#### What this tests #### # This tests streaming for the completion endpoint import asyncio import json import os import sys import time import traceback import uuid from typing import Tuple from unittest.mock import AsyncMock, MagicMock, patch import pytest from pydantic import BaseModel import litellm.litellm_core_utils import litellm.litellm_core_utils.litellm_logging from litellm.utils import ModelResponseListIterator sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path from dotenv import load_dotenv load_dotenv() import random import litellm from litellm import ( AuthenticationError, BadRequestError, ModelResponse, RateLimitError, acompletion, completion, ) litellm.logging = False litellm.set_verbose = True litellm.num_retries = 3 litellm.cache = None score = 0 def logger_fn(model_call_object: dict): print(f"model call details: {model_call_object}") user_message = "Hello, how are you?" messages = [{"content": user_message, "role": "user"}] first_openai_chunk_example = { "id": "chatcmpl-7zSKLBVXnX9dwgRuDYVqVVDsgh2yp", "object": "chat.completion.chunk", "created": 1694881253, "model": "gpt-4-0613", "choices": [ { "index": 0, "delta": {"role": "assistant", "content": ""}, "finish_reason": None, # it's null } ], } def validate_first_format(chunk): # write a test to make sure chunk follows the same format as first_openai_chunk_example assert isinstance(chunk, ModelResponse), "Chunk should be a dictionary." assert isinstance(chunk["id"], str), "'id' should be a string." assert isinstance(chunk["object"], str), "'object' should be a string." assert isinstance(chunk["created"], int), "'created' should be an integer." assert isinstance(chunk["model"], str), "'model' should be a string." assert isinstance(chunk["choices"], list), "'choices' should be a list." assert not hasattr(chunk, "usage"), "Chunk cannot contain usage" for choice in chunk["choices"]: assert isinstance(choice["index"], int), "'index' should be an integer." assert isinstance(choice["delta"]["role"], str), "'role' should be a string." assert "messages" not in choice # openai v1.0.0 returns content as None assert (choice["finish_reason"] is None) or isinstance( choice["finish_reason"], str ), "'finish_reason' should be None or a string." second_openai_chunk_example = { "id": "chatcmpl-7zSKLBVXnX9dwgRuDYVqVVDsgh2yp", "object": "chat.completion.chunk", "created": 1694881253, "model": "gpt-4-0613", "choices": [ {"index": 0, "delta": {"content": "Hello"}, "finish_reason": None} # it's null ], } def validate_second_format(chunk): assert isinstance(chunk, ModelResponse), "Chunk should be a dictionary." assert isinstance(chunk["id"], str), "'id' should be a string." assert isinstance(chunk["object"], str), "'object' should be a string." assert isinstance(chunk["created"], int), "'created' should be an integer." assert isinstance(chunk["model"], str), "'model' should be a string." assert isinstance(chunk["choices"], list), "'choices' should be a list." assert not hasattr(chunk, "usage"), "Chunk cannot contain usage" for choice in chunk["choices"]: assert isinstance(choice["index"], int), "'index' should be an integer." assert hasattr(choice["delta"], "role"), "'role' should be a string." # openai v1.0.0 returns content as None assert (choice["finish_reason"] is None) or isinstance( choice["finish_reason"], str ), "'finish_reason' should be None or a string." last_openai_chunk_example = { "id": "chatcmpl-7zSKLBVXnX9dwgRuDYVqVVDsgh2yp", "object": "chat.completion.chunk", "created": 1694881253, "model": "gpt-4-0613", "choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}], } """ Final chunk (sdk): chunk: ChatCompletionChunk(id='chatcmpl-96mM3oNBlxh2FDWVLKsgaFBBcULmI', choices=[Choice(delta=ChoiceDelta(content=None, function_call=None, role=None, tool_calls=None), finish_reason='stop', index=0, logprobs=None)], created=1711402871, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint='fp_3bc1b5746c') """ def validate_last_format(chunk): """ Ensure last chunk has no remaining content or tools """ assert isinstance(chunk, ModelResponse), "Chunk should be a dictionary." assert isinstance(chunk["id"], str), "'id' should be a string." assert isinstance(chunk["object"], str), "'object' should be a string." assert isinstance(chunk["created"], int), "'created' should be an integer." assert isinstance(chunk["model"], str), "'model' should be a string." assert isinstance(chunk["choices"], list), "'choices' should be a list." assert not hasattr(chunk, "usage"), "Chunk cannot contain usage" for choice in chunk["choices"]: assert isinstance(choice["index"], int), "'index' should be an integer." assert choice["delta"]["content"] is None assert choice["delta"]["function_call"] is None assert choice["delta"]["role"] is None assert choice["delta"]["tool_calls"] is None assert isinstance( choice["finish_reason"], str ), "'finish_reason' should be a string." def streaming_format_tests(idx, chunk) -> Tuple[str, bool]: extracted_chunk = "" finished = False print(f"chunk: {chunk}") if idx == 0: # ensure role assistant is set validate_first_format(chunk=chunk) role = chunk["choices"][0]["delta"]["role"] assert role == "assistant" elif idx == 1: # second chunk validate_second_format(chunk=chunk) if idx != 0: # ensure no role if "role" in chunk["choices"][0]["delta"]: pass # openai v1.0.0+ passes role = None if chunk["choices"][0][ "finish_reason" ]: # ensure finish reason is only in last chunk validate_last_format(chunk=chunk) finished = True if ( "content" in chunk["choices"][0]["delta"] and chunk["choices"][0]["delta"]["content"] is not None ): extracted_chunk = chunk["choices"][0]["delta"]["content"] print(f"extracted chunk: {extracted_chunk}") return extracted_chunk, finished tools_schema = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] # def test_completion_cohere_stream(): # # this is a flaky test due to the cohere API endpoint being unstable # try: # messages = [ # {"role": "system", "content": "You are a helpful assistant."