma_client.update_data(
token=key, data={**non_default_values, "token": key}
)
@ -953,11 +871,11 @@ async def generate_key_helper_fn( # noqa: PLR0915
request_type: Literal[
"user", "key"
], # identifies if this request is from /user/new or /key/generate
duration: Optional[str] = None,
models: list = [],
aliases: dict = {},
config: dict = {},
spend: float = 0.0,
duration: Optional[str],
models: list,
aliases: dict,
config: dict,
spend: float,
key_max_budget: Optional[float] = None, # key_max_budget is used to Budget Per key
key_budget_duration: Optional[str] = None,
budget_id: Optional[float] = None, # budget id <-> LiteLLM_BudgetTable
@ -986,8 +904,8 @@ async def generate_key_helper_fn( # noqa: PLR0915
allowed_cache_controls: Optional[list] = [],
permissions: Optional[dict] = {},
model_max_budget: Optional[dict] = {},
model_rpm_limit: Optional[dict] = None,
model_tpm_limit: Optional[dict] = None,
model_rpm_limit: Optional[dict] = {},
model_tpm_limit: Optional[dict] = {},
guardrails: Optional[list] = None,
teams: Optional[list] = None,
organization_id: Optional[str] = None,
@ -1924,38 +1842,3 @@ async def test_key_logging(
status="healthy",
details=f"No logger exceptions triggered, system is healthy. Manually check if logs were sent to {logging_callbacks} ",
)
async def _enforce_unique_key_alias(
key_alias: Optional[str],
prisma_client: Any,
existing_key_token: Optional[str] = None,
) -> None:
"""
Helper to enforce unique key aliases across all keys.
Args:
key_alias (Optional[str]): The key alias to check
prisma_client (Any): Prisma client instance
existing_key_token (Optional[str]): ID of existing key being updated, to exclude from uniqueness check
(The Admin UI passes key_alias, in all Edit key requests. So we need to be sure that if we find a key with the same alias, it's not the same key we're updating)
Raises:
ProxyException: If key alias already exists on a different key
"""
if key_alias is not None and prisma_client is not None:
where_clause: dict[str, Any] = {"key_alias": key_alias}
if existing_key_token:
# Exclude the current key from the uniqueness check
where_clause["NOT"] = {"token": existing_key_token}
existing_key = await prisma_client.db.litellm_verificationtoken.find_first(
where=where_clause
)
if existing_key is not None:
raise ProxyException(
message=f"Key with alias '{key_alias}' already exists. Unique key aliases across all keys are required.",
type=ProxyErrorTypes.bad_request_error,
param="key_alias",
code=status.HTTP_400_BAD_REQUEST,
)

View file

@ -547,7 +547,6 @@ async def team_member_add(
parent_otel_span=None,
proxy_logging_obj=proxy_logging_obj,
check_cache_only=False,
check_db_only=True,
)
if existing_team_row is None:
raise HTTPException(
@ -1367,7 +1366,6 @@ async def list_team(
""".format(
team.team_id, team.model_dump(), str(e)
)
verbose_proxy_logger.exception(team_exception)
continue
raise HTTPException(status_code=400, detail={"error": team_exception})
return returned_responses

View file

@ -1,10 +0,0 @@
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/

View file

@ -54,26 +54,17 @@ def create_request_copy(request: Request):
}
@router.api_route(
"/gemini/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Google AI Studio Pass-through", "pass-through"],
)
@router.api_route("/gemini/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def gemini_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
):
"""
[Docs](https://docs.litellm.ai/docs/pass_through/google_ai_studio)
"""
## CHECK FOR LITELLM API KEY IN THE QUERY PARAMS - ?..key=LITELLM_API_KEY
google_ai_studio_api_key = request.query_params.get("key") or request.headers.get(
"x-goog-api-key"
)
api_key = request.query_params.get("key")
user_api_key_dict = await user_api_key_auth(
request=request, api_key=f"Bearer {google_ai_studio_api_key}"
request=request, api_key="Bearer {}".format(api_key)
)
base_target_url = "https://generativelanguage.googleapis.com"
@ -120,20 +111,13 @@ async def gemini_proxy_route(
return received_value
@router.api_route(
"/cohere/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Cohere Pass-through", "pass-through"],
)
@router.api_route("/cohere/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def cohere_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
[Docs](https://docs.litellm.ai/docs/pass_through/cohere)
"""
base_target_url = "https://api.cohere.com"
encoded_endpoint = httpx.URL(endpoint).path
@ -170,9 +154,7 @@ async def cohere_proxy_route(
@router.api_route(
"/anthropic/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Anthropic Pass-through", "pass-through"],
"/anthropic/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"]
)
async def anthropic_proxy_route(
endpoint: str,
@ -180,9 +162,6 @@ async def anthropic_proxy_route(
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
[Docs](https://docs.litellm.ai/docs/anthropic_completion)
"""
base_target_url = "https://api.anthropic.com"
encoded_endpoint = httpx.URL(endpoint).path
@ -222,20 +201,13 @@ async def anthropic_proxy_route(
return received_value
@router.api_route(
"/bedrock/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Bedrock Pass-through", "pass-through"],
)
@router.api_route("/bedrock/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def bedrock_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
[Docs](https://docs.litellm.ai/docs/pass_through/bedrock)
"""
create_request_copy(request)
try:
@ -303,22 +275,13 @@ async def bedrock_proxy_route(
return received_value
@router.api_route(
"/azure/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Azure Pass-through", "pass-through"],
)
@router.api_route("/azure/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def azure_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Call any azure endpoint using the proxy.
Just use `{PROXY_BASE_URL}/azure/{endpoint:path}`
"""
base_target_url = get_secret_str(secret_name="AZURE_API_BASE")
if base_target_url is None:
raise Exception(

View file

@ -393,7 +393,6 @@ async def pass_through_request( # noqa: PLR0915
_parsed_body=_parsed_body,
passthrough_logging_payload=passthrough_logging_payload,
litellm_call_id=litellm_call_id,
request=request,
)
# done for supporting 'parallel_request_limiter.py' with pass-through endpoints
logging_obj.update_environment_variables(
@ -529,18 +528,16 @@ async def pass_through_request( # noqa: PLR0915
response_body: Optional[dict] = get_response_body(response)
passthrough_logging_payload["response_body"] = response_body
end_time = datetime.now()
asyncio.create_task(
pass_through_endpoint_logging.pass_through_async_success_handler(
httpx_response=response,
response_body=response_body,
url_route=str(url),
result="",
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
cache_hit=False,
**kwargs,
)
await pass_through_endpoint_logging.pass_through_async_success_handler(
httpx_response=response,
response_body=response_body,
url_route=str(url),
result="",
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
cache_hit=False,
**kwargs,
)
return Response(
@ -575,7 +572,6 @@ async def pass_through_request( # noqa: PLR0915
def _init_kwargs_for_pass_through_endpoint(
request: Request,
user_api_key_dict: UserAPIKeyAuth,
passthrough_logging_payload: PassthroughStandardLoggingPayload,
_parsed_body: Optional[dict] = None,
@ -591,12 +587,6 @@ def _init_kwargs_for_pass_through_endpoint(
}
if _litellm_metadata:
_metadata.update(_litellm_metadata)
_metadata = _update_metadata_with_tags_in_header(
request=request,
metadata=_metadata,
)
kwargs = {
"litellm_params": {
"metadata": _metadata,
@ -608,18 +598,6 @@ def _init_kwargs_for_pass_through_endpoint(
return kwargs
def _update_metadata_with_tags_in_header(request: Request, metadata: dict) -> dict:
"""
If tags are in the request headers, add them to the metadata
Used for google and vertex JS SDKs
"""
_tags = request.headers.get("tags")
if _tags:
metadata["tags"] = _tags.split(",")
return metadata
def create_pass_through_route(
endpoint,
target: str,

View file

@ -58,17 +58,15 @@ class PassThroughStreamingHandler:
# After all chunks are processed, handle post-processing
end_time = datetime.now()
asyncio.create_task(
PassThroughStreamingHandler._route_streaming_logging_to_handler(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body or {},
endpoint_type=endpoint_type,
start_time=start_time,
raw_bytes=raw_bytes,
end_time=end_time,
)
await PassThroughStreamingHandler._route_streaming_logging_to_handler(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body or {},
endpoint_type=endpoint_type,
start_time=start_time,
raw_bytes=raw_bytes,
end_time=end_time,
)
except Exception as e:
verbose_proxy_logger.error(f"Error in chunk_processor: {str(e)}")
@ -110,9 +108,9 @@ class PassThroughStreamingHandler:
all_chunks=all_chunks,
end_time=end_time,
)
standard_logging_response_object = (
anthropic_passthrough_logging_handler_result["result"]
)
standard_logging_response_object = anthropic_passthrough_logging_handler_result[
"result"
]
kwargs = anthropic_passthrough_logging_handler_result["kwargs"]
elif endpoint_type == EndpointType.VERTEX_AI:
vertex_passthrough_logging_handler_result = (
@ -127,9 +125,9 @@ class PassThroughStreamingHandler:
end_time=end_time,
)
)
standard_logging_response_object = (
vertex_passthrough_logging_handler_result["result"]
)
standard_logging_response_object = vertex_passthrough_logging_handler_result[
"result"
]
kwargs = vertex_passthrough_logging_handler_result["kwargs"]
if standard_logging_response_object is None:
@ -170,4 +168,4 @@ class PassThroughStreamingHandler:
# Split by newlines and filter out empty lines
lines = [line.strip() for line in combined_str.split("\n") if line.strip()]
return lines
return lines

View file

@ -18,7 +18,6 @@ from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_stu
from litellm.proxy._types import PassThroughEndpointLoggingResultValues
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.types.utils import StandardPassThroughResponseObject
from litellm.utils import executor as thread_pool_executor
from .llm_provider_handlers.anthropic_passthrough_logging_handler import (
AnthropicPassthroughLoggingHandler,
@ -94,16 +93,15 @@ class PassThroughEndpointLogging:
standard_logging_response_object = StandardPassThroughResponseObject(
response=httpx_response.text
)
thread_pool_executor.submit(
logging_obj.success_handler,
threading.Thread(
target=logging_obj.success_handler,
args=(
standard_logging_response_object,
start_time,
end_time,
cache_hit,
),
)
).start()
await logging_obj.async_success_handler(
result=(
json.dumps(result)

View file

@ -1,5 +1,24 @@
include:
- model_config.yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/
router_settings:
provider_budget_config:
openai:
budget_limit: 0.3 # float of $ value budget for time period
time_period: 1d # can be 1d, 2d, 30d
anthropic:
budget_limit: 5
time_period: 1d
redis_host: os.environ/REDIS_HOST
redis_port: os.environ/REDIS_PORT
redis_password: os.environ/REDIS_PASSWORD
litellm_settings:
callbacks: ["datadog"]
callbacks: ["prometheus"]

