import json import os import sys import traceback from dotenv import load_dotenv load_dotenv() import io from unittest.mock import AsyncMock, MagicMock, patch sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import pytest import litellm from litellm import get_optional_params from litellm.llms.custom_httpx.http_handler import HTTPHandler import httpx def test_completion_pydantic_obj_2(): from pydantic import BaseModel from litellm.llms.custom_httpx.http_handler import HTTPHandler litellm.set_verbose = True class CalendarEvent(BaseModel): name: str date: str participants: list[str] class EventsList(BaseModel): events: list[CalendarEvent] messages = [ {"role": "user", "content": "List important events from the 20th century."} ] expected_request_body = { "contents": [ { "role": "user", "parts": [{"text": "List important events from the 20th century."}], } ], "generationConfig": { "response_mime_type": "application/json", "response_schema": { "properties": { "events": { "items": { "properties": { "name": {"type": "string"}, "date": {"type": "string"}, "participants": { "items": {"type": "string"}, "type": "array", }, }, "required": [ "name", "date", "participants", ], "type": "object", }, "type": "array", } }, "required": [ "events", ], "type": "object", }, }, } client = HTTPHandler() with patch.object(client, "post", new=MagicMock()) as mock_post: mock_post.return_value = expected_request_body try: litellm.completion( model="gemini/gemini-1.5-pro", messages=messages, response_format=EventsList, client=client, ) except Exception as e: print(e) mock_post.assert_called_once() print(mock_post.call_args.kwargs) assert mock_post.call_args.kwargs["json"] == expected_request_body def test_build_vertex_schema(): from litellm.llms.vertex_ai_and_google_ai_studio.common_utils import ( _build_vertex_schema, ) import json schema = { "type": "object", "properties": { "recipes": { "type": "array", "items": { "type": "object", "properties": {"recipe_name": {"type": "string"}}, "required": ["recipe_name"], }, } }, "required": ["recipes"], } new_schema = _build_vertex_schema(schema) print(f"new_schema: {new_schema}") assert new_schema["type"] == schema["type"] assert new_schema["properties"] == schema["properties"] assert "required" in new_schema and new_schema["required"] == schema["required"] @pytest.mark.parametrize( "tools, key", [ ([{"googleSearchRetrieval": {}}], "googleSearchRetrieval"), ([{"code_execution": {}}], "code_execution"), ], ) def test_vertex_tool_params(tools, key): optional_params = get_optional_params( model="gemini-1.5-pro", custom_llm_provider="vertex_ai", tools=tools, ) print(optional_params) assert optional_params["tools"][0][key] == {} @pytest.mark.parametrize( "tool, expect_parameters", [ ( { "name": "test_function", "description": "test_function_description", "parameters": { "type": "object", "properties": {"test_param": {"type": "string"}}, }, }, True, ), ( { "name": "test_function", }, False, ), ], ) def test_vertex_function_translation(tool, expect_parameters): """ If param not set, don't set it in the request """ tools = [tool] optional_params = get_optional_params( model="gemini-1.5-pro", custom_llm_provider="vertex_ai", tools=tools, ) print(optional_params) if expect_parameters: assert "parameters" in optional_params["tools"][0]["function_declarations"][0] else: assert ( "parameters" not in optional_params["tools"][0]["function_declarations"][0] ) def test_function_calling_with_gemini(): from litellm.llms.custom_httpx.http_handler import HTTPHandler litellm.set_verbose = True client = HTTPHandler() with patch.object(client, "post", new=MagicMock()) as mock_post: try: litellm.completion( model="gemini/gemini-1.5-pro-002", messages=[ { "content": [ { "type": "text", "text": "You are a helpful assistant that can interact with a computer to solve tasks.\n\n* If user provides a path, you should NOT assume it's relative to the current working directory. Instead, you should explore the file system to find the file before working on it.\n\n", } ], "role": "system", }, { "content": [{"type": "text", "text": "Hey, how's it going?"