}, # { # "role": "user", # "content": "how does a court case get to the Supreme Court?", # }, # ] # response = completion( # model="command-nightly", messages=messages, stream=True, max_tokens=50, # ) # complete_response = "" # # Add any assertions here to check the response # has_finish_reason = False # for idx, chunk in enumerate(response): # chunk, finished = streaming_format_tests(idx, chunk) # has_finish_reason = finished # if finished: # break # complete_response += chunk # if has_finish_reason is False: # raise Exception("Finish reason not in final chunk") # if complete_response.strip() == "": # raise Exception("Empty response received") # print(f"completion_response: {complete_response}") # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_cohere_stream() def test_completion_azure_stream_special_char(): litellm.set_verbose = True messages = [{"role": "user", "content": "hi. respond with the tag only"}] response = completion(model="azure/chatgpt-v-2", messages=messages, stream=True) response_str = "" for part in response: response_str += part.choices[0].delta.content or "" print(f"response_str: {response_str}") assert len(response_str) > 0 def test_completion_azure_stream_content_filter_no_delta(): """ Tests streaming from Azure when the chunks have no delta because they represent the filtered content """ try: chunks = [ { "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj", "choices": [ { "delta": {"content": "", "role": "assistant"}, "finish_reason": None, "index": 0, } ], "created": 1716563849, "model": "gpt-4o-2024-05-13", "object": "chat.completion.chunk", "system_fingerprint": "fp_5f4bad809a", }, { "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj", "choices": [ {"delta": {"content": "This"}, "finish_reason": None, "index": 0} ], "created": 1716563849, "model": "gpt-4o-2024-05-13", "object": "chat.completion.chunk", "system_fingerprint": "fp_5f4bad809a", }, { "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj", "choices": [ {"delta": {"content": " is"}, "finish_reason": None, "index": 0} ], "created": 1716563849, "model": "gpt-4o-2024-05-13", "object": "chat.completion.chunk", "system_fingerprint": "fp_5f4bad809a", }, { "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj", "choices": [ {"delta": {"content": " a"}, "finish_reason": None, "index": 0} ], "created": 1716563849, "model": "gpt-4o-2024-05-13", "object": "chat.completion.chunk", "system_fingerprint": "fp_5f4bad809a", }, { "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj", "choices": [ {"delta": {"content": " dummy"}, "finish_reason": None, "index": 0} ], "created": 1716563849, "model": "gpt-4o-2024-05-13", "object": "chat.completion.chunk", "system_fingerprint": "fp_5f4bad809a", }, { "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj", "choices": [ { "delta": {"content": " response"}, "finish_reason": None, "index": 0, } ], "created": 1716563849, "model": "gpt-4o-2024-05-13", "object": "chat.completion.chunk", "system_fingerprint": "fp_5f4bad809a", }, { "id": "", "choices": [ { "finish_reason": None, "index": 0, "content_filter_offsets": { "check_offset": 35159, "start_offset": 35159, "end_offset": 36150, }, "content_filter_results": { "hate": {"filtered": False, "severity": "safe"}, "self_harm": {"filtered": False, "severity": "safe"}, "sexual": {"filtered": False, "severity": "safe"}, "violence": {"filtered": False, "severity": "safe"}, }, } ], "created": 0, "model": "", "object": "", }, { "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj", "choices": [ {"delta": {"content": "."}, "finish_reason": None, "index": 0} ], "created": 1716563849, "model": "gpt-4o-2024-05-13", "object": "chat.completion.chunk", "system_fingerprint": "fp_5f4bad809a", }, { "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj", "choices": [{"delta": {}, "finish_reason": "stop", "index": 0}], "created": 1716563849, "model": "gpt-4o-2024-05-13", "object": "chat.completion.chunk", "system_fingerprint": "fp_5f4bad809a", }, { "id": "", "choices": [ { "finish_reason": None, "index": 0, "content_filter_offsets": { "check_offset": 36150, "start_offset": 36060, "end_offset": 37029, }, "content_filter_results": { "hate": {"filtered": False, "severity": "safe"}, "self_harm": {"filtered": False, "severity": "safe"}, "sexual": {"filtered": False, "severity": "safe"}, "violence": {"filtered": False, "severity": "safe"}, }, } ], "created": 0, "model": "", "object": "", }, ] chunk_list = [] for chunk in chunks: new_chunk = litellm.ModelResponse(stream=True, id=chunk["id"]) if "choices" in chunk and isinstance(chunk["choices"], list): new_choices = [] for choice in chunk["choices"]: if isinstance(choice, litellm.utils.StreamingChoices): _new_choice = choice elif isinstance(choice, dict): _new_choice = litellm.utils.StreamingChoices(**choice) new_choices.append(_new_choice) new_chunk.choices = new_choices chunk_list.append(new_chunk) completion_stream = ModelResponseListIterator(model_responses=chunk_list) litellm.set_verbose = True response = litellm.CustomStreamWrapper( completion_stream=completion_stream, model="gpt-4-0613", custom_llm_provider="cached_response", logging_obj=litellm.Logging( model="gpt-4-0613", messages=[{"role": "user", "content": "Hey"}], stream=True, call_type="completion", start_time=time.time(), litellm_call_id="12345", function_id="1245", ), ) for idx, chunk in enumerate(response): complete_response = "" for idx, chunk in enumerate(response): # print delta = chunk.choices[0].delta content = delta.content if delta else None complete_response += content or "" if chunk.choices[0].finish_reason is not None: break assert len(complete_response) > 0 except Exception as e: pytest.fail(f"An exception occurred - {str(e)}") def test_completion_cohere_stream_bad_key(): try: litellm.cache = None api_key = "bad-key" messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": "how does a court case get to the Supreme Court?", }, ] response = completion( model="command-nightly", messages=messages, stream=True, max_tokens=50, api_key=api_key, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished if finished: break complete_response += chunk if has_finish_reason is False: raise Exception("Finish reason not in final chunk") if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except AuthenticationError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_cohere_stream_bad_key() @pytest.mark.flaky(retries=5, delay=1) def test_completion_azure_stream(): try: litellm.set_verbose = False messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": "how does a court case get to the Supreme Court?", }, ] response = completion( model="azure/chatgpt-v-2", messages=messages, stream=True, max_tokens=50 ) complete_response = "" # Add any assertions here to check the response for idx, init_chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, init_chunk) complete_response += chunk custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"] print(f"custom_llm_provider: {custom_llm_provider}") assert custom_llm_provider == "azure" if finished: assert isinstance(init_chunk.choices[0], litellm.utils.StreamingChoices) break if complete_response.strip() == "": raise Exception("Empty response received") except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_azure_stream() @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_completion_predibase_streaming(sync_mode): try: litellm.set_verbose = True if sync_mode: response = completion( model="predibase/llama-3-8b-instruct", timeout=5, tenant_id="c4768f95", max_tokens=10, api_base="https://serving.app.predibase.com", api_key=os.getenv("PREDIBASE_API_KEY"), messages=[{"role": "user", "content": "What is the meaning of life?"}], stream=True, ) complete_response = "" for idx, init_chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, init_chunk) complete_response += chunk custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"] print(f"custom_llm_provider: {custom_llm_provider}") assert custom_llm_provider == "predibase" if finished: assert isinstance( init_chunk.choices[0], litellm.utils.StreamingChoices ) break if complete_response.strip() == "": raise Exception("Empty response received") else: response = await litellm.acompletion( model="predibase/llama-3-8b-instruct", tenant_id="c4768f95", timeout=5, max_tokens=10, api_base="https://serving.app.predibase.com", api_key=os.getenv("PREDIBASE_API_KEY"), messages=[{"role": "user", "content": "What is the meaning of life?"}], stream=True, ) # await response complete_response = "" idx = 0 async for init_chunk in response: chunk, finished = streaming_format_tests(idx, init_chunk) complete_response += chunk custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"] print(f"custom_llm_provider: {custom_llm_provider}") assert custom_llm_provider == "predibase" idx += 1 if finished: assert isinstance( init_chunk.choices[0], litellm.utils.StreamingChoices ) break if complete_response.strip() == "": raise Exception("Empty response received") print(f"complete_response: {complete_response}") except litellm.Timeout: pass except litellm.InternalServerError: pass except litellm.ServiceUnavailableError: pass except litellm.APIConnectionError: pass except Exception as e: print("ERROR class", e.__class__) print("ERROR message", e) print("ERROR traceback", traceback.format_exc()) pytest.fail(f"Error occurred: {e}") @pytest.mark.asyncio() @pytest.mark.flaky(retries=3, delay=1) async def test_completion_ai21_stream(): litellm.set_verbose = True response = await litellm.acompletion( model="ai21_chat/jamba-1.5-large", user="ishaan", stream=True, seed=123, messages=[{"role": "user", "content": "hi my name is ishaan"}], ) complete_response = "" idx = 0 async for init_chunk in response: chunk, finished = streaming_format_tests(idx, init_chunk) complete_response += chunk custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"] print(f"custom_llm_provider: {custom_llm_provider}") assert custom_llm_provider == "ai21_chat" idx += 1 if finished: assert isinstance(init_chunk.choices[0], litellm.utils.StreamingChoices) break if complete_response.strip() == "": raise Exception("Empty response received") print(f"complete_response: {complete_response}") pass def test_completion_azure_function_calling_stream(): try: litellm.set_verbose = False user_message = "What is the current weather in Boston?" messages = [{"content": user_message, "role": "user"}] response = completion( model="azure/chatgpt-functioncalling", messages=messages, stream=True, tools=tools_schema, ) # Add any assertions here to check the response for chunk in response: print(chunk) if chunk["choices"][0]["finish_reason"] == "stop": break print(chunk["choices"][0]["finish_reason"]) print(chunk["choices"][0]["delta"]["content"]) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_azure_function_calling_stream() @pytest.mark.skip("Flaky ollama test - needs to be fixed") def test_completion_ollama_hosted_stream(): try: litellm.set_verbose = True response = completion( model="ollama/phi", messages=messages, max_tokens=10, num_retries=3, timeout=20, api_base="https://test-ollama-endpoint.onrender.com", stream=True, ) # Add any assertions here to check the response complete_response = "" # Add any assertions here to check the response for idx, init_chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, init_chunk) complete_response += chunk if finished: assert isinstance(init_chunk.choices[0], litellm.utils.StreamingChoices) break if complete_response.strip() == "": raise Exception("Empty response received") print(f"complete_response: {complete_response}") except Exception as e: if "try pulling it first" in str(e): return pytest.fail(f"Error occurred: {e}") # test_completion_ollama_hosted_stream() @pytest.mark.parametrize( "model", [ # "claude-3-5-haiku-20241022", # "claude-2", # "mistral/mistral-small-latest", "openrouter/openai/gpt-4o-mini", ], ) def test_completion_model_stream(model): try: messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": "how does a court case get to the Supreme Court?", }, ] response = completion( model=model, messages=messages, stream=True, max_tokens=50 ) complete_response = "" # Add