View file

@ -134,10 +134,7 @@ from litellm.proxy.auth.model_checks import (
get_key_models,
get_team_models,
)
from litellm.proxy.auth.user_api_key_auth import (
user_api_key_auth,
user_api_key_auth_websocket,
)
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
## Import All Misc routes here ##
from litellm.proxy.caching_routes import router as caching_router
@ -176,7 +173,6 @@ from litellm.proxy.health_endpoints._health_endpoints import router as health_ro
from litellm.proxy.hooks.prompt_injection_detection import (
_OPTIONAL_PromptInjectionDetection,
)
from litellm.proxy.hooks.proxy_failure_handler import _PROXY_failure_handler
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
from litellm.proxy.management_endpoints.customer_endpoints import (
router as customer_router,
@ -530,6 +526,14 @@ db_writer_client: Optional[HTTPHandler] = None
### logger ###
def _get_pydantic_json_dict(pydantic_obj: BaseModel) -> dict:
try:
return pydantic_obj.model_dump() # type: ignore
except Exception:
# if using pydantic v1
return pydantic_obj.dict()
def get_custom_headers(
*,
user_api_key_dict: UserAPIKeyAuth,
@ -683,6 +687,68 @@ def cost_tracking():
litellm._async_success_callback.append(_PROXY_track_cost_callback) # type: ignore
async def _PROXY_failure_handler(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time=None,
end_time=None, # start/end time for completion
):
global prisma_client
if prisma_client is not None:
verbose_proxy_logger.debug(
"inside _PROXY_failure_handler kwargs=", extra=kwargs
)
_exception = kwargs.get("exception")
_exception_type = _exception.__class__.__name__
_model = kwargs.get("model", None)
_optional_params = kwargs.get("optional_params", {})
_optional_params = copy.deepcopy(_optional_params)
for k, v in _optional_params.items():
v = str(v)
v = v[:100]
_status_code = "500"
try:
_status_code = str(_exception.status_code)
except Exception:
# Don't let this fail logging the exception to the dB
pass
_litellm_params = kwargs.get("litellm_params", {}) or {}
_metadata = _litellm_params.get("metadata", {}) or {}
_model_id = _metadata.get("model_info", {}).get("id", "")
_model_group = _metadata.get("model_group", "")
api_base = litellm.get_api_base(model=_model, optional_params=_litellm_params)
_exception_string = str(_exception)
error_log = LiteLLM_ErrorLogs(
request_id=str(uuid.uuid4()),
model_group=_model_group,
model_id=_model_id,
litellm_model_name=kwargs.get("model"),
request_kwargs=_optional_params,
api_base=api_base,
exception_type=_exception_type,
status_code=_status_code,
exception_string=_exception_string,
startTime=kwargs.get("start_time"),
endTime=kwargs.get("end_time"),
)
# helper function to convert to dict on pydantic v2 & v1
error_log_dict = _get_pydantic_json_dict(error_log)
error_log_dict["request_kwargs"] = json.dumps(error_log_dict["request_kwargs"])
await prisma_client.db.litellm_errorlogs.create(
data=error_log_dict # type: ignore
)
pass
@log_db_metrics
async def _PROXY_track_cost_callback(
kwargs, # kwargs to completion
@ -1311,16 +1377,6 @@ class ProxyConfig:
_, file_extension = os.path.splitext(config_file_path)
return file_extension.lower() == ".yaml" or file_extension.lower() == ".yml"
def _load_yaml_file(self, file_path: str) -> dict:
"""
Load and parse a YAML file
"""
try:
with open(file_path, "r") as file:
return yaml.safe_load(file) or {}
except Exception as e:
raise Exception(f"Error loading yaml file {file_path}: {str(e)}")
async def _get_config_from_file(
self, config_file_path: Optional[str] = None
) -> dict:
@ -1351,51 +1407,6 @@ class ProxyConfig:
"litellm_settings": {},
}
# Process includes
config = self._process_includes(
config=config, base_dir=os.path.dirname(os.path.abspath(file_path or ""))
)
verbose_proxy_logger.debug(f"loaded config={json.dumps(config, indent=4)}")
return config
def _process_includes(self, config: dict, base_dir: str) -> dict:
"""
Process includes by appending their contents to the main config
Handles nested config.yamls with `include` section
Example config: This will get the contents from files in `include` and append it
```yaml
include:
- model_config.yaml
litellm_settings:
callbacks: ["prometheus"]
```
"""
if "include" not in config:
return config
if not isinstance(config["include"], list):
raise ValueError("'include' must be a list of file paths")
# Load and append all included files
for include_file in config["include"]:
file_path = os.path.join(base_dir, include_file)
if not os.path.exists(file_path):
raise FileNotFoundError(f"Included file not found: {file_path}")
included_config = self._load_yaml_file(file_path)
# Simply update/extend the main config with included config
for key, value in included_config.items():
if isinstance(value, list) and key in config:
config[key].extend(value)
else:
config[key] = value
# Remove the include directive
del config["include"]
return config
async def save_config(self, new_config: dict):
@ -4328,11 +4339,7 @@ from litellm import _arealtime
@app.websocket("/v1/realtime")
async def websocket_endpoint(
websocket: WebSocket,
model: str,
user_api_key_dict=Depends(user_api_key_auth_websocket),
):
async def websocket_endpoint(websocket: WebSocket, model: str):
import websockets
await websocket.accept()
@ -5656,11 +5663,11 @@ async def anthropic_response( # noqa: PLR0915
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
🚨 DEPRECATED ENDPOINT🚨
This is a BETA endpoint that calls 100+ LLMs in the anthropic format.
Use `{PROXY_BASE_URL}/anthropic/v1/messages` instead - [Docs](https://docs.litellm.ai/docs/anthropic_completion).
To do a simple pass-through for anthropic, do `{PROXY_BASE_URL}/anthropic/v1/messages`
This was a BETA endpoint that calls 100+ LLMs in the anthropic format.
Docs - https://docs.litellm.ai/docs/anthropic_completion
"""
from litellm import adapter_completion
from litellm.adapters.anthropic_adapter import anthropic_adapter

View file

@ -86,6 +86,7 @@ async def route_request(
else:
models = [model.strip() for model in data.pop("model").split(",")]
return llm_router.abatch_completion(models=models, **data)
elif llm_router is not None:
if (
data["model"] in router_model_names
@ -112,9 +113,6 @@ async def route_request(
or len(llm_router.pattern_router.patterns) > 0
):
return getattr(llm_router, f"{route_type}")(**data)
elif route_type == "amoderation":
# moderation endpoint does not require `model` parameter
return getattr(llm_router, f"{route_type}")(**data)
elif user_model is not None:
return getattr(litellm, f"{route_type}")(**data)

View file

@ -854,20 +854,6 @@ class ProxyLogging:
),
).start()
await self._run_post_call_failure_hook_custom_loggers(
original_exception=original_exception,
request_data=request_data,
user_api_key_dict=user_api_key_dict,
)
return
async def _run_post_call_failure_hook_custom_loggers(
self,
original_exception: Exception,
request_data: dict,
user_api_key_dict: UserAPIKeyAuth,
):
for callback in litellm.callbacks:
try:
_callback: Optional[CustomLogger] = None
@ -886,38 +872,7 @@ class ProxyLogging:
except Exception as e:
raise e
async def async_log_proxy_authentication_errors(
self,
original_exception: Exception,
request: Request,
parent_otel_span: Optional[Any],
api_key: Optional[str],
):
"""
Handler for Logging Authentication Errors on LiteLLM Proxy
Why not use post_call_failure_hook?
- `post_call_failure_hook` calls `litellm_logging_obj.async_failure_handler`. This led to the Exception being logged twice
What does this handler do?
- Logs Authentication Errors (like invalid API Key passed) to CustomLogger compatible classes (OTEL, Datadog etc)
- calls CustomLogger.async_post_call_failure_hook
"""
user_api_key_dict = UserAPIKeyAuth(
parent_otel_span=parent_otel_span,
token=_hash_token_if_needed(token=api_key or ""),
)
try:
request_data = await request.json()
except json.JSONDecodeError:
# For GET requests or requests without a JSON body
request_data = {}
await self._run_post_call_failure_hook_custom_loggers(
original_exception=original_exception,
request_data=request_data,
user_api_key_dict=user_api_key_dict,
)
pass
return
async def post_call_success_hook(
self,

View file

@ -58,21 +58,12 @@ def create_request_copy(request: Request):
}
@router.api_route(
"/langfuse/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Langfuse Pass-through", "pass-through"],
)
@router.api_route("/langfuse/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def langfuse_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
):
"""
Call Langfuse via LiteLLM proxy. Works with Langfuse SDK.
[Docs](https://docs.litellm.ai/docs/pass_through/langfuse)
"""
## CHECK FOR LITELLM API KEY IN THE QUERY PARAMS - ?..key=LITELLM_API_KEY
api_key = request.headers.get("Authorization") or ""

View file

@ -28,54 +28,25 @@ from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.pass_through_endpoints.pass_through_endpoints import (
create_pass_through_route,
)
from litellm.secret_managers.main import get_secret_str
from litellm.types.passthrough_endpoints.vertex_ai import *
router = APIRouter()
default_vertex_config: VertexPassThroughCredentials = VertexPassThroughCredentials()
default_vertex_config = None
def _get_vertex_env_vars() -> VertexPassThroughCredentials:
"""
Helper to get vertex pass through config from environment variables
The following environment variables are used:
- DEFAULT_VERTEXAI_PROJECT (project id)
- DEFAULT_VERTEXAI_LOCATION (location)
- DEFAULT_GOOGLE_APPLICATION_CREDENTIALS (path to credentials file)
"""
return VertexPassThroughCredentials(
vertex_project=get_secret_str("DEFAULT_VERTEXAI_PROJECT"),
vertex_location=get_secret_str("DEFAULT_VERTEXAI_LOCATION"),
vertex_credentials=get_secret_str("DEFAULT_GOOGLE_APPLICATION_CREDENTIALS"),
)
def set_default_vertex_config(config: Optional[dict] = None):
"""Sets vertex configuration from provided config and/or environment variables
Args:
config (Optional[dict]): Configuration dictionary
Example: {
"vertex_project": "my-project-123",
"vertex_location": "us-central1",
"vertex_credentials": "os.environ/GOOGLE_CREDS"
}
"""
def set_default_vertex_config(config):
global default_vertex_config
# Initialize config dictionary if None
if config is None:
default_vertex_config = _get_vertex_env_vars()
return
if not isinstance(config, dict):
raise ValueError("invalid config, vertex default config must be a dictionary")
if isinstance(config, dict):
for key, value in config.items():
if isinstance(value, str) and value.startswith("os.environ/"):
config[key] = litellm.get_secret(value)
default_vertex_config = VertexPassThroughCredentials(**config)
default_vertex_config = config
def exception_handler(e: Exception):
@ -142,26 +113,13 @@ def construct_target_url(
@router.api_route(
"/vertex-ai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Vertex AI Pass-through", "pass-through"],
include_in_schema=False,
)
@router.api_route(
"/vertex_ai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Vertex AI Pass-through", "pass-through"],
"/vertex-ai/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"]
)
async def vertex_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
):
"""
Call LiteLLM proxy via Vertex AI SDK.
[Docs](https://docs.litellm.ai/docs/pass_through/vertex_ai)
"""
encoded_endpoint = httpx.URL(endpoint).path
import re
@ -177,7 +135,7 @@ async def vertex_proxy_route(
vertex_project = None
vertex_location = None
# Use headers from the incoming request if default_vertex_config is not set
if default_vertex_config.vertex_project is None:
if default_vertex_config is None:
headers = dict(request.headers) or {}
verbose_proxy_logger.debug(
"default_vertex_config not set, incoming request headers %s", headers
@ -190,9 +148,9 @@ async def vertex_proxy_route(
headers.pop("content-length", None)
headers.pop("host", None)
else:
vertex_project = default_vertex_config.vertex_project
vertex_location = default_vertex_config.vertex_location
vertex_credentials = default_vertex_config.vertex_credentials
vertex_project = default_vertex_config.get("vertex_project")
vertex_location = default_vertex_config.get("vertex_location")
vertex_credentials = default_vertex_config.get("vertex_credentials")
base_target_url = f"https://{vertex_location}-aiplatform.googleapis.com/"