}], "role": "user", }, ], tools=[ { "type": "function", "function": { "name": "finish", "description": "Finish the interaction when the task is complete OR if the assistant cannot proceed further with the task.", }, }, ], client=client, ) except Exception as e: print(e) mock_post.assert_called_once() print(mock_post.call_args.kwargs) assert mock_post.call_args.kwargs["json"]["tools"] == [ { "function_declarations": [ { "name": "finish", "description": "Finish the interaction when the task is complete OR if the assistant cannot proceed further with the task.", } ] } ] def test_multiple_function_call(): litellm.set_verbose = True from litellm.llms.custom_httpx.http_handler import HTTPHandler client = HTTPHandler() messages = [ {"role": "user", "content": [{"type": "text", "text": "do test"}]}, { "role": "assistant", "content": [{"type": "text", "text": "test"}], "tool_calls": [ { "index": 0, "function": {"arguments": '{"arg": "test"}', "name": "test"}, "id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec", "type": "function", }, { "index": 1, "function": {"arguments": '{"arg": "test2"}', "name": "test2"}, "id": "call_2414e8f9-283a-002b-182a-1290ab912c02", "type": "function", }, ], }, { "tool_call_id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec", "role": "tool", "name": "test", "content": [{"type": "text", "text": "42"}], }, { "tool_call_id": "call_2414e8f9-283a-002b-182a-1290ab912c02", "role": "tool", "name": "test2", "content": [{"type": "text", "text": "15"}], }, {"role": "user", "content": [{"type": "text", "text": "tell me the results."}]}, ] response_body = { "candidates": [ { "content": { "parts": [ { "text": 'The `default_api.test` function call returned a JSON object indicating a successful execution. The `fields` key contains a nested dictionary with a `key` of "content" and a `value` with a `string_value` of "42".\n\nSimilarly, the `default_api.test2` function call also returned a JSON object showing successful execution. The `fields` key contains a nested dictionary with a `key` of "content" and a `value` with a `string_value` of "15".\n\nIn short, both test functions executed successfully and returned different numerical string values ("42" and "15"). The significance of these numbers depends on the internal logic of the `test` and `test2` functions within the `default_api`.\n' } ], "role": "model", }, "finishReason": "STOP", "avgLogprobs": -0.20577410289219447, } ], "usageMetadata": { "promptTokenCount": 128, "candidatesTokenCount": 168, "totalTokenCount": 296, }, "modelVersion": "gemini-1.5-flash-002", } mock_response = MagicMock() mock_response.json.return_value = response_body with patch.object(client, "post", return_value=mock_response) as mock_post: r = litellm.completion( messages=messages, model="gemini/gemini-1.5-flash-002", client=client ) assert len(r.choices) > 0 print(mock_post.call_args.kwargs["json"]) assert mock_post.call_args.kwargs["json"] == { "contents": [ {"role": "user", "parts": [{"text": "do test"}]}, { "role": "model", "parts": [ {"text": "test"}, {"function_call": {"name": "test", "args": {"arg": "test"}}}, {"function_call": {"name": "test2", "args": {"arg": "test2"}}}, ], }, { "parts": [ { "function_response": { "name": "test", "response": {"content": "42"}, } }, { "function_response": { "name": "test2", "response": {"content": "15"}, } }, ] }, {"role": "user", "parts": [{"text": "tell me the results."}]}, ], "generationConfig": {}, } def test_multiple_function_call_changed_text_pos(): litellm.set_verbose = True from litellm.llms.custom_httpx.http_handler import HTTPHandler client = HTTPHandler() messages = [ {"role": "user", "content": [{"type": "text", "text": "do test"}]}, { "tool_calls": [ { "index": 0, "function": {"arguments": '{"arg": "test"}', "name": "test"}, "id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec", "type": "function", }, { "index": 1, "function": {"arguments": '{"arg": "test2"}', "name": "test2"}, "id": "call_2414e8f9-283a-002b-182a-1290ab912c02", "type": "function", }, ], "role": "assistant", "content": [{"type": "text", "text": "test"}], }, { "tool_call_id": "call_2414e8f9-283a-002b-182a-1290ab912c02", "role": "tool", "name": "test2", "content": [{"type": "text", "text": "15"}], }, { "tool_call_id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec", "role": "tool", "name": "test", "content": [{"type": "text", "text": "42"}], }, {"role": "user", "content": [{"type": "text", "text": "tell me the results."