any assertions here to check the response for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) if finished: break complete_response += chunk if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.asyncio async def test_acompletion_claude_2_stream(): try: litellm.set_verbose = True response = await litellm.acompletion( model="claude-2.1", messages=[{"role": "user", "content": "hello from litellm"}], stream=True, ) complete_response = "" # Add any assertions here to check the response idx = 0 async for chunk in response: print(chunk) # print(chunk.choices[0].delta) chunk, finished = streaming_format_tests(idx, chunk) if finished: break complete_response += chunk idx += 1 if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except litellm.InternalServerError: pass except litellm.RateLimitError: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize( "sync_mode", [True, False], ) # , @pytest.mark.asyncio @pytest.mark.flaky(retries=3, delay=1) async def test_completion_gemini_stream(sync_mode): try: litellm.set_verbose = True print("Streaming gemini response") function1 = [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, } ] messages = [{"role": "user", "content": "What is the weather like in Boston?"}] print("testing gemini streaming") complete_response = "" # Add any assertions here to check the response non_empty_chunks = 0 chunks = [] if sync_mode: response = completion( model="gemini/gemini-1.5-flash", messages=messages, stream=True, functions=function1, ) for idx, chunk in enumerate(response): print(chunk) chunks.append(chunk) # print(chunk.choices[0].delta) chunk, finished = streaming_format_tests(idx, chunk) if finished: break non_empty_chunks += 1 complete_response += chunk else: response = await litellm.acompletion( model="gemini/gemini-1.5-flash", messages=messages, stream=True, functions=function1, ) idx = 0 async for chunk in response: print(chunk) chunks.append(chunk) # print(chunk.choices[0].delta) chunk, finished = streaming_format_tests(idx, chunk) if finished: break non_empty_chunks += 1 complete_response += chunk idx += 1 # if complete_response.strip() == "": # raise Exception("Empty response received") print(f"completion_response: {complete_response}") complete_response = litellm.stream_chunk_builder( chunks=chunks, messages=messages ) assert complete_response.choices[0].message.function_call is not None # assert non_empty_chunks > 1 except litellm.InternalServerError as e: pass except litellm.RateLimitError as e: pass except Exception as e: # if "429 Resource has been exhausted": # return pytest.fail(f"Error occurred: {e}") # asyncio.run(test_acompletion_gemini_stream()) def gemini_mock_post_streaming(url, **kwargs): # This generator simulates the streaming response with partial JSON content def stream_response(): chunks = [ "{", '"candidates": [{"content": {"parts": [{"text": "Twelve"}],"role": "model"},"finishReason": "STOP","index": 0}],"usageMetadata": {"promptTokenCount": 8,"candidatesTokenCount": 1,"totalTokenCount": 9', "}}\n\n", # This is the continuation of the previous chunk 'data: {"candidates": [{"content": {"parts": [{"text": "-year-old Finn was never one for adventure. He preferred the comfort of', ' his room, his nose buried in a book, to the chaotic world outside."}],"role": "model"},"finishReason": "STOP","index": 0,"safetyRatings": [{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 8,"candidatesTokenCount": 17,"totalTokenCount": 25}}\n\n', # Add more chunks as needed ] for chunk in chunks: yield chunk mock_response = MagicMock() mock_response.status_code = 200 mock_response.headers = {"Content-Type": "text/event-stream"} mock_response.iter_lines = MagicMock(return_value=stream_response()) return mock_response @pytest.mark.parametrize( "sync_mode", [True], ) # , @pytest.mark.asyncio @pytest.mark.flaky(retries=3, delay=1) async def test_completion_gemini_stream_accumulated_json(sync_mode): try: from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler litellm.set_verbose = True print("Streaming gemini response") function1 = [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, } ] messages = [{"role": "user", "content": "What is the weather like in Boston?"}] print("testing gemini streaming") complete_response = "" # Add any assertions here to check the response non_empty_chunks = 0 chunks = [] if sync_mode: client = HTTPHandler(concurrent_limit=1) with patch.object( client, "post", side_effect=gemini_mock_post_streaming ) as mock_client: response = completion( model="gemini/gemini-1.5-flash", messages=messages, stream=True, functions=function1, client=client, ) for idx, chunk in enumerate(response): print(chunk) chunks.append(chunk) # print(chunk.choices[0].delta) chunk, finished = streaming_format_tests(idx, chunk) print(f"finished: {finished}") if finished: break non_empty_chunks += 1 complete_response += chunk mock_client.assert_called_once() else: client = AsyncHTTPHandler(concurrent_limit=1) with patch.object( client, "post", side_effect=gemini_mock_post_streaming ) as mock_client: response = await litellm.acompletion( model="gemini/gemini-1.5-flash", messages=messages, stream=True, functions=function1, ) idx = 0 async for chunk in response: print(chunk) chunks.append(chunk) # print(chunk.choices[0].delta) chunk, finished = streaming_format_tests(idx, chunk) if finished: break non_empty_chunks += 1 complete_response += chunk idx += 1 # if complete_response.strip() == "": # raise Exception("Empty response received") print(f"completion_response: {complete_response}") assert ( complete_response == "Twelve-year-old Finn was never one for adventure. He preferred the comfort of his room, his nose buried in a book, to the chaotic world outside." ) # assert non_empty_chunks > 1 except litellm.InternalServerError as e: pass except litellm.RateLimitError as e: pass except Exception as e: # if "429 Resource has been exhausted": # return pytest.fail(f"Error occurred: {e}") def test_completion_mistral_api_mistral_large_function_call_with_streaming(): litellm.set_verbose = True tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [ { "role": "user", "content": "What's the weather like in Boston today in fahrenheit?", } ] try: # test without max tokens response = completion( model="mistral/mistral-large-latest", messages=messages, tools=tools, tool_choice="auto", stream=True, ) idx = 0 for chunk in response: print(f"chunk in response: {chunk}") assert chunk._hidden_params["custom_llm_provider"] == "mistral" if idx == 0: assert ( chunk.choices[0].delta.tool_calls[0].function.arguments is not None ) assert isinstance( chunk.choices[0].delta.tool_calls[0].function.arguments, str ) validate_first_streaming_function_calling_chunk(chunk=chunk) elif idx == 1 and chunk.choices[0].finish_reason is None: validate_second_streaming_function_calling_chunk(chunk=chunk) elif chunk.choices[0].finish_reason is not None: # last chunk validate_final_streaming_function_calling_chunk(chunk=chunk) idx += 1 except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_mistral_api_stream() def test_completion_deep_infra_stream(): # deep infra,currently includes role in the 2nd chunk # waiting for them to make a fix on this litellm.set_verbose = True try: messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": "how does a court case get to the Supreme Court?", }, ] print("testing deep infra streaming") response = completion( model="deepinfra/meta-llama/Llama-2-70b-chat-hf", messages=messages, stream=True, max_tokens=80, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) if finished: has_finish_reason = True break complete_response += chunk if has_finish_reason == False: raise Exception("finish reason not set") if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except Exception as e: if "Model busy, retry later" in str(e): pass pytest.fail(f"Error occurred: {e}") # test_completion_deep_infra_stream() @pytest.mark.skip() def test_completion_nlp_cloud_stream(): try: messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": "how does a court case get to the Supreme Court?", }, ] print("testing nlp cloud streaming") response = completion( model="nlp_cloud/finetuned-llama-2-70b", messages=messages, stream=True, max_tokens=20, ) complete_response = "" # Add any assertions here to check the response for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) complete_response += chunk if finished: break if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except Exception as e: print(f"Error occurred: {e}") pytest.fail(f"Error occurred: {e}") # test_completion_nlp_cloud_stream() def test_completion_claude_stream_bad_key(): try: litellm.cache = None litellm.set_verbose = True api_key = "bad-key" messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": "how does a court case get to the Supreme Court?", }, ] response = completion( model="claude-3-5-haiku-20241022", messages=messages, stream=True, max_tokens=50, api_key=api_key, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) if finished: has_finish_reason = True break complete_response += chunk if has_finish_reason == False: raise Exception("finish reason not set") if complete_response.strip() == "": raise Exception("Empty response received") print(f"1234completion_response: {complete_response}") raise Exception("Auth error not raised") except AuthenticationError as e: print("Auth Error raised") except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_claude_stream_bad_key() # test_completion_replicate_stream() @pytest.mark.parametrize("provider", ["vertex_ai_beta"]) # "" def test_vertex_ai_stream(provider): from test_amazing_vertex_completion import ( load_vertex_ai_credentials, ) load_vertex_ai_credentials() litellm.set_verbose = True litellm.vertex_project = "adroit-crow-413218" import random test_models = ["gemini-1.5-pro"] for model in test_models: try: print("making request", model) response = completion( model="{}/{}".format(provider, model), messages=[ {"role": "user", "content": "Hey, how's it going?"}, { "role": "assistant", "content": "I'm doing well. Would like to hear the rest of the story?", }, {"role": "user", "content": "Na"}, { "role": "assistant", "content": "No problem, is there anything else i can help you with today?", }, { "role": "user", "content": "I think you're getting cut off sometimes", }, ], stream=True, ) complete_response = "" is_finished = False for idx, chunk in enumerate(response): print(f"chunk in response: {chunk}") chunk, finished = streaming_format_tests(idx, chunk) if finished: is_finished = True break complete_response += chunk if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") assert is_finished == True except litellm.RateLimitError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # def test_completion_vertexai_stream(): # try: # import os # os.environ["VERTEXAI_PROJECT"] = "pathrise-convert-1606954137718" # os.environ["VERTEXAI_LOCATION"] = "us-central1" # messages = [ # {"role": "system", "content": "You are a helpful assistant."}, # { # "role": "user", # "content": "how does a court case get to the Supreme Court?", # }, # ] # response = completion( # model="vertex_ai/chat-bison", messages=messages, stream=True, max_tokens=50 # ) # complete_response = "" # has_finish_reason = False # # Add any assertions here to check the response # for idx, chunk in enumerate(response): # chunk, finished = streaming_format_tests(idx, chunk) # has_finish_reason = finished # if finished: # break # complete_response += chunk # if has_finish_reason is False: # raise Exception("finish reason not set for last chunk") # if complete_response.strip() == "": # raise Exception("Empty response received") # print(f"completion_response: {complete_response}") # except InvalidRequestError as e: # pass # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_vertexai_stream() # def test_completion_vertexai_stream_bad_key(): # try: # import os # messages = [ # {"role": "system", "content": "You are a helpful assistant."