View file

@ -41,7 +41,6 @@ from typing import (
import httpx
import openai
from openai import AsyncOpenAI
from pydantic import BaseModel
from typing_extensions import overload
import litellm
@ -123,7 +122,6 @@ from litellm.types.router import (
ModelInfo,
ProviderBudgetConfigType,
RetryPolicy,
RouterCacheEnum,
RouterErrors,
RouterGeneralSettings,
RouterModelGroupAliasItem,
@ -241,6 +239,7 @@ class Router:
] = "simple-shuffle",
routing_strategy_args: dict = {}, # just for latency-based
provider_budget_config: Optional[ProviderBudgetConfigType] = None,
semaphore: Optional[asyncio.Semaphore] = None,
alerting_config: Optional[AlertingConfig] = None,
router_general_settings: Optional[
RouterGeneralSettings
@ -316,6 +315,8 @@ class Router:
from litellm._service_logger import ServiceLogging
if semaphore:
self.semaphore = semaphore
self.set_verbose = set_verbose
self.debug_level = debug_level
self.enable_pre_call_checks = enable_pre_call_checks
@ -505,14 +506,6 @@ class Router:
litellm.success_callback.append(self.sync_deployment_callback_on_success)
else:
litellm.success_callback = [self.sync_deployment_callback_on_success]
if isinstance(litellm._async_failure_callback, list):
litellm._async_failure_callback.append(
self.async_deployment_callback_on_failure
)
else:
litellm._async_failure_callback = [
self.async_deployment_callback_on_failure
]
## COOLDOWNS ##
if isinstance(litellm.failure_callback, list):
litellm.failure_callback.append(self.deployment_callback_on_failure)
@ -2563,7 +2556,10 @@ class Router:
original_function: Callable,
**kwargs,
):
if kwargs.get("model") and self.get_model_list(model_name=kwargs["model"]):
if (
"model" in kwargs
and self.get_model_list(model_name=kwargs["model"]) is not None
):
deployment = await self.async_get_available_deployment(
model=kwargs["model"]
)
@ -3295,14 +3291,13 @@ class Router:
):
"""
Track remaining tpm/rpm quota for model in model_list
Currently, only updates TPM usage.
"""
try:
if kwargs["litellm_params"].get("metadata") is None:
pass
else:
deployment_name = kwargs["litellm_params"]["metadata"].get(
"deployment", None
) # stable name - works for wildcard routes as well
model_group = kwargs["litellm_params"]["metadata"].get(
"model_group", None
)
@ -3313,8 +3308,6 @@ class Router:
elif isinstance(id, int):
id = str(id)
parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
_usage_obj = completion_response.get("usage")
total_tokens = _usage_obj.get("total_tokens", 0) if _usage_obj else 0
@ -3326,14 +3319,13 @@ class Router:
"%H-%M"
) # use the same timezone regardless of system clock
tpm_key = RouterCacheEnum.TPM.value.format(
id=id, current_minute=current_minute, model=deployment_name
)
tpm_key = f"global_router:{id}:tpm:{current_minute}"
# ------------
# Update usage
# ------------
# update cache
parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
## TPM
await self.cache.async_increment_cache(
key=tpm_key,
@ -3342,17 +3334,6 @@ class Router:
ttl=RoutingArgs.ttl.value,
)
## RPM
rpm_key = RouterCacheEnum.RPM.value.format(
id=id, current_minute=current_minute, model=deployment_name
)
await self.cache.async_increment_cache(
key=rpm_key,
value=1,
parent_otel_span=parent_otel_span,
ttl=RoutingArgs.ttl.value,
)
increment_deployment_successes_for_current_minute(
litellm_router_instance=self,
deployment_id=id,
@ -3465,40 +3446,6 @@ class Router:
except Exception as e:
raise e
async def async_deployment_callback_on_failure(
self, kwargs, completion_response: Optional[Any], start_time, end_time
):
"""
Update RPM usage for a deployment
"""
deployment_name = kwargs["litellm_params"]["metadata"].get(
"deployment", None
) # handles wildcard routes - by giving the original name sent to `litellm.completion`
model_group = kwargs["litellm_params"]["metadata"].get("model_group", None)
model_info = kwargs["litellm_params"].get("model_info", {}) or {}
id = model_info.get("id", None)
if model_group is None or id is None:
return
elif isinstance(id, int):
id = str(id)
parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)
dt = get_utc_datetime()
current_minute = dt.strftime(
"%H-%M"
) # use the same timezone regardless of system clock
## RPM
rpm_key = RouterCacheEnum.RPM.value.format(
id=id, current_minute=current_minute, model=deployment_name
)
await self.cache.async_increment_cache(
key=rpm_key,
value=1,
parent_otel_span=parent_otel_span,
ttl=RoutingArgs.ttl.value,
)
def log_retry(self, kwargs: dict, e: Exception) -> dict:
"""
When a retry or fallback happens, log the details of the just failed model call - similar to Sentry breadcrumbing
@ -4176,24 +4123,7 @@ class Router:
raise Exception("Model Name invalid - {}".format(type(model)))
return None
@overload
def get_router_model_info(
self, deployment: dict, received_model_name: str, id: None = None
) -> ModelMapInfo:
pass
@overload
def get_router_model_info(
self, deployment: None, received_model_name: str, id: str
) -> ModelMapInfo:
pass
def get_router_model_info(
self,
deployment: Optional[dict],
received_model_name: str,
id: Optional[str] = None,
) -> ModelMapInfo:
def get_router_model_info(self, deployment: dict) -> ModelMapInfo:
"""
For a given model id, return the model info (max tokens, input cost, output cost, etc.).
@ -4207,14 +4137,6 @@ class Router:
Raises:
- ValueError -> If model is not mapped yet
"""
if id is not None:
_deployment = self.get_deployment(model_id=id)
if _deployment is not None:
deployment = _deployment.model_dump(exclude_none=True)
if deployment is None:
raise ValueError("Deployment not found")
## GET BASE MODEL
base_model = deployment.get("model_info", {}).get("base_model", None)
if base_model is None:
@ -4236,27 +4158,10 @@ class Router:
elif custom_llm_provider != "azure":
model = _model
potential_models = self.pattern_router.route(received_model_name)
if "*" in model and potential_models is not None: # if wildcard route
for potential_model in potential_models:
try:
if potential_model.get("model_info", {}).get(
"id"
) == deployment.get("model_info", {}).get("id"):
model = potential_model.get("litellm_params", {}).get(
"model"
)
break
except Exception:
pass
## GET LITELLM MODEL INFO - raises exception, if model is not mapped
if not model.startswith(custom_llm_provider):
model_info_name = "{}/{}".format(custom_llm_provider, model)
else:
model_info_name = model
model_info = litellm.get_model_info(model=model_info_name)
model_info = litellm.get_model_info(
model="{}/{}".format(custom_llm_provider, model)
)
## CHECK USER SET MODEL INFO
user_model_info = deployment.get("model_info", {})
@ -4306,10 +4211,8 @@ class Router:
total_tpm: Optional[int] = None
total_rpm: Optional[int] = None
configurable_clientside_auth_params: CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS = None
model_list = self.get_model_list(model_name=model_group)
if model_list is None:
return None
for model in model_list:
for model in self.model_list:
is_match = False
if (
"model_name" in model and model["model_name"] == model_group
@ -4324,7 +4227,7 @@ class Router:
if not is_match:
continue
# model in model group found #
litellm_params = LiteLLM_Params(**model["litellm_params"]) # type: ignore
litellm_params = LiteLLM_Params(**model["litellm_params"])
# get configurable clientside auth params
configurable_clientside_auth_params = (
litellm_params.configurable_clientside_auth_params
@ -4332,30 +4235,38 @@ class Router:
# get model tpm
_deployment_tpm: Optional[int] = None
if _deployment_tpm is None:
_deployment_tpm = model.get("tpm", None) # type: ignore
_deployment_tpm = model.get("tpm", None)
if _deployment_tpm is None:
_deployment_tpm = model.get("litellm_params", {}).get("tpm", None) # type: ignore
_deployment_tpm = model.get("litellm_params", {}).get("tpm", None)
if _deployment_tpm is None:
_deployment_tpm = model.get("model_info", {}).get("tpm", None) # type: ignore
_deployment_tpm = model.get("model_info", {}).get("tpm", None)
if _deployment_tpm is not None:
if total_tpm is None:
total_tpm = 0
total_tpm += _deployment_tpm # type: ignore
# get model rpm
_deployment_rpm: Optional[int] = None
if _deployment_rpm is None:
_deployment_rpm = model.get("rpm", None) # type: ignore
_deployment_rpm = model.get("rpm", None)
if _deployment_rpm is None:
_deployment_rpm = model.get("litellm_params", {}).get("rpm", None) # type: ignore
_deployment_rpm = model.get("litellm_params", {}).get("rpm", None)
if _deployment_rpm is None:
_deployment_rpm = model.get("model_info", {}).get("rpm", None) # type: ignore
_deployment_rpm = model.get("model_info", {}).get("rpm", None)
if _deployment_rpm is not None:
if total_rpm is None:
total_rpm = 0
total_rpm += _deployment_rpm # type: ignore
# get model info
try:
model_info = litellm.get_model_info(model=litellm_params.model)
except Exception:
model_info = None
# get llm provider
litellm_model, llm_provider = "", ""
model, llm_provider = "", ""
try:
litellm_model, llm_provider, _, _ = litellm.get_llm_provider(
model, llm_provider, _, _ = litellm.get_llm_provider(
model=litellm_params.model,
custom_llm_provider=litellm_params.custom_llm_provider,
)
@ -4366,7 +4277,7 @@ class Router:
if model_info is None:
supported_openai_params = litellm.get_supported_openai_params(
model=litellm_model, custom_llm_provider=llm_provider
model=model, custom_llm_provider=llm_provider
)
if supported_openai_params is None:
supported_openai_params = []
@ -4456,20 +4367,7 @@ class Router:
model_group_info.supported_openai_params = model_info[
"supported_openai_params"
]
if model_info.get("tpm", None) is not None and _deployment_tpm is None:
_deployment_tpm = model_info.get("tpm")
if model_info.get("rpm", None) is not None and _deployment_rpm is None:
_deployment_rpm = model_info.get("rpm")
if _deployment_tpm is not None:
if total_tpm is None:
total_tpm = 0
total_tpm += _deployment_tpm # type: ignore
if _deployment_rpm is not None:
if total_rpm is None:
total_rpm = 0
total_rpm += _deployment_rpm # type: ignore
if model_group_info is not None:
## UPDATE WITH TOTAL TPM/RPM FOR MODEL GROUP
if total_tpm is not None:
@ -4521,10 +4419,7 @@ class Router:
self, model_group: str
) -> Tuple[Optional[int], Optional[int]]:
"""
Returns current tpm/rpm usage for model group
Parameters:
- model_group: str - the received model name from the user (can be a wildcard route).
Returns remaining tpm/rpm quota for model group
Returns:
- usage: Tuple[tpm, rpm]
@ -4535,37 +4430,20 @@ class Router:
) # use the same timezone regardless of system clock
tpm_keys: List[str] = []
rpm_keys: List[str] = []
model_list = self.get_model_list(model_name=model_group)
if model_list is None: # no matching deployments
return None, None
for model in model_list:
id: Optional[str] = model.get("model_info", {}).get("id") # type: ignore
litellm_model: Optional[str] = model["litellm_params"].get(
"model"
) # USE THE MODEL SENT TO litellm.completion() - consistent with how global_router cache is written.
if id is None or litellm_model is None:
continue
tpm_keys.append(
RouterCacheEnum.TPM.value.format(
id=id,
model=litellm_model,
current_minute=current_minute,
for model in self.model_list:
if "model_name" in model and model["model_name"] == model_group:
tpm_keys.append(
f"global_router:{model['model_info']['id']}:tpm:{current_minute}"
)
)
rpm_keys.append(
RouterCacheEnum.RPM.value.format(
id=id,
model=litellm_model,
current_minute=current_minute,
rpm_keys.append(
f"global_router:{model['model_info']['id']}:rpm:{current_minute}"
)
)
combined_tpm_rpm_keys = tpm_keys + rpm_keys
combined_tpm_rpm_values = await self.cache.async_batch_get_cache(
keys=combined_tpm_rpm_keys
)
if combined_tpm_rpm_values is None:
return None, None
@ -4590,32 +4468,6 @@ class Router:
rpm_usage += t
return tpm_usage, rpm_usage
async def get_remaining_model_group_usage(self, model_group: str) -> Dict[str, int]:
current_tpm, current_rpm = await self.get_model_group_usage(model_group)
model_group_info = self.get_model_group_info(model_group)
if model_group_info is not None and model_group_info.tpm is not None:
tpm_limit = model_group_info.tpm
else:
tpm_limit = None
if model_group_info is not None and model_group_info.rpm is not None:
rpm_limit = model_group_info.rpm
else:
rpm_limit = None
returned_dict = {}
if tpm_limit is not None and current_tpm is not None:
returned_dict["x-ratelimit-remaining-tokens"] = tpm_limit - current_tpm
returned_dict["x-ratelimit-limit-tokens"] = tpm_limit
if rpm_limit is not None and current_rpm is not None:
returned_dict["x-ratelimit-remaining-requests"] = rpm_limit - current_rpm
returned_dict["x-ratelimit-limit-requests"] = rpm_limit
return returned_dict
async def set_response_headers(
self, response: Any, model_group: Optional[str] = None
) -> Any:
@ -4626,30 +4478,6 @@ class Router:
# - if healthy_deployments > 1, return model group rate limit headers
# - else return the model's rate limit headers
"""
if (
isinstance(response, BaseModel)
and hasattr(response, "_hidden_params")
and isinstance(response._hidden_params, dict) # type: ignore
):
response._hidden_params.setdefault("additional_headers", {}) # type: ignore
response._hidden_params["additional_headers"][ # type: ignore
"x-litellm-model-group"
] = model_group
additional_headers = response._hidden_params["additional_headers"] # type: ignore
if (
"x-ratelimit-remaining-tokens" not in additional_headers
and "x-ratelimit-remaining-requests" not in additional_headers
and model_group is not None
):
remaining_usage = await self.get_remaining_model_group_usage(
model_group
)
for header, value in remaining_usage.items():
if value is not None:
additional_headers[header] = value
return response
def get_model_ids(self, model_name: Optional[str] = None) -> List[str]:
@ -4712,9 +4540,6 @@ class Router:
if hasattr(self, "model_list"):
returned_models: List[DeploymentTypedDict] = []
if model_name is not None:
returned_models.extend(self._get_all_deployments(model_name=model_name))
if hasattr(self, "model_group_alias"):
for model_alias, model_value in self.model_group_alias.items():
@ -4735,32 +4560,21 @@ class Router:
)
)
if len(returned_models) == 0: # check if wildcard route
potential_wildcard_models = self.pattern_router.route(model_name)
if potential_wildcard_models is not None:
returned_models.extend(
[DeploymentTypedDict(**m) for m in potential_wildcard_models] # type: ignore
)
if model_name is None:
returned_models += self.model_list
return returned_models
returned_models.extend(self._get_all_deployments(model_name=model_name))
return returned_models
return None
def get_model_access_groups(self, model_name: Optional[str] = None):
"""
If model_name is provided, only return access groups for that model.
"""
def get_model_access_groups(self):
from collections import defaultdict
access_groups = defaultdict(list)
model_list = self.get_model_list(model_name=model_name)
if model_list:
for m in model_list:
if self.model_list:
for m in self.model_list:
for group in m.get("model_info", {}).get("access_groups", []):
model_name = m["model_name"]
access_groups[group].append(model_name)
@ -4996,12 +4810,10 @@ class Router:
base_model = deployment.get("litellm_params", {}).get(
"base_model", None
)
model_info = self.get_router_model_info(
deployment=deployment, received_model_name=model
)
model = base_model or deployment.get("litellm_params", {}).get(
"model", None
)
model_info = self.get_router_model_info(deployment=deployment)
if (
isinstance(model_info, dict)