}]}, ] response_body = { "candidates": [ { "content": { "parts": [ { "text": 'The code executed two functions, `test` and `test2`.\n\n* **`test`**: Returned a dictionary indicating that the "key" field has a "value" field containing a string value of "42". This is likely a response from a function that processed the input "test" and returned a calculated or pre-defined value.\n\n* **`test2`**: Returned a dictionary indicating that the "key" field has a "value" field containing a string value of "15". Similar to `test`, this suggests a function that processes the input "test2" and returns a specific result.\n\nIn short, both functions appear to be simple tests that return different hardcoded or calculated values based on their input arguments.\n' } ], "role": "model", }, "finishReason": "STOP", "avgLogprobs": -0.32848488592332409, } ], "usageMetadata": { "promptTokenCount": 128, "candidatesTokenCount": 155, "totalTokenCount": 283, }, "modelVersion": "gemini-1.5-flash-002", } mock_response = MagicMock() mock_response.json.return_value = response_body with patch.object(client, "post", return_value=mock_response) as mock_post: resp = litellm.completion( messages=messages, model="gemini/gemini-1.5-flash-002", client=client ) assert len(resp.choices) > 0 mock_post.assert_called_once() print(mock_post.call_args.kwargs["json"]["contents"]) assert mock_post.call_args.kwargs["json"]["contents"] == [ {"role": "user", "parts": [{"text": "do test"}]}, { "role": "model", "parts": [ {"text": "test"}, {"function_call": {"name": "test", "args": {"arg": "test"}}}, {"function_call": {"name": "test2", "args": {"arg": "test2"}}}, ], }, { "parts": [ { "function_response": { "name": "test2", "response": {"content": "15"}, } }, { "function_response": { "name": "test", "response": {"content": "42"}, } }, ] }, {"role": "user", "parts": [{"text": "tell me the results."}]}, ] def test_function_calling_with_gemini_multiple_results(): litellm.set_verbose = True from litellm.llms.custom_httpx.http_handler import HTTPHandler client = HTTPHandler() # Step 1: send the conversation and available functions to the model messages = [ { "role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses", } ] tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state", }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"], }, }, "required": ["location"], }, }, } ] response_body = { "candidates": [ { "content": { "parts": [ { "functionCall": { "name": "get_current_weather", "args": {"location": "San Francisco"}, } }, { "functionCall": { "name": "get_current_weather", "args": {"location": "Tokyo"}, } }, { "functionCall": { "name": "get_current_weather", "args": {"location": "Paris"}, } }, ], "role": "model", }, "finishReason": "STOP", "avgLogprobs": -0.0040788948535919189, } ], "usageMetadata": { "promptTokenCount": 90, "candidatesTokenCount": 22, "totalTokenCount": 112, }, "modelVersion": "gemini-1.5-flash-002", } mock_response = MagicMock() mock_response.json.return_value = response_body with patch.object(client, "post", return_value=mock_response): response = litellm.completion( model="gemini/gemini-1.5-flash-002", messages=messages, tools=tools, tool_choice="required", client=client, ) print("Response\n", response) assert len(response.choices[0].message.tool_calls) == 3 expected_locations = ["San Francisco", "Tokyo", "Paris"] for idx, tool_call in enumerate(response.choices[0].message.tool_calls): json_args = json.loads(tool_call.function.arguments) assert json_args["location"] == expected_locations[idx] def test_logprobs_unit_test(): from litellm import VertexGeminiConfig result = VertexGeminiConfig()._transform_logprobs( logprobs_result={ "topCandidates": [ { "candidates": [ {"token": "```", "logProbability": -1.5496514e-06}, {"token": "`", "logProbability": -13.375002}, {"token": "``", "logProbability": -21.875002}, ] }, { "candidates": [ {"token": "tool", "logProbability": 0}, {"token": "too", "logProbability": -29.031433}, {"token": "to", "logProbability": -34.11199}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "code", "logProbability": 0}, {"token": "co", "logProbability": -28.114716}, {"token": "c", "logProbability": -29.283161}, ] }, { "candidates": [ {"token": "\n", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "print", "logProbability": 0}, {"token": "p", "logProbability": -19.7494}, {"token": "prin", "logProbability": -21.117342}, ] }, { "candidates": [ {"token": "(", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "default", "logProbability": 0}, {"token": "get", "logProbability": -16.811178}, {"token": "ge", "logProbability": -19.031078}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "api", "logProbability": 0}, {"token": "ap", "logProbability": -26.501019}, {"token": "a", "logProbability": -30.905857}, ] }, { "candidates": [ {"token": ".", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "get", "logProbability": 0}, {"token": "ge", "logProbability": -19.984676}, {"token": "g", "logProbability": -20.527714}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "current", "logProbability": 0}, {"token": "cur", "logProbability": -28.193565}, {"token": "cu", "logProbability": -29.636738}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "weather", "logProbability": 0}, {"token": "we", "logProbability": -27.887215}, {"token": "wea", "logProbability": -31.851082}, ] }, { "candidates": [ {"token": "(", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "location", "logProbability": 0}, {"token": "loc", "logProbability": -19.152641}, {"token": " location", "logProbability": -21.981709}, ] }, { "candidates": [ {"token": '="', "logProbability": -0.034490786}, {"token": "='", "logProbability": -3.398928}, {"token": "=", "logProbability": -7.6194153}, ] }, { "candidates": [ {"token": "San", "logProbability": -6.5561944e-06}, {"token": '\\"', "logProbability": -12.015556}, {"token": "Paris", "logProbability": -14.647776}, ] }, { "candidates": [ {"token": " Francisco", "logProbability": -3.5760596e-07}, {"token": " Frans", "logProbability": -14.83527}, {"token": " francisco", "logProbability": -19.796852}, ] }, { "candidates": [ {"token": '"))', "logProbability": -6.079254e-06}, {"token": ",", "logProbability": -12.106029}, {"token": '",', "logProbability": -14.56927}, ] }, { "candidates": [ {"token": "\n", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "print", "logProbability": -0.04140338}, {"token": "```", "logProbability": -3.2049975}, {"token": "p", "logProbability": -22.087523}, ] }, { "candidates": [ {"token": "(", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "default", "logProbability": 0}, {"token": "get", "logProbability": -20.266342}, {"token": "de", "logProbability": -20.906395}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "api", "logProbability": 0}, {"token": "ap", "logProbability": -27.712265}, {"token": "a", "logProbability": -31.986958}, ] }, { "candidates": [ {"token": ".", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "get", "logProbability": 0}, {"token": "g", "logProbability": -23.569286}, {"token": "ge", "logProbability": -23.829632}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "current", "logProbability": 0}, {"token": "cur", "logProbability": -30.125153}, {"token": "curr", "logProbability": -31.756569}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "weather", "logProbability": 0}, {"token": "we", "logProbability": -27.743786}, {"token": "w", "logProbability": -30.594503}, ] }, { "candidates": [ {"token": "(", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "location", "logProbability": 0}, {"token": "loc", "logProbability": -21.177715}, {"token": " location", "logProbability": -22.166002}, ] }, { "candidates": [ {"token": '="', "logProbability": -1.5617967e-05}, {"token": "='", "logProbability": -11.080961}, {"token": "=", "logProbability": -15.164277}, ] }, { "candidates": [ {"token": "Tokyo", "logProbability": -3.0041514e-05}, {"token": "tokyo", "logProbability": -10.650261}, {"token": "Paris", "logProbability": -12.096886}, ] }, { "candidates": [ {"token": '"))', "logProbability": -1.1922384e-07}, {"token": '",', "logProbability": -16.61921}, {"token": ",", "logProbability": -17.911102}, ] }, { "candidates": [ {"token": "\n", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "print", "logProbability": -3.5760596e-07}, {"token": "```", "logProbability": -14.949171}, {"token": "p", "logProbability": -24.321035}, ] }, { "candidates": [ {"token": "(", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "default", "logProbability": 0}, {"token": "de", "logProbability": -27.885206}, {"token": "def", "logProbability": -28.40597}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "api", "logProbability": 0}, {"token": "ap", "logProbability": -25.905933}, {"token": "a", "logProbability": -30.408901}, ] }, { "candidates": [ {"token": ".", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "get", "logProbability": 0}, {"token": "g", "logProbability": -22.274963}, {"token": "ge", "logProbability": -23.285828}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "current", "logProbability": 0}, {"token": "cur", "logProbability": -28.442535}, {"token": "curr", "logProbability": -29.95087}, ] }, { "candidates": [ {"token": "_", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "weather", "logProbability": 0}, {"token": "we", "logProbability": -27.307909}, {"token": "w", "logProbability": -31.076736}, ] }, { "candidates": [ {"token": "(", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "location", "logProbability": 0}, {"token": "loc", "logProbability": -21.535915}, {"token": "lo", "logProbability": -23.028284}, ] }, { "candidates": [ {"token": '="', "logProbability": -8.821511e-06}, {"token": "='", "logProbability": -11.700986}, {"token": "=", "logProbability": -14.50358}, ] }, { "candidates": [ {"token": "Paris", "logProbability": 0}, {"token": "paris", "logProbability": -18.07075}, {"token": "Par", "logProbability": -21.911625}, ] }, { "candidates": [ {"token": '"))', "logProbability": 0}, {"token": '")', "logProbability": -17.916853}, {"token": ",", "logProbability": -18.318272}, ] }, { "candidates": [ {"token": "\n", "logProbability": 0}, {"token": "ont", "logProbability": -1.2676506e30}, {"token": " п", "logProbability": -1.2676506e30}, ] }, { "candidates": [ {"token": "```", "logProbability": -3.5763796e-06}, {"token": "print", "logProbability": -12.535343}, {"token": "``", "logProbability": -19.670813}, ] }, ], "chosenCandidates": [ {"token": "```", "logProbability": -1.5496514e-06}, {"token": "tool", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "code", "logProbability": 0}, {"token": "\n", "logProbability": 0}, {"token": "print", "logProbability": 0}, {"token": "(", "logProbability": 0}, {"token": "default", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "api", "logProbability": 0}, {"token": ".", "logProbability": 0}, {"token": "get", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "current", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "weather", "logProbability": 0}, {"token": "(", "logProbability": 0}, {"token": "location", "logProbability": 0}, {"token": '="', "logProbability": -0.034490786}, {"token": "San", "logProbability": -6.5561944e-06}, {"token": " Francisco", "logProbability": -3.5760596e-07}, {"token": '"))', "logProbability": -6.079254e-06}, {"token": "\n", "logProbability": 0}, {"token": "print", "logProbability": -0.04140338}, {"token": "(", "logProbability": 0}, {"token": "default", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "api", "logProbability": 0}, {"token": ".", "logProbability": 0}, {"token": "get", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "current", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "weather", "logProbability": 0}, {"token": "(", "logProbability": 0}, {"token": "location", "logProbability": 0}, {"token": '="', "logProbability": -1.5617967e-05}, {"token": "Tokyo", "logProbability": -3.0041514e-05}, {"token": '"))', "logProbability": -1.1922384e-07}, {"token": "\n", "logProbability": 