}, # { # "role": "user", # "content": "how does a court case get to the Supreme Court?", # }, # ] # response = completion( # model="vertex_ai/chat-bison", messages=messages, stream=True, max_tokens=50 # ) # complete_response = "" # has_finish_reason = False # # Add any assertions here to check the response # for idx, chunk in enumerate(response): # chunk, finished = streaming_format_tests(idx, chunk) # has_finish_reason = finished # if finished: # break # complete_response += chunk # if has_finish_reason is False: # raise Exception("finish reason not set for last chunk") # if complete_response.strip() == "": # raise Exception("Empty response received") # print(f"completion_response: {complete_response}") # except InvalidRequestError as e: # pass # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_vertexai_stream_bad_key() @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_completion_databricks_streaming(sync_mode): litellm.set_verbose = True model_name = "databricks/databricks-dbrx-instruct" try: if sync_mode: final_chunk: Optional[litellm.ModelResponse] = None response: litellm.CustomStreamWrapper = completion( # type: ignore model=model_name, messages=messages, max_tokens=10, # type: ignore stream=True, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False for idx, chunk in enumerate(response): final_chunk = chunk chunk, finished = streaming_format_tests(idx, chunk) if finished: has_finish_reason = True break complete_response += chunk if has_finish_reason == False: raise Exception("finish reason not set") if complete_response.strip() == "": raise Exception("Empty response received") else: response: litellm.CustomStreamWrapper = await litellm.acompletion( # type: ignore model=model_name, messages=messages, max_tokens=100, # type: ignore stream=True, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False idx = 0 final_chunk: Optional[litellm.ModelResponse] = None async for chunk in response: final_chunk = chunk chunk, finished = streaming_format_tests(idx, chunk) if finished: has_finish_reason = True break complete_response += chunk idx += 1 if has_finish_reason == False: raise Exception("finish reason not set") if complete_response.strip() == "": raise Exception("Empty response received") except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize("sync_mode", [False, True]) @pytest.mark.asyncio async def test_completion_replicate_llama3_streaming(sync_mode): litellm.set_verbose = True model_name = "replicate/meta/meta-llama-3-8b-instruct" try: if sync_mode: final_chunk: Optional[litellm.ModelResponse] = None response: litellm.CustomStreamWrapper = completion( # type: ignore model=model_name, messages=messages, max_tokens=10, # type: ignore stream=True, num_retries=3, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False for idx, chunk in enumerate(response): final_chunk = chunk chunk, finished = streaming_format_tests(idx, chunk) if finished: has_finish_reason = True break complete_response += chunk if has_finish_reason == False: raise Exception("finish reason not set") if complete_response.strip() == "": raise Exception("Empty response received") else: response: litellm.CustomStreamWrapper = await litellm.acompletion( # type: ignore model=model_name, messages=messages, max_tokens=100, # type: ignore stream=True, num_retries=3, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False idx = 0 final_chunk: Optional[litellm.ModelResponse] = None async for chunk in response: final_chunk = chunk chunk, finished = streaming_format_tests(idx, chunk) if finished: has_finish_reason = True break complete_response += chunk idx += 1 if has_finish_reason == False: raise Exception("finish reason not set") if complete_response.strip() == "": raise Exception("Empty response received") except litellm.UnprocessableEntityError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # TEMP Commented out - replicate throwing an auth error # try: # litellm.set_verbose = True # messages = [ # {"role": "system", "content": "You are a helpful assistant."}, # { # "role": "user", # "content": "how does a court case get to the Supreme Court?", # }, # ] # response = completion( # model="replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3", messages=messages, stream=True, max_tokens=50 # ) # complete_response = "" # has_finish_reason = False # # Add any assertions here to check the response # for idx, chunk in enumerate(response): # chunk, finished = streaming_format_tests(idx, chunk) # has_finish_reason = finished # if finished: # break # complete_response += chunk # if has_finish_reason is False: # raise Exception("finish reason not set for last chunk") # if complete_response.strip() == "": # raise Exception("Empty response received") # print(f"completion_response: {complete_response}") # except InvalidRequestError as e: # pass # except Exception as e: # pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize("sync_mode", [True, False]) # @pytest.mark.parametrize( "model, region", [ ["bedrock/ai21.jamba-instruct-v1:0", "us-east-1"], ["bedrock/cohere.command-r-plus-v1:0", None], ["anthropic.claude-3-sonnet-20240229-v1:0", None], ["anthropic.claude-instant-v1", None], ["mistral.mistral-7b-instruct-v0:2", None], ["bedrock/amazon.titan-tg1-large", None], ["meta.llama3-8b-instruct-v1:0", None], ], ) @pytest.mark.asyncio @pytest.mark.flaky(retries=3, delay=1) async def test_bedrock_httpx_streaming(sync_mode, model, region): try: litellm.set_verbose = True if sync_mode: final_chunk: Optional[litellm.ModelResponse] = None response: litellm.CustomStreamWrapper = completion( # type: ignore model=model, messages=messages, max_tokens=10, # type: ignore stream=True, aws_region_name=region, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False for idx, chunk in enumerate(response): final_chunk = chunk chunk, finished = streaming_format_tests(idx, chunk) if finished: has_finish_reason = True break complete_response += chunk if has_finish_reason is False: raise Exception("finish reason not set") if complete_response.strip() == "": raise Exception("Empty response received") else: response: litellm.CustomStreamWrapper = await litellm.acompletion( # type: ignore