View file

@ -79,9 +79,7 @@ class PatternMatchRouter:
return new_deployments
def route(
self, request: Optional[str], filtered_model_names: Optional[List[str]] = None
) -> Optional[List[Dict]]:
def route(self, request: Optional[str]) -> Optional[List[Dict]]:
"""
Route a requested model to the corresponding llm deployments based on the regex pattern
@ -91,26 +89,14 @@ class PatternMatchRouter:
Args:
request: Optional[str]
filtered_model_names: Optional[List[str]] - if provided, only return deployments that match the filtered_model_names
Returns:
Optional[List[Deployment]]: llm deployments
"""
try:
if request is None:
return None
regex_filtered_model_names = (
[self._pattern_to_regex(m) for m in filtered_model_names]
if filtered_model_names is not None
else []
)
for pattern, llm_deployments in self.patterns.items():
if (
filtered_model_names is not None
and pattern not in regex_filtered_model_names
):
continue
pattern_match = re.match(pattern, request)
if pattern_match:
return self._return_pattern_matched_deployments(

View file

@ -0,0 +1,29 @@
import pytest
import litellm
def test_mlflow_logging():
litellm.success_callback = ["mlflow"]
litellm.failure_callback = ["mlflow"]
litellm.completion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
user="test-user",
)
@pytest.mark.asyncio()
async def test_async_mlflow_logging():
litellm.success_callback = ["mlflow"]
litellm.failure_callback = ["mlflow"]
await litellm.acompletion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "hi test from local arize"}],
mock_response="hello",
temperature=0.1,
user="OTEL_USER",
)

View file

@ -1,18 +0,0 @@
"""
Used for /vertex_ai/ pass through endpoints
"""
from typing import Optional
from pydantic import BaseModel
class VertexPassThroughCredentials(BaseModel):
# Example: vertex_project = "my-project-123"
vertex_project: Optional[str] = None
# Example: vertex_location = "us-central1"
vertex_location: Optional[str] = None
# Example: vertex_credentials = "/path/to/credentials.json" or "os.environ/GOOGLE_CREDS"
vertex_credentials: Optional[str] = None

View file

@ -9,7 +9,7 @@ from typing import Any, Dict, List, Literal, Optional, Tuple, Union
import httpx
from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Required, TypedDict
from typing_extensions import TypedDict
from ..exceptions import RateLimitError
from .completion import CompletionRequest
@ -352,10 +352,9 @@ class LiteLLMParamsTypedDict(TypedDict, total=False):
tags: Optional[List[str]]
class DeploymentTypedDict(TypedDict, total=False):
model_name: Required[str]
litellm_params: Required[LiteLLMParamsTypedDict]
model_info: dict
class DeploymentTypedDict(TypedDict):
model_name: str
litellm_params: LiteLLMParamsTypedDict
SPECIAL_MODEL_INFO_PARAMS = [
@ -641,8 +640,3 @@ class ProviderBudgetInfo(BaseModel):
ProviderBudgetConfigType = Dict[str, ProviderBudgetInfo]
class RouterCacheEnum(enum.Enum):
TPM = "global_router:{id}:{model}:tpm:{current_minute}"
RPM = "global_router:{id}:{model}:rpm:{current_minute}"

View file

@ -106,8 +106,6 @@ class ModelInfo(TypedDict, total=False):
supports_prompt_caching: Optional[bool]
supports_audio_input: Optional[bool]
supports_audio_output: Optional[bool]
tpm: Optional[int]
rpm: Optional[int]
class GenericStreamingChunk(TypedDict, total=False):

View file

@ -4656,8 +4656,6 @@ def get_model_info( # noqa: PLR0915
),
supports_audio_input=_model_info.get("supports_audio_input", False),
supports_audio_output=_model_info.get("supports_audio_output", False),
tpm=_model_info.get("tpm", None),
rpm=_model_info.get("rpm", None),
)
except Exception as e:
if "OllamaError" in str(e):

View file

@ -2032,6 +2032,7 @@
"tool_use_system_prompt_tokens": 264,
"supports_assistant_prefill": true,
"supports_prompt_caching": true,
"supports_pdf_input": true,
"supports_response_schema": true
},
"claude-3-opus-20240229": {
@ -2097,7 +2098,6 @@
"supports_vision": true,
"tool_use_system_prompt_tokens": 159,
"supports_assistant_prefill": true,
"supports_pdf_input": true,
"supports_prompt_caching": true,
"supports_response_schema": true
},
@ -3383,8 +3383,6 @@
"supports_vision": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-001": {
@ -3408,8 +3406,6 @@
"supports_vision": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash": {
@ -3432,8 +3428,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-latest": {
@ -3456,32 +3450,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b": {
"max_tokens": 8192,
"max_input_tokens": 1048576,
"max_output_tokens": 8192,
"max_images_per_prompt": 3000,
"max_videos_per_prompt": 10,
"max_video_length": 1,
"max_audio_length_hours": 8.4,
"max_audio_per_prompt": 1,
"max_pdf_size_mb": 30,
"input_cost_per_token": 0,
"input_cost_per_token_above_128k_tokens": 0,
"output_cost_per_token": 0,
"output_cost_per_token_above_128k_tokens": 0,
"litellm_provider": "gemini",
"mode": "chat",
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b-exp-0924": {
@ -3504,8 +3472,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-exp-1114": {
@ -3528,12 +3494,7 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing",
"metadata": {
"notes": "Rate limits not documented for gemini-exp-1114. Assuming same as gemini-1.5-pro."
}
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-exp-0827": {
"max_tokens": 8192,
@ -3555,8 +3516,6 @@
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 2000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-flash-8b-exp-0827": {
@ -3578,9 +3537,6 @@
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 4000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-pro": {
@ -3594,10 +3550,7 @@
"litellm_provider": "gemini",
"mode": "chat",
"supports_function_calling": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://ai.google.dev/gemini-api/docs/models/gemini"
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
},
"gemini/gemini-1.5-pro": {
"max_tokens": 8192,
@ -3614,8 +3567,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-002": {
@ -3634,8 +3585,6 @@
"supports_tool_choice": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-001": {
@ -3654,8 +3603,6 @@
"supports_tool_choice": true,
"supports_response_schema": true,
"supports_prompt_caching": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-exp-0801": {
@ -3673,8 +3620,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-exp-0827": {
@ -3692,8 +3637,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-1.5-pro-latest": {
@ -3711,8 +3654,6 @@
"supports_vision": true,
"supports_tool_choice": true,
"supports_response_schema": true,
"tpm": 4000000,
"rpm": 1000,
"source": "https://ai.google.dev/pricing"
},
"gemini/gemini-pro-vision": {
@ -3727,9 +3668,6 @@
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"rpd": 30000,
"tpm": 120000,
"rpm": 360,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
},
"gemini/gemini-gemma-2-27b-it": {