0}, {"token": "print", "logProbability": -3.5760596e-07}, {"token": "(", "logProbability": 0}, {"token": "default", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "api", "logProbability": 0}, {"token": ".", "logProbability": 0}, {"token": "get", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "current", "logProbability": 0}, {"token": "_", "logProbability": 0}, {"token": "weather", "logProbability": 0}, {"token": "(", "logProbability": 0}, {"token": "location", "logProbability": 0}, {"token": '="', "logProbability": -8.821511e-06}, {"token": "Paris", "logProbability": 0}, {"token": '"))', "logProbability": 0}, {"token": "\n", "logProbability": 0}, {"token": "```", "logProbability": -3.5763796e-06}, ], } ) print(result) def test_logprobs(): litellm.set_verbose = True from litellm.llms.custom_httpx.http_handler import HTTPHandler client = HTTPHandler() response_body = { "candidates": [ { "content": { "parts": [ { "text": "I do not have access to real-time information, including current weather conditions. To get the current weather in San Francisco, I recommend checking a reliable weather website or app such as Google Weather, AccuWeather, or the National Weather Service.\n" } ], "role": "model", }, "finishReason": "STOP", "avgLogprobs": -0.04666396617889404, "logprobsResult": { "chosenCandidates": [ {"token": "I", "logProbability": -1.08472495e-05}, {"token": " do", "logProbability": -0.00012611414}, {"token": " not", "logProbability": 0}, {"token": " have", "logProbability": 0}, {"token": " access", "logProbability": -0.0008849616}, {"token": " to", "logProbability": 0}, {"token": " real", "logProbability": -1.1922384e-07}, {"token": "-", "logProbability": 0}, {"token": "time", "logProbability": 0}, {"token": " information", "logProbability": -2.2409657e-05}, {"token": ",", "logProbability": 0}, {"token": " including", "logProbability": 0}, {"token": " current", "logProbability": -0.14274147}, {"token": " weather", "logProbability": 0}, {"token": " conditions", "logProbability": -0.0056300927}, {"token": ".", "logProbability": -3.5760596e-07}, {"token": " ", "logProbability": -0.06392521}, {"token": "To", "logProbability": -2.3844768e-07}, {"token": " get", "logProbability": -0.058974747}, {"token": " the", "logProbability": 0}, {"token": " current", "logProbability": 0}, {"token": " weather", "logProbability": -2.3844768e-07}, {"token": " in", "logProbability": -2.3844768e-07}, {"token": " San", "logProbability": 0}, {"token": " Francisco", "logProbability": 0}, {"token": ",", "logProbability": 0}, {"token": " I", "logProbability": -0.6188003}, {"token": " recommend", "logProbability": -1.0370523e-05}, {"token": " checking", "logProbability": -0.00014005086}, {"token": " a", "logProbability": 0}, {"token": " reliable", "logProbability": -1.5496514e-06}, {"token": " weather", "logProbability": -8.344534e-07}, {"token": " website", "logProbability": -0.0078000566}, {"token": " or", "logProbability": -1.1922384e-07}, {"token": " app", "logProbability": 0}, {"token": " such", "logProbability": -0.9289338}, {"token": " as", "logProbability": 0}, {"token": " Google", "logProbability": -0.0046935496}, {"token": " Weather", "logProbability": 0}, {"token": ",", "logProbability": 0}, {"token": " Accu", "logProbability": 0}, {"token": "Weather", "logProbability": -0.00013909786}, {"token": ",", "logProbability": 0}, {"token": " or", "logProbability": -0.31303275}, {"token": " the", "logProbability": -0.17583296}, {"token": " National", "logProbability": -0.010806266}, {"token": " Weather", "logProbability": 0}, {"token": " Service", "logProbability": 0}, {"token": ".", "logProbability": -0.00068947335}, {"token": "\n", "logProbability": 0}, ] }, } ], "usageMetadata": { "promptTokenCount": 11, "candidatesTokenCount": 50, "totalTokenCount": 61, }, "modelVersion": "gemini-1.5-flash-002", } mock_response = MagicMock() mock_response.json.return_value = response_body with patch.object(client, "post", return_value=mock_response): resp = litellm.completion( model="gemini/gemini-1.5-flash-002", messages=[ {"role": "user", "content": "What's the weather like in San Francisco?"