model=model, messages=messages, max_tokens=100, # type: ignore stream=True, aws_region_name=region, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False idx = 0 final_chunk: Optional[litellm.ModelResponse] = None async for chunk in response: final_chunk = chunk chunk, finished = streaming_format_tests(idx, chunk) if finished: has_finish_reason = True break complete_response += chunk idx += 1 if has_finish_reason == False: raise Exception("finish reason not set") if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}\n\nFinalChunk: {final_chunk}") except RateLimitError as e: print("got rate limit error=", e) pass except litellm.Timeout: pass except Exception as e: pytest.fail(f"Error occurred: {e}") def test_bedrock_claude_3_streaming(): try: litellm.set_verbose = True response: ModelResponse = completion( # type: ignore model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0", messages=messages, max_tokens=10, # type: ignore stream=True, ) complete_response = "" # Add any assertions here to check the response has_finish_reason = False for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) if finished: has_finish_reason = True break complete_response += chunk if has_finish_reason == False: raise Exception("finish reason not set") if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except RateLimitError: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.parametrize( "model", [ "claude-3-opus-20240229", "cohere.command-r-plus-v1:0", # bedrock "gpt-3.5-turbo", "databricks/databricks-dbrx-instruct", # databricks "predibase/llama-3-8b-instruct", # predibase ], ) @pytest.mark.asyncio async def test_parallel_streaming_requests(sync_mode, model): """ Important prod test. """ try: import threading litellm.set_verbose = True messages = [ {"role": "system", "content": "Be helpful"}, {"role": "user", "content": "What do you know?"}, ] def sync_test_streaming(): response: litellm.CustomStreamWrapper = litellm.completion( # type: ignore model=model, messages=messages, stream=True, max_tokens=10, timeout=10, ) complete_response = "" # Add any assertions here to-check the response num_finish_reason = 0 for chunk in response: print(f"chunk: {chunk}") if isinstance(chunk, ModelResponse): if chunk.choices[0].finish_reason is not None: num_finish_reason += 1 assert num_finish_reason == 1 async def test_streaming(): response: litellm.CustomStreamWrapper = await litellm.acompletion( # type: ignore model=model, messages=messages, stream=True, max_tokens=10, timeout=10, ) complete_response = "" # Add any assertions here to-check the response num_finish_reason = 0 async for chunk in response: print(f"type of chunk: {type(chunk)}") if isinstance(chunk, ModelResponse): print(f"OUTSIDE CHUNK: {chunk.choices[0]}") if chunk.choices[0].finish_reason is not None: num_finish_reason += 1 assert num_finish_reason == 1 tasks = [] for _ in range(2): if sync_mode == False: tasks.append(test_streaming()) else: thread = threading.Thread(target=sync_test_streaming) thread.start() tasks.append(thread) if sync_mode == False: await asyncio.gather(*tasks) else: # Wait for all threads to complete for thread in tasks: thread.join() except RateLimitError: pass except litellm.Timeout: pass except litellm.ServiceUnavailableError as e: if model == "predibase/llama-3-8b-instruct": pass else: pytest.fail(f"Service Unavailable Error got{str(e)}") except litellm.InternalServerError as e: if "predibase" in str(e).lower(): # only skip internal server error from predibase - their endpoint seems quite unstable pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="Replicate changed exceptions") def test_completion_replicate_stream_bad_key(): try: api_key = "bad-key" messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": "how does a court case get to the Supreme Court?", }, ] response = completion( model="replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3", messages=messages, stream=True, max_tokens=50, api_key=api_key, ) complete_response = "" # Add any assertions here to check the response for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) if finished: break complete_response += chunk if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except AuthenticationError as e: # this is an auth error with a bad key pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_replicate_stream_bad_key() def test_completion_bedrock_claude_stream(): try: litellm.set_verbose = False response = completion( model="bedrock/anthropic.claude-instant-v1", messages=[ { "role": "user", "content": "Be as verbose as possible and give as many details as possible, how does a court case get to the Supreme Court?", } ], temperature=1, max_tokens=20, stream=True, ) print(response) complete_response = "" has_finish_reason = False # Add any assertions here to check the response first_chunk_id = None for idx, chunk in enumerate(response): # print if idx == 0: first_chunk_id = chunk.id else: assert ( chunk.id == first_chunk_id ), f"chunk ids do not match: {chunk.id} != first chunk id{first_chunk_id}" chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished complete_response += chunk if finished: break if has_finish_reason is False: raise Exception("finish reason not set for last chunk") if complete_response.strip() == "": raise Exception("Empty response received") except RateLimitError: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_bedrock_claude_stream() @pytest.mark.skip(reason="model end of life") def test_completion_bedrock_ai21_stream(): try: litellm.set_verbose = False response = completion( model="bedrock/ai21.j2-mid-v1", messages=[ { "role": "user", "content": "Be as verbose as possible and give as many details as possible, how does a court case get to the Supreme Court?", } ], temperature=1, max_tokens=20, stream=True, ) print(response) complete_response = "" has_finish_reason = False # Add any assertions here to check the response for idx, chunk in enumerate(response): # print chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished complete_response += chunk if finished: break if