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.53.2"
version = "1.52.15"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@ -91,7 +91,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.53.2"
version = "1.52.15"
version_files = [
"pyproject.toml:^version"
]

View file

@ -1,6 +1,6 @@
# LITELLM PROXY DEPENDENCIES #
anyio==4.4.0 # openai + http req.
openai==1.55.3 # openai req.
openai==1.54.0 # openai req.
fastapi==0.111.0 # server dep
backoff==2.2.1 # server dep
pyyaml==6.0.0 # server dep

View file

@ -45,23 +45,16 @@ print(env_keys)
# Parse the documentation to extract documented keys
repo_base = "./"
print(os.listdir(repo_base))
docs_path = (
"./docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
)
docs_path = "./docs/my-website/docs/proxy/configs.md" # Path to the documentation
documented_keys = set()
try:
with open(docs_path, "r", encoding="utf-8") as docs_file:
content = docs_file.read()
print(f"content: {content}")
# Find the section titled "general_settings - Reference"
general_settings_section = re.search(
r"### environment variables - Reference(.*?)(?=\n###|\Z)",
content,
re.DOTALL | re.MULTILINE,
r"### environment variables - Reference(.*?)###", content, re.DOTALL
)
print(f"general_settings_section: {general_settings_section}")
if general_settings_section:
# Extract the table rows, which contain the documented keys
table_content = general_settings_section.group(1)
@ -75,7 +68,6 @@ except Exception as e:
)
print(f"documented_keys: {documented_keys}")
# Compare and find undocumented keys
undocumented_keys = env_keys - documented_keys

View file

@ -34,9 +34,7 @@ for root, dirs, files in os.walk(repo_base):
# Parse the documentation to extract documented keys
repo_base = "./"
print(os.listdir(repo_base))
docs_path = (
"./docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
)
docs_path = "./docs/my-website/docs/proxy/configs.md" # Path to the documentation
documented_keys = set()
try:
with open(docs_path, "r", encoding="utf-8") as docs_file:

View file

@ -1,87 +0,0 @@
import os
import re
import inspect
from typing import Type
import sys
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
def get_init_params(cls: Type) -> list[str]:
"""
Retrieve all parameters supported by the `__init__` method of a given class.
Args:
cls: The class to inspect.
Returns:
A list of parameter names.
"""
if not hasattr(cls, "__init__"):
raise ValueError(
f"The provided class {cls.__name__} does not have an __init__ method."
)
init_method = cls.__init__
argspec = inspect.getfullargspec(init_method)
# The first argument is usually 'self', so we exclude it
return argspec.args[1:] # Exclude 'self'
router_init_params = set(get_init_params(litellm.router.Router))
print(router_init_params)
router_init_params.remove("model_list")
# Parse the documentation to extract documented keys
repo_base = "./"
print(os.listdir(repo_base))
docs_path = (
"./docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
)
# docs_path = (
# "../../docs/my-website/docs/proxy/config_settings.md" # Path to the documentation
# )
documented_keys = set()
try:
with open(docs_path, "r", encoding="utf-8") as docs_file:
content = docs_file.read()
# Find the section titled "general_settings - Reference"
general_settings_section = re.search(
r"### router_settings - Reference(.*?)###", content, re.DOTALL
)
if general_settings_section:
# Extract the table rows, which contain the documented keys
table_content = general_settings_section.group(1)
doc_key_pattern = re.compile(
r"\|\s*([^\|]+?)\s*\|"
) # Capture the key from each row of the table
documented_keys.update(doc_key_pattern.findall(table_content))
except Exception as e:
raise Exception(
f"Error reading documentation: {e}, \n repo base - {os.listdir(repo_base)}"
)
# Compare and find undocumented keys
undocumented_keys = router_init_params - documented_keys
# Print results
print("Keys expected in 'router settings' (found in code):")
for key in sorted(router_init_params):
print(key)
if undocumented_keys:
raise Exception(
f"\nKeys not documented in 'router settings - Reference': {undocumented_keys}"
)
else:
print(
"\nAll keys are documented in 'router settings - Reference'. - {}".format(
router_init_params
)
)

View file

@ -1,3 +1 @@
Unit tests for individual LLM providers.
Name of the test file is the name of the LLM provider - e.g. `test_openai.py` is for OpenAI.
More tests under `litellm/litellm/tests/*`.

View file

@ -62,14 +62,7 @@ class BaseLLMChatTest(ABC):
response = litellm.completion(**base_completion_call_args, messages=messages)
assert response is not None
@pytest.mark.parametrize(
"response_format",
[
{"type": "json_object"},
{"type": "text"},
],
)
def test_json_response_format(self, response_format):
def test_json_response_format(self):
"""
Test that the JSON response format is supported by the LLM API
"""
@ -90,7 +83,7 @@ class BaseLLMChatTest(ABC):
response = litellm.completion(
**base_completion_call_args,
messages=messages,
response_format=response_format,
response_format={"type": "json_object"},
)
print(response)
@ -197,35 +190,6 @@ class BaseLLMChatTest(ABC):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass
def test_image_url(self):
litellm.set_verbose = True
from litellm.utils import supports_vision
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
base_completion_call_args = self.get_base_completion_call_args()
if not supports_vision(base_completion_call_args["model"], None):
pytest.skip("Model does not support image input")
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://i.pinimg.com/736x/b4/b1/be/b4b1becad04d03a9071db2817fc9fe77.jpg"
},
},
],
}
]
response = litellm.completion(**base_completion_call_args, messages=messages)
assert response is not None
@pytest.fixture
def pdf_messages(self):
import base64

File diff suppressed because one or more lines are too long

View file

@ -45,59 +45,81 @@ def test_map_azure_model_group(model_group_header, expected_model):
@pytest.mark.asyncio
async def test_azure_ai_with_image_url():
@pytest.mark.respx
async def test_azure_ai_with_image_url(respx_mock: MockRouter):
"""
Important test:
Test that Azure AI studio can handle image_url passed when content is a list containing both text and image_url
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
client = AsyncOpenAI(
api_key="fake-api-key",
base_url="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
)
# Mock response based on the actual API response
mock_response = {
"id": "cmpl-53860ea1efa24d2883555bfec13d2254",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": None,
"message": {
"content": "The image displays a graphic with the text 'LiteLLM' in black",
"role": "assistant",
"refusal": None,
"audio": None,
"function_call": None,
"tool_calls": None,
},
}
],
"created": 1731801937,
"model": "phi35-vision-instruct",
"object": "chat.completion",
"usage": {
"completion_tokens": 69,
"prompt_tokens": 617,
"total_tokens": 686,
"completion_tokens_details": None,
"prompt_tokens_details": None,
},
}
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="azure_ai/Phi-3-5-vision-instruct-dcvov",
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
messages=[
# Mock the API request
mock_request = respx_mock.post(
"https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com"
).mock(return_value=httpx.Response(200, json=mock_response))
response = await litellm.acompletion(
model="azure_ai/Phi-3-5-vision-instruct-dcvov",
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
messages=[
{
"role": "user",
"content": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
},
},
],
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
},
},
],
api_key="fake-api-key",
client=client,
)
except Exception as e:
traceback.print_exc()
print(f"Error: {e}")
},
],
api_key="fake-api-key",
)
# Verify the request was made
mock_client.assert_called_once()
# Verify the request was made
assert mock_request.called
# Check the request body
request_body = mock_client.call_args.kwargs
assert request_body["model"] == "Phi-3-5-vision-instruct-dcvov"
assert request_body["messages"] == [
# Check the request body
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"model": "Phi-3-5-vision-instruct-dcvov",
"messages": [
{
"role": "user",
"content": [
@ -110,4 +132,7 @@ async def test_azure_ai_with_image_url():
},
],
}
]
],
}
print(f"response: {response}")

View file

@ -1243,19 +1243,6 @@ def test_bedrock_cross_region_inference(model):
)
@pytest.mark.parametrize(
"model, expected_base_model",
[
(
"apac.anthropic.claude-3-5-sonnet-20240620-v1:0",
"anthropic.claude-3-5-sonnet-20240620-v1:0",
),
],
)
def test_bedrock_get_base_model(model, expected_base_model):
assert litellm.AmazonConverseConfig()._get_base_model(model) == expected_base_model
from litellm.llms.prompt_templates.factory import _bedrock_converse_messages_pt

View file

@ -1,15 +0,0 @@
from base_llm_unit_tests import BaseLLMChatTest
class TestGoogleAIStudioGemini(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
return {"model": "gemini/gemini-1.5-flash"}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
from litellm.llms.prompt_templates.factory import (
convert_to_gemini_tool_call_invoke,
)
result = convert_to_gemini_tool_call_invoke(tool_call_no_arguments)
print(result)

View file

@ -13,7 +13,6 @@ load_dotenv()
import httpx
import pytest
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import Choices, Message, ModelResponse
@ -42,58 +41,56 @@ def return_mocked_response(model: str):
"bedrock/mistral.mistral-large-2407-v1:0",
],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_bedrock_max_completion_tokens(model: str):
async def test_bedrock_max_completion_tokens(model: str, respx_mock: MockRouter):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to bedrock models
"""
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
litellm.set_verbose = True
client = AsyncHTTPHandler()
mock_response = return_mocked_response(model)
_model = model.split("/")[1]
print("\n\nmock_response: ", mock_response)
url = f"https://bedrock-runtime.us-west-2.amazonaws.com/model/{_model}/converse"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
mock_client.assert_called_once()
request_body = json.loads(mock_client.call_args.kwargs["data"])
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
print("request_body: ", request_body)
assert request_body == {
"messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
"additionalModelRequestFields": {},
"system": [],
"inferenceConfig": {"maxTokens": 10},
}
assert request_body == {
"messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
"additionalModelRequestFields": {},
"system": [],
"inferenceConfig": {"maxTokens": 10},
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
@pytest.mark.parametrize(
"model",
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229"],
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229,"],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_anthropic_api_max_completion_tokens(model: str):
async def test_anthropic_api_max_completion_tokens(model: str, respx_mock: MockRouter):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to anthropic models
"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
mock_response = {
"content": [{"text": "Hi! My name is Claude.", "type": "text"}],
@ -106,32 +103,30 @@ async def test_anthropic_api_max_completion_tokens(model: str):
"usage": {"input_tokens": 2095, "output_tokens": 503},
}
client = HTTPHandler()
print("\n\nmock_response: ", mock_response)
url = f"https://api.anthropic.com/v1/messages"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs["json"]
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
print("request_body: ", request_body)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"messages": [
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}
],
"max_tokens": 10,
"model": model.split("/")[-1],
}
print("request_body: ", request_body)
assert request_body == {
"messages": [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}],
"max_tokens": 10,
"model": model.split("/")[-1],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
def test_all_model_configs():