} ], logprobs=True, client=client, ) print(resp) assert resp.choices[0].logprobs is not None def test_process_gemini_image(): """Test the _process_gemini_image function for different image sources""" from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import ( _process_gemini_image, ) from litellm.types.llms.vertex_ai import PartType, FileDataType, BlobType # Test GCS URI gcs_result = _process_gemini_image("gs://bucket/image.png") assert gcs_result["file_data"] == FileDataType( mime_type="image/png", file_uri="gs://bucket/image.png" ) # Test HTTPS JPG URL https_result = _process_gemini_image("https://example.com/image.jpg") print("https_result JPG", https_result) assert https_result["file_data"] == FileDataType( mime_type="image/jpeg", file_uri="https://example.com/image.jpg" ) # Test HTTPS PNG URL https_result = _process_gemini_image("https://example.com/image.png") print("https_result PNG", https_result) assert https_result["file_data"] == FileDataType( mime_type="image/png", file_uri="https://example.com/image.png" ) # Test HTTPS VIDEO URL https_result = _process_gemini_image("https://cloud-samples-data/video/animals.mp4") print("https_result PNG", https_result) assert https_result["file_data"] == FileDataType( mime_type="video/mp4", file_uri="https://cloud-samples-data/video/animals.mp4" ) # Test HTTPS PDF URL https_result = _process_gemini_image("https://cloud-samples-data/pdf/animals.pdf") print("https_result PDF", https_result) assert https_result["file_data"] == FileDataType( mime_type="application/pdf", file_uri="https://cloud-samples-data/pdf/animals.pdf", ) # Test base64 image base64_image = "..." base64_result = _process_gemini_image(base64_image) print("base64_result", base64_result) assert base64_result["inline_data"]["mime_type"] == "image/jpeg" assert base64_result["inline_data"]["data"] == "/9j/4AAQSkZJRg..." def test_get_image_mime_type_from_url(): """Test the _get_image_mime_type_from_url function for different image URLs""" from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import ( _get_image_mime_type_from_url, ) # Test JPEG images assert ( _get_image_mime_type_from_url("https://example.com/image.jpg") == "image/jpeg" ) assert ( _get_image_mime_type_from_url("https://example.com/image.jpeg") == "image/jpeg" ) assert ( _get_image_mime_type_from_url("https://example.com/IMAGE.JPG") == "image/jpeg" ) # Test PNG images assert _get_image_mime_type_from_url("https://example.com/image.png") == "image/png" assert _get_image_mime_type_from_url("https://example.com/IMAGE.PNG") == "image/png" # Test WebP images assert ( _get_image_mime_type_from_url("https://example.com/image.webp") == "image/webp" ) assert ( _get_image_mime_type_from_url("https://example.com/IMAGE.WEBP") == "image/webp" ) # Test unsupported formats assert _get_image_mime_type_from_url("https://example.com/image.gif") is None assert _get_image_mime_type_from_url("https://example.com/image.bmp") is None assert _get_image_mime_type_from_url("https://example.com/image") is None assert _get_image_mime_type_from_url("invalid_url") is None @pytest.mark.parametrize( "model, expected_url", [ ( "textembedding-gecko@001", "https://us-central1-aiplatform.googleapis.com/v1/projects/project-id/locations/us-central1/publishers/google/models/textembedding-gecko@001:predict", ), ( "123456789", "https://us-central1-aiplatform.googleapis.com/v1/projects/project-id/locations/us-central1/endpoints/123456789:predict", ), ], ) def test_vertex_embedding_url(model, expected_url): """ Test URL generation for embedding models, including numeric model IDs (fine-tuned models Relevant issue: https://github.com/BerriAI/litellm/issues/6482 When a fine-tuned embedding model is used, the URL is different from the standard one. """ from litellm.llms.vertex_ai_and_google_ai_studio.common_utils import _get_vertex_url url, endpoint = _get_vertex_url( mode="embedding", model=model, stream=False, vertex_project="project-id", vertex_location="us-central1", vertex_api_version="v1", ) assert url == expected_url assert endpoint == "predict"