View file

@ -12,78 +12,95 @@ sys.path.insert(
import httpx
import pytest
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import Choices, Message, ModelResponse, EmbeddingResponse, Usage
from litellm import completion
def test_completion_nvidia_nim():
from openai import OpenAI
@pytest.mark.respx
def test_completion_nvidia_nim(respx_mock: MockRouter):
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="databricks/dbrx-instruct",
)
model_name = "nvidia_nim/databricks/dbrx-instruct"
client = OpenAI(
api_key="fake-api-key",
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
completion(
model=model_name,
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
presence_penalty=0.5,
frequency_penalty=0.1,
client=client,
)
except Exception as e:
print(e)
mock_request = respx_mock.post(
"https://integrate.api.nvidia.com/v1/chat/completions"
).mock(return_value=httpx.Response(200, json=mock_response.dict()))
try:
response = completion(
model=model_name,
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
presence_penalty=0.5,
frequency_penalty=0.1,
)
# Add any assertions here to check the response
print(response)
assert response.choices[0].message.content is not None
assert len(response.choices[0].message.content) > 0
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body["messages"] == [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
},
]
assert request_body["model"] == "databricks/dbrx-instruct"
assert request_body["frequency_penalty"] == 0.1
assert request_body["presence_penalty"] == 0.5
assert request_body == {
"messages": [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
"model": "databricks/dbrx-instruct",
"frequency_penalty": 0.1,
"presence_penalty": 0.5,
}
except litellm.exceptions.Timeout as e:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_embedding_nvidia_nim():
def test_embedding_nvidia_nim(respx_mock: MockRouter):
litellm.set_verbose = True
from openai import OpenAI
client = OpenAI(
api_key="fake-api-key",
mock_response = EmbeddingResponse(
model="nvidia_nim/databricks/dbrx-instruct",
data=[
{
"embedding": [0.1, 0.2, 0.3],
"index": 0,
}
],
usage=Usage(
prompt_tokens=10,
completion_tokens=0,
total_tokens=10,
),
)
with patch.object(client.embeddings.with_raw_response, "create") as mock_client:
try:
litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5",
input="What is the meaning of life?",
input_type="passage",
client=client,
)
except Exception as e:
print(e)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["input"] == "What is the meaning of life?"
assert request_body["model"] == "nvidia/nv-embedqa-e5-v5"
assert request_body["extra_body"]["input_type"] == "passage"
mock_request = respx_mock.post(
"https://integrate.api.nvidia.com/v1/embeddings"
).mock(return_value=httpx.Response(200, json=mock_response.dict()))
response = litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5",
input="What is the meaning of life?",
input_type="passage",
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"input": "What is the meaning of life?",
"model": "nvidia/nv-embedqa-e5-v5",
"input_type": "passage",
"encoding_format": "base64",
}

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, patch, MagicMock
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
@ -18,75 +18,87 @@ from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio
async def test_o1_handle_system_role():
@pytest.mark.respx
async def test_o1_handle_system_role(respx_mock: MockRouter):
"""
Tests that:
- max_tokens is translated to 'max_completion_tokens'
- role 'system' is translated to 'user'
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
client = AsyncOpenAI(api_key="fake-api-key")
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="o1-preview",
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="o1-preview",
max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
response = await litellm.acompletion(
model="o1-preview",
max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}],
)
print("request_body: ", request_body)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body["model"] == "o1-preview"
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
print("request_body: ", request_body)
assert request_body == {
"model": "o1-preview",
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
@pytest.mark.asyncio
@pytest.mark.respx
@pytest.mark.parametrize("model", ["gpt-4", "gpt-4-0314", "gpt-4-32k", "o1-preview"])
async def test_o1_max_completion_tokens(model: str):
async def test_o1_max_completion_tokens(respx_mock: MockRouter, model: str):
"""
Tests that:
- max_completion_tokens is passed directly to OpenAI chat completion models
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
client = AsyncOpenAI(api_key="fake-api-key")
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model=model,
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
print("request_body: ", request_body)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body["model"] == model
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
print("request_body: ", request_body)
assert request_body == {
"model": model,
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
def test_litellm_responses():

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, patch
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
@ -63,7 +63,8 @@ def test_openai_prediction_param():
@pytest.mark.asyncio
async def test_openai_prediction_param_mock():
@pytest.mark.respx
async def test_openai_prediction_param_mock(respx_mock: MockRouter):
"""
Tests that prediction parameter is correctly passed to the API
"""
@ -91,36 +92,60 @@ async def test_openai_prediction_param_mock():
public string Username { get; set; }
}
"""
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
client=client,
mock_response = ModelResponse(
id="chatcmpl-AQ5RmV8GvVSRxEcDxnuXlQnsibiY9",
choices=[
Choices(
message=Message(
content=code.replace("Username", "Email").replace(
"username", "email"
),
role="assistant",
)
)
except Exception as e:
print(f"Error: {e}")
],
created=int(datetime.now().timestamp()),
model="gpt-4o-mini-2024-07-18",
usage={
"completion_tokens": 207,
"prompt_tokens": 175,
"total_tokens": 382,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 80,
},
},
)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
completion = await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
# Verify the completion tokens details
assert completion.usage.completion_tokens_details.accepted_prediction_tokens == 0
assert completion.usage.completion_tokens_details.rejected_prediction_tokens == 80
@pytest.mark.asyncio
@ -198,73 +223,3 @@ async def test_openai_prediction_param_with_caching():
)
assert completion_response_3.id != completion_response_1.id
@pytest.mark.asyncio()
async def test_vision_with_custom_model():
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["messages"] == [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
},
]
assert request_body["model"] == "my-custom-model"
assert request_body["max_tokens"] == 10

View file

@ -687,16 +687,3 @@ def test_just_system_message():
llm_provider="bedrock",
)
assert "bedrock requires at least one non-system message" in str(e.value)
def test_convert_generic_image_chunk_to_openai_image_obj():
from litellm.llms.prompt_templates.factory import (
convert_generic_image_chunk_to_openai_image_obj,
convert_to_anthropic_image_obj,
)
url = "https://i.pinimg.com/736x/b4/b1/be/b4b1becad04d03a9071db2817fc9fe77.jpg"
image_obj = convert_to_anthropic_image_obj(url)
url_str = convert_generic_image_chunk_to_openai_image_obj(image_obj)
image_obj = convert_to_anthropic_image_obj(url_str)
print(image_obj)

View file

@ -0,0 +1,94 @@
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio()
@pytest.mark.respx
async def test_vision_with_custom_model(respx_mock: MockRouter):
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="my-custom-model",
)
mock_request = respx_mock.post(f"{api_base}/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
"model": "my-custom-model",
"max_tokens": 10,
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)

View file

@ -6,7 +6,6 @@ from unittest.mock import AsyncMock
import pytest
import httpx
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
@ -69,16 +68,13 @@ def test_convert_dict_to_text_completion_response():
assert response.choices[0].logprobs.top_logprobs == [None, {",": -2.1568563}]
@pytest.mark.skip(
reason="need to migrate huggingface to support httpx client being passed in"
)
@pytest.mark.asyncio
@pytest.mark.respx
async def test_huggingface_text_completion_logprobs():
async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
"""Test text completion with Hugging Face, focusing on logprobs structure"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
# Mock the raw response from Hugging Face
mock_response = [
{
"generated_text": ",\n\nI have a question...", # truncated for brevity
@ -95,48 +91,46 @@ async def test_huggingface_text_completion_logprobs():
}
]
return_val = AsyncMock()
# Mock the API request
mock_request = respx_mock.post(
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
).mock(return_value=httpx.Response(200, json=mock_response))
return_val.json.return_value = mock_response
response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning",
)
client = AsyncHTTPHandler()
with patch.object(client, "post", return_value=return_val) as mock_post:
response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning",
client=client,
)
# Verify the request
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"inputs": "good morning",
"parameters": {"details": True, "return_full_text": False},
"stream": False,
}
# Verify the request
mock_post.assert_called_once()
request_body = json.loads(mock_post.call_args.kwargs["data"])
assert request_body == {
"inputs": "good morning",
"parameters": {"details": True, "return_full_text": False},
"stream": False,
}
print("response=", response)
print("response=", response)
# Verify response structure
assert isinstance(response, TextCompletionResponse)
assert response.object == "text_completion"
assert response.model == "mistralai/Mistral-7B-v0.1"
# Verify response structure
assert isinstance(response, TextCompletionResponse)
assert response.object == "text_completion"
assert response.model == "mistralai/Mistral-7B-v0.1"
# Verify logprobs structure
choice = response.choices[0]
assert choice.finish_reason == "length"
assert choice.index == 0
assert isinstance(choice.logprobs.tokens, list)
assert isinstance(choice.logprobs.token_logprobs, list)
assert isinstance(choice.logprobs.text_offset, list)
assert isinstance(choice.logprobs.top_logprobs, list)
assert choice.logprobs.tokens == [",", "\n"]
assert choice.logprobs.token_logprobs == [-1.7626953, -1.7314453]
assert choice.logprobs.text_offset == [0, 1]
assert choice.logprobs.top_logprobs == [{}, {}]
# Verify logprobs structure
choice = response.choices[0]
assert choice.finish_reason == "length"
assert choice.index == 0
assert isinstance(choice.logprobs.tokens, list)
assert isinstance(choice.logprobs.token_logprobs, list)
assert isinstance(choice.logprobs.text_offset, list)
assert isinstance(choice.logprobs.top_logprobs, list)
assert choice.logprobs.tokens == [",", "\n"]
assert choice.logprobs.token_logprobs == [-1.7626953, -1.7314453]
assert choice.logprobs.text_offset == [0, 1]
assert choice.logprobs.top_logprobs == [{}, {}]
# Verify usage
assert response.usage["completion_tokens"] > 0
assert response.usage["prompt_tokens"] > 0
assert response.usage["total_tokens"] > 0
# Verify usage
assert response.usage["completion_tokens"] > 0
assert response.usage["prompt_tokens"] > 0
assert response.usage["total_tokens"] > 0

View file

@ -1146,21 +1146,6 @@ def test_process_gemini_image():
mime_type="image/png", file_uri="https://example.com/image.png"
)
# Test HTTPS VIDEO URL
https_result = _process_gemini_image("https://cloud-samples-data/video/animals.mp4")
print("https_result PNG", https_result)
assert https_result["file_data"] == FileDataType(
mime_type="video/mp4", file_uri="https://cloud-samples-data/video/animals.mp4"
)
# Test HTTPS PDF URL
https_result = _process_gemini_image("https://cloud-samples-data/pdf/animals.pdf")
print("https_result PDF", https_result)
assert https_result["file_data"] == FileDataType(
mime_type="application/pdf",
file_uri="https://cloud-samples-data/pdf/animals.pdf",
)
# Test base64 image
base64_image = "..."
base64_result = _process_gemini_image(base64_image)
@ -1205,6 +1190,80 @@ def test_get_image_mime_type_from_url():
assert _get_image_mime_type_from_url("invalid_url") is None
@pytest.mark.parametrize(
"image_url", ["https://example.com/image.jpg", "https://example.com/image.png"]
)
def test_image_completion_request(image_url):
"""https:// .jpg, .png images are passed directly to the model"""
from unittest.mock import patch, Mock
import litellm
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import (
_get_image_mime_type_from_url,
)
# Mock response data
mock_response = Mock()
mock_response.json.return_value = {
"candidates": [{"content": {"parts": [{"text": "This is a sunflower"}]}}],
"usageMetadata": {
"promptTokenCount": 11,
"candidatesTokenCount": 50,
"totalTokenCount": 61,
},
"modelVersion": "gemini-1.5-pro",
}
mock_response.raise_for_status = MagicMock()
mock_response.status_code = 200
# Expected request body
expected_request_body = {
"contents": [
{
"role": "user",
"parts": [
{"text": "Whats in this image?"},
{
"file_data": {
"file_uri": image_url,
"mime_type": _get_image_mime_type_from_url(image_url),
}
},
],
}
],
"system_instruction": {"parts": [{"text": "Be a good bot"}]},
"generationConfig": {},
}
messages = [
{"role": "system", "content": "Be a good bot"},
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
client = HTTPHandler()
with patch.object(client, "post", new=MagicMock()) as mock_post:
mock_post.return_value = mock_response
try:
litellm.completion(
model="gemini/gemini-1.5-pro",
messages=messages,
client=client,
)
except Exception as e:
print(e)
# Assert the request body matches expected
mock_post.assert_called_once()
print("mock_post.call_args.kwargs['json']", mock_post.call_args.kwargs["json"])
assert mock_post.call_args.kwargs["json"] == expected_request_body
@pytest.mark.parametrize(
"model, expected_url",
[
@ -1239,3 +1298,20 @@ def test_vertex_embedding_url(model, expected_url):
assert url == expected_url
assert endpoint == "predict"
from base_llm_unit_tests import BaseLLMChatTest
class TestVertexGemini(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
return {"model": "gemini/gemini-1.5-flash"}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
from litellm.llms.prompt_templates.factory import (
convert_to_gemini_tool_call_invoke,
)
result = convert_to_gemini_tool_call_invoke(tool_call_no_arguments)
print(result)

View file

@ -95,107 +95,3 @@ async def test_handle_failed_db_connection():
print("_handle_failed_db_connection_for_get_key_object got exception", exc_info)
assert str(exc_info.value) == "Failed to connect to DB"
@pytest.mark.parametrize(
"model, expect_to_work",
[("openai/gpt-4o-mini", True), ("openai/gpt-4o", False)],
)
@pytest.mark.asyncio
async def test_can_key_call_model(model, expect_to_work):
"""
If wildcard model + specific model is used, choose the specific model settings
"""
from litellm.proxy.auth.auth_checks import can_key_call_model
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"llm_model_list": llm_model_list,
"valid_token": UserAPIKeyAuth(
models=["public-openai-models"],
),
"llm_router": router,
}
if expect_to_work:
await can_key_call_model(**args)
else:
with pytest.raises(Exception) as e:
await can_key_call_model(**args)
print(e)
@pytest.mark.parametrize(
"model, expect_to_work",
[("openai/gpt-4o", False), ("openai/gpt-4o-mini", True)],
)
@pytest.mark.asyncio
async def test_can_team_call_model(model, expect_to_work):
from litellm.proxy.auth.auth_checks import model_in_access_group
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"team_models": ["public-openai-models"],
"llm_router": router,
}
if expect_to_work:
assert model_in_access_group(**args)
else:
assert not model_in_access_group(**args)

View file

@ -33,7 +33,7 @@ from litellm.router import Router
@pytest.mark.asyncio()
@pytest.mark.respx()
async def test_aaaaazure_tenant_id_auth(respx_mock: MockRouter):
async def test_azure_tenant_id_auth(respx_mock: MockRouter):
"""
Tests when we set tenant_id, client_id, client_secret they don't get sent with the request

View file

@ -1,128 +1,128 @@
# #### What this tests ####
# # This adds perf testing to the router, to ensure it's never > 50ms slower than the azure-openai sdk.
# import sys, os, time, inspect, asyncio, traceback
# from datetime import datetime
# import pytest
#### What this tests ####
# This adds perf testing to the router, to ensure it's never > 50ms slower than the azure-openai sdk.
import sys, os, time, inspect, asyncio, traceback
from datetime import datetime
import pytest
# sys.path.insert(0, os.path.abspath("../.."))
# import openai, litellm, uuid
# from openai import AsyncAzureOpenAI
sys.path.insert(0, os.path.abspath("../.."))
import openai, litellm, uuid
from openai import AsyncAzureOpenAI
# client = AsyncAzureOpenAI(
# api_key=os.getenv("AZURE_API_KEY"),
# azure_endpoint=os.getenv("AZURE_API_BASE"), # type: ignore
# api_version=os.getenv("AZURE_API_VERSION"),
# )
client = AsyncAzureOpenAI(
api_key=os.getenv("AZURE_API_KEY"),
azure_endpoint=os.getenv("AZURE_API_BASE"), # type: ignore
api_version=os.getenv("AZURE_API_VERSION"),
)
# model_list = [
# {
# "model_name": "azure-test",
# "litellm_params": {
# "model": "azure/chatgpt-v-2",
# "api_key": os.getenv("AZURE_API_KEY"),
# "api_base": os.getenv("AZURE_API_BASE"),
# "api_version": os.getenv("AZURE_API_VERSION"),
# },
# }
# ]
model_list = [
{
"model_name": "azure-test",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
"api_version": os.getenv("AZURE_API_VERSION"),
},
}
]
# router = litellm.Router(model_list=model_list) # type: ignore
router = litellm.Router(model_list=model_list) # type: ignore
# async def _openai_completion():
# try:
# start_time = time.time()
# response = await client.chat.completions.create(
# model="chatgpt-v-2",
# messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
# stream=True,
# )
# time_to_first_token = None
# first_token_ts = None
# init_chunk = None
# async for chunk in response:
# if (
# time_to_first_token is None
# and len(chunk.choices) > 0
# and chunk.choices[0].delta.content is not None
# ):
# first_token_ts = time.time()
# time_to_first_token = first_token_ts - start_time
# init_chunk = chunk
# end_time = time.time()
# print(
# "OpenAI Call: ",
# init_chunk,
# start_time,
# first_token_ts,
# time_to_first_token,
# end_time,
# )
# return time_to_first_token
# except Exception as e:
# print(e)
# return None
async def _openai_completion():
try:
start_time = time.time()
response = await client.chat.completions.create(
model="chatgpt-v-2",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True,
)
time_to_first_token = None
first_token_ts = None
init_chunk = None
async for chunk in response:
if (
time_to_first_token is None
and len(chunk.choices) > 0
and chunk.choices[0].delta.content is not None
):
first_token_ts = time.time()
time_to_first_token = first_token_ts - start_time
init_chunk = chunk
end_time = time.time()
print(
"OpenAI Call: ",
init_chunk,
start_time,
first_token_ts,
time_to_first_token,
end_time,
)
return time_to_first_token
except Exception as e:
print(e)
return None
# async def _router_completion():
# try:
# start_time = time.time()
# response = await router.acompletion(
# model="azure-test",
# messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
# stream=True,
# )
# time_to_first_token = None
# first_token_ts = None
# init_chunk = None
# async for chunk in response:
# if (
# time_to_first_token is None
# and len(chunk.choices) > 0
# and chunk.choices[0].delta.content is not None
# ):
# first_token_ts = time.time()
# time_to_first_token = first_token_ts - start_time
# init_chunk = chunk
# end_time = time.time()
# print(
# "Router Call: ",
# init_chunk,
# start_time,
# first_token_ts,
# time_to_first_token,
# end_time - first_token_ts,
# )
# return time_to_first_token
# except Exception as e:
# print(e)
# return None
async def _router_completion():
try:
start_time = time.time()
response = await router.acompletion(
model="azure-test",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True,
)
time_to_first_token = None
first_token_ts = None
init_chunk = None
async for chunk in response:
if (
time_to_first_token is None
and len(chunk.choices) > 0
and chunk.choices[0].delta.content is not None
):
first_token_ts = time.time()
time_to_first_token = first_token_ts - start_time
init_chunk = chunk
end_time = time.time()
print(
"Router Call: ",
init_chunk,
start_time,
first_token_ts,
time_to_first_token,
end_time - first_token_ts,
)
return time_to_first_token
except Exception as e:
print(e)
return None
# async def test_azure_completion_streaming():
# """
# Test azure streaming call - measure on time to first (non-null) token.
# """
# n = 3 # Number of concurrent tasks
# ## OPENAI AVG. TIME
# tasks = [_openai_completion() for _ in range(n)]
# chat_completions = await asyncio.gather(*tasks)
# successful_completions = [c for c in chat_completions if c is not None]
# total_time = 0
# for item in successful_completions:
# total_time += item
# avg_openai_time = total_time / 3
# ## ROUTER AVG. TIME
# tasks = [_router_completion() for _ in range(n)]
# chat_completions = await asyncio.gather(*tasks)
# successful_completions = [c for c in chat_completions if c is not None]
# total_time = 0
# for item in successful_completions:
# total_time += item
# avg_router_time = total_time / 3
# ## COMPARE
# print(f"avg_router_time: {avg_router_time}; avg_openai_time: {avg_openai_time}")
# assert avg_router_time < avg_openai_time + 0.5
async def test_azure_completion_streaming():
"""
Test azure streaming call - measure on time to first (non-null) token.
"""
n = 3 # Number of concurrent tasks
## OPENAI AVG. TIME
tasks = [_openai_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
total_time = 0
for item in successful_completions:
total_time += item
avg_openai_time = total_time / 3
## ROUTER AVG. TIME
tasks = [_router_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
total_time = 0
for item in successful_completions:
total_time += item
avg_router_time = total_time / 3
## COMPARE
print(f"avg_router_time: {avg_router_time}; avg_openai_time: {avg_openai_time}")
assert avg_router_time < avg_openai_time + 0.5
# # asyncio.run(test_azure_completion_streaming())
# asyncio.run(test_azure_completion_streaming())

View file

@ -99,29 +99,3 @@ def test_caching_router():
# test_caching_router()
@pytest.mark.asyncio
async def test_redis_with_ssl():
"""
Test connecting to redis connection pool when ssl=None
Relevant issue:
User was seeing this error: `TypeError: AbstractConnection.__init__() got an unexpected keyword argument 'ssl'`
"""
from litellm._redis import get_redis_connection_pool, get_redis_async_client
# Get the connection pool with SSL
# REDIS_HOST_WITH_SSL is just a redis cloud instance with Transport layer security (TLS) enabled
pool = get_redis_connection_pool(
host=os.environ.get("REDIS_HOST_WITH_SSL"),
port=os.environ.get("REDIS_PORT_WITH_SSL"),
password=os.environ.get("REDIS_PASSWORD_WITH_SSL"),
ssl=None,
)
# Create Redis client with the pool
redis_client = get_redis_async_client(connection_pool=pool)
print("pinging redis")
print(await redis_client.ping())
print("pinged redis")

View file

@ -0,0 +1,246 @@
import io
import os
import sys
sys.path.insert(0, os.path.abspath("../.."))
import asyncio
import gzip
import json
import logging
import time
from unittest.mock import AsyncMock, patch
import pytest
import litellm
from litellm import completion
from litellm._logging import verbose_logger
from litellm.integrations.datadog.types import DatadogPayload
verbose_logger.setLevel(logging.DEBUG)
@pytest.mark.asyncio
async def test_datadog_logging_http_request():
"""
- Test that the HTTP request is made to Datadog
- sent to the /api/v2/logs endpoint
- the payload is batched
- each element in the payload is a DatadogPayload
- each element in a DatadogPayload.message contains all the valid fields
"""
try:
from litellm.integrations.datadog.datadog import DataDogLogger
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
os.environ["DD_API_KEY"] = "anything"
dd_logger = DataDogLogger()
litellm.callbacks = [dd_logger]
litellm.set_verbose = True
# Create a mock for the async_client's post method
mock_post = AsyncMock()
mock_post.return_value.status_code = 202
mock_post.return_value.text = "Accepted"
dd_logger.async_client.post = mock_post
# Make the completion call
for _ in range(5):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
mock_response="Accepted",
)
print(response)
# Wait for 5 seconds
await asyncio.sleep(6)
# Assert that the mock was called
assert mock_post.called, "HTTP request was not made"
# Get the arguments of the last call
args, kwargs = mock_post.call_args
print("CAll args and kwargs", args, kwargs)
# Print the request body
# You can add more specific assertions here if needed
# For example, checking if the URL is correct
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
body = kwargs["data"]
# use gzip to unzip the body
with gzip.open(io.BytesIO(body), "rb") as f:
body = f.read().decode("utf-8")
print(body)
# body is string parse it to dict
body = json.loads(body)
print(body)
assert len(body) == 5 # 5 logs should be sent to DataDog
# Assert that the first element in body has the expected fields and shape
assert isinstance(body[0], dict), "First element in body should be a dictionary"
# Get the expected fields and their types from DatadogPayload
expected_fields = DatadogPayload.__annotations__
# Assert that all elements in body have the fields of DatadogPayload with correct types
for log in body:
assert isinstance(log, dict), "Each log should be a dictionary"
for field, expected_type in expected_fields.items():
assert field in log, f"Field '{field}' is missing from the log"
assert isinstance(
log[field], expected_type
), f"Field '{field}' has incorrect type. Expected {expected_type}, got {type(log[field])}"
# Additional assertion to ensure no extra fields are present
for log in body:
assert set(log.keys()) == set(
expected_fields.keys()
), f"Log contains unexpected fields: {set(log.keys()) - set(expected_fields.keys())}"
# Parse the 'message' field as JSON and check its structure
message = json.loads(body[0]["message"])
expected_message_fields = [
"id",
"call_type",
"cache_hit",
"start_time",
"end_time",
"response_time",
"model",
"user",
"model_parameters",
"spend",
"messages",
"response",
"usage",
"metadata",
]
for field in expected_message_fields:
assert field in message, f"Field '{field}' is missing from the message"
# Check specific fields
assert message["call_type"] == "acompletion"
assert message["model"] == "gpt-3.5-turbo"
assert isinstance(message["model_parameters"], dict)
assert "temperature" in message["model_parameters"]
assert "max_tokens" in message["model_parameters"]
assert isinstance(message["response"], dict)
assert isinstance(message["usage"], dict)
assert isinstance(message["metadata"], dict)
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
async def test_datadog_log_redis_failures():
"""
Test that poorly configured Redis is logged as Warning on DataDog
"""
try:
from litellm.caching.caching import Cache
from litellm.integrations.datadog.datadog import DataDogLogger
litellm.cache = Cache(
type="redis", host="badhost", port="6379", password="badpassword"
)
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
os.environ["DD_API_KEY"] = "anything"
dd_logger = DataDogLogger()
litellm.callbacks = [dd_logger]
litellm.service_callback = ["datadog"]
litellm.set_verbose = True
# Create a mock for the async_client's post method
mock_post = AsyncMock()
mock_post.return_value.status_code = 202
mock_post.return_value.text = "Accepted"
dd_logger.async_client.post = mock_post
# Make the completion call
for _ in range(3):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
mock_response="Accepted",
)
print(response)
# Wait for 5 seconds
await asyncio.sleep(6)
# Assert that the mock was called
assert mock_post.called, "HTTP request was not made"
# Get the arguments of the last call
args, kwargs = mock_post.call_args
print("CAll args and kwargs", args, kwargs)
# For example, checking if the URL is correct
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
body = kwargs["data"]
# use gzip to unzip the body
with gzip.open(io.BytesIO(body), "rb") as f:
body = f.read().decode("utf-8")
print(body)
# body is string parse it to dict
body = json.loads(body)
print(body)
failure_events = [log for log in body if log["status"] == "warning"]
assert len(failure_events) > 0, "No failure events logged"
print("ALL FAILURE/WARN EVENTS", failure_events)
for event in failure_events:
message = json.loads(event["message"])
assert (
event["status"] == "warning"
), f"Event status is not 'warning': {event['status']}"
assert (
message["service"] == "redis"
), f"Service is not 'redis': {message['service']}"
assert "error" in message, "No 'error' field in the message"
assert message["error"], "Error field is empty"
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
@pytest.mark.skip(reason="local-only test, to test if everything works fine.")
async def test_datadog_logging():
try:
litellm.success_callback = ["datadog"]
litellm.set_verbose = True
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
)
print(response)
await asyncio.sleep(5)
except Exception as e:
print(e)

View file

@ -1146,9 +1146,7 @@ async def test_exception_with_headers_httpx(
except litellm.RateLimitError as e:
exception_raised = True
assert (
e.litellm_response_headers is not None
), "litellm_response_headers is None"
assert e.litellm_response_headers is not None
print("e.litellm_response_headers", e.litellm_response_headers)
assert int(e.litellm_response_headers["retry-after"]) == cooldown_time

View file

@ -102,17 +102,3 @@ def test_get_model_info_ollama_chat():
print(mock_client.call_args.kwargs)
assert mock_client.call_args.kwargs["json"]["name"] == "mistral"
def test_get_model_info_gemini():
"""
Tests if ALL gemini models have 'tpm' and 'rpm' in the model info
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
model_map = litellm.model_cost
for model, info in model_map.items():
if model.startswith("gemini/") and not "gemma" in model:
assert info.get("tpm") is not None, f"{model} does not have tpm"
assert info.get("rpm") is not None, f"{model} does not have rpm"

View file

@ -1,79 +0,0 @@
import pytest
from fastapi import Request
from fastapi.testclient import TestClient
from starlette.datastructures import Headers
from starlette.requests import HTTPConnection
import os
import sys
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
@pytest.mark.asyncio
async def test_read_request_body_valid_json():
"""Test the function with a valid JSON payload."""
class MockRequest:
async def body(self):
return b'{"key": "value"}'
request = MockRequest()
result = await _read_request_body(request)
assert result == {"key": "value"}
@pytest.mark.asyncio
async def test_read_request_body_empty_body():
"""Test the function with an empty body."""
class MockRequest:
async def body(self):
return b""
request = MockRequest()
result = await _read_request_body(request)
assert result == {}
@pytest.mark.asyncio
async def test_read_request_body_invalid_json():
"""Test the function with an invalid JSON payload."""
class MockRequest:
async def body(self):
return b'{"key": value}' # Missing quotes around `value`
request = MockRequest()
result = await _read_request_body(request)
assert result == {} # Should return an empty dict on failure
@pytest.mark.asyncio
async def test_read_request_body_large_payload():
"""Test the function with a very large payload."""
large_payload = '{"key":' + '"a"' * 10**6 + "}" # Large payload
class MockRequest:
async def body(self):
return large_payload.encode()
request = MockRequest()
result = await _read_request_body(request)
assert result == {} # Large payloads could trigger errors, so validate behavior
@pytest.mark.asyncio
async def test_read_request_body_unexpected_error():
"""Test the function when an unexpected error occurs."""
class MockRequest:
async def body(self):
raise ValueError("Unexpected error")
request = MockRequest()
result = await _read_request_body(request)
assert result == {} # Ensure fallback behavior

View file

@ -2115,14 +2115,10 @@ def test_router_get_model_info(model, base_model, llm_provider):
assert deployment is not None
if llm_provider == "openai" or (base_model is not None and llm_provider == "azure"):
router.get_router_model_info(
deployment=deployment.to_json(), received_model_name=model
)
router.get_router_model_info(deployment=deployment.to_json())
else:
try:
router.get_router_model_info(
deployment=deployment.to_json(), received_model_name=model
)
router.get_router_model_info(deployment=deployment.to_json())
pytest.fail("Expected this to raise model not mapped error")
except Exception as e:
if "This model isn't mapped yet" in str(e):

View file

@ -536,7 +536,7 @@ def test_init_clients_azure_command_r_plus():
@pytest.mark.asyncio
async def test_aaaaatext_completion_with_organization():
async def test_text_completion_with_organization():
try:
print("Testing Text OpenAI with organization")
model_list = [

View file

@ -174,185 +174,3 @@ async def test_update_kwargs_before_fallbacks(call_type):
print(mock_client.call_args.kwargs)
assert mock_client.call_args.kwargs["litellm_trace_id"] is not None
def test_router_get_model_info_wildcard_routes():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
},
]
)
model_info = router.get_router_model_info(
deployment=None, received_model_name="gemini/gemini-1.5-flash", id="1"
)
print(model_info)
assert model_info is not None
assert model_info["tpm"] is not None
assert model_info["rpm"] is not None
@pytest.mark.asyncio
async def test_router_get_model_group_usage_wildcard_routes():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
},
]
)
resp = await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="Hello, I'm good.",
)
print(resp)
await asyncio.sleep(1)
tpm, rpm = await router.get_model_group_usage(model_group="gemini/gemini-1.5-flash")
assert tpm is not None, "tpm is None"
assert rpm is not None, "rpm is None"
@pytest.mark.asyncio
async def test_call_router_callbacks_on_success():
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
},
]
)
with patch.object(
router.cache, "async_increment_cache", new=AsyncMock()
) as mock_callback:
await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="Hello, I'm good.",
)
await asyncio.sleep(1)
assert mock_callback.call_count == 2
assert (
mock_callback.call_args_list[0]
.kwargs["key"]
.startswith("global_router:1:gemini/gemini-1.5-flash:tpm")
)
assert (
mock_callback.call_args_list[1]
.kwargs["key"]
.startswith("global_router:1:gemini/gemini-1.5-flash:rpm")
)
@pytest.mark.asyncio
async def test_call_router_callbacks_on_failure():
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
},
]
)
with patch.object(
router.cache, "async_increment_cache", new=AsyncMock()
) as mock_callback:
with pytest.raises(litellm.RateLimitError):
await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="litellm.RateLimitError",
num_retries=0,
)
await asyncio.sleep(1)
print(mock_callback.call_args_list)
assert mock_callback.call_count == 1
assert (
mock_callback.call_args_list[0]
.kwargs["key"]
.startswith("global_router:1:gemini/gemini-1.5-flash:rpm")
)
@pytest.mark.asyncio
async def test_router_model_group_headers():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
from litellm.types.utils import OPENAI_RESPONSE_HEADERS
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
}
]
)
for _ in range(2):
resp = await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="Hello, I'm good.",
)
await asyncio.sleep(1)
assert (
resp._hidden_params["additional_headers"]["x-litellm-model-group"]
== "gemini/gemini-1.5-flash"
)
assert "x-ratelimit-remaining-requests" in resp._hidden_params["additional_headers"]
assert "x-ratelimit-remaining-tokens" in resp._hidden_params["additional_headers"]
@pytest.mark.asyncio
async def test_get_remaining_model_group_usage():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
from litellm.types.utils import OPENAI_RESPONSE_HEADERS
router = Router(
model_list=[
{
"model_name": "gemini/*",
"litellm_params": {"model": "gemini/*"},
"model_info": {"id": 1},
}
]
)
for _ in range(2):
await router.acompletion(
model="gemini/gemini-1.5-flash",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="Hello, I'm good.",
)
await asyncio.sleep(1)
remaining_usage = await router.get_remaining_model_group_usage(
model_group="gemini/gemini-1.5-flash"
)
assert remaining_usage is not None
assert "x-ratelimit-remaining-requests" in remaining_usage
assert "x-ratelimit-remaining-tokens" in remaining_usage

Some files were not shown because too many files have changed in this diff Show more