has_finish_reason is False: raise Exception("finish reason not set for last chunk") if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except RateLimitError: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_bedrock_ai21_stream() def test_completion_bedrock_mistral_stream(): try: litellm.set_verbose = False response = completion( model="bedrock/mistral.mixtral-8x7b-instruct-v0:1", messages=[ { "role": "user", "content": "Be as verbose as possible and give as many details as possible, how does a court case get to the Supreme Court?", } ], temperature=1, max_tokens=20, stream=True, ) print(response) complete_response = "" has_finish_reason = False # Add any assertions here to check the response for idx, chunk in enumerate(response): # print chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished complete_response += chunk if finished: break if has_finish_reason is False: raise Exception("finish reason not set for last chunk") if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except RateLimitError: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="stopped using TokenIterator") def test_sagemaker_weird_response(): """ When the stream ends, flush any remaining holding chunks. """ try: import json from litellm.llms.sagemaker.sagemaker import TokenIterator chunk = """[INST] Hey, how's it going? [/INST], I'm doing well, thanks for asking! How about you? Is there anything you'd like to chat about or ask? I'm here to help with any questions you might have.""" data = "\n".join( map( lambda x: f"data: {json.dumps({'token': {'text': x.strip()}})}", chunk.strip().split(","), ) ) stream = bytes(data, encoding="utf8") # Modify the array to be a dictionary with "PayloadPart" and "Bytes" keys. stream_iterator = iter([{"PayloadPart": {"Bytes": stream}}]) token_iter = TokenIterator(stream_iterator) # for token in token_iter: # print(token) litellm.set_verbose = True logging_obj = litellm.Logging( model="berri-benchmarking-Llama-2-70b-chat-hf-4", messages=messages, stream=True, litellm_call_id="1234", function_id="function_id", call_type="acompletion", start_time=time.time(), ) response = litellm.CustomStreamWrapper( completion_stream=token_iter, model="berri-benchmarking-Llama-2-70b-chat-hf-4", custom_llm_provider="sagemaker", logging_obj=logging_obj, ) complete_response = "" for idx, chunk in enumerate(response): # print chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished complete_response += chunk if finished: break assert len(complete_response) > 0 except Exception as e: pytest.fail(f"An exception occurred - {str(e)}") # test_sagemaker_weird_response() @pytest.mark.skip(reason="Move to being a mock endpoint") @pytest.mark.asyncio async def test_sagemaker_streaming_async(): try: messages = [{"role": "user", "content": "Hey, how's it going?"}] litellm.set_verbose = True response = await litellm.acompletion( model="sagemaker/jumpstart-dft-hf-llm-mistral-7b-ins-20240329-150233", model_id="huggingface-llm-mistral-7b-instruct-20240329-150233", messages=messages, temperature=0.2, max_tokens=80, aws_region_name=os.getenv("AWS_REGION_NAME_2"), aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID_2"), aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY_2"), stream=True, ) # Add any assertions here to check the response print(response) complete_response = "" has_finish_reason = False # Add any assertions here to check the response idx = 0 async for chunk in response: # print chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished complete_response += chunk if finished: break idx += 1 if has_finish_reason is False: raise Exception("finish reason not set for last chunk") if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except Exception as e: pytest.fail(f"An exception occurred - {str(e)}") # asyncio.run(test_sagemaker_streaming_async()) @pytest.mark.skip(reason="costly sagemaker deployment. Move to mock implementation") def test_completion_sagemaker_stream(): try: response = completion( model="sagemaker/jumpstart-dft-hf-llm-mistral-7b-ins-20240329-150233", model_id="huggingface-llm-mistral-7b-instruct-20240329-150233", messages=messages, temperature=0.2, max_tokens=80, aws_region_name=os.getenv("AWS_REGION_NAME_2"), aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID_2"), aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY_2"), stream=True, ) complete_response = "" has_finish_reason = False # Add any assertions here to check the response for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished if finished: break complete_response += chunk if has_finish_reason is False: raise Exception("finish reason not set for last chunk") if complete_response.strip() == "": raise Exception("Empty response received") except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="Account deleted by IBM.") @pytest.mark.asyncio async def test_completion_watsonx_stream(): litellm.set_verbose = True from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler try: response = await acompletion( model="watsonx/meta-llama/llama-3-1-8b-instruct", messages=messages, temperature=0.5, max_tokens=20, stream=True, # client=client ) complete_response = "" has_finish_reason = False # Add any assertions here to check the response idx = 0 async for chunk in response: chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished if finished: break complete_response += chunk idx += 1 if has_finish_reason is False: raise Exception("finish reason not set for last chunk") if complete_response.strip() == "": raise Exception("Empty response received") except litellm.RateLimitError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_sagemaker_stream() # def test_maritalk_streaming(): # messages = [{"role": "user", "content": "Hey"}] # try: # response = completion("maritalk", messages=messages, stream=True) # complete_response = "" # start_time = time.time() # for idx, chunk in enumerate(response): # chunk, finished = streaming_format_tests(idx, chunk) # complete_response += chunk # if finished: # break # if complete_response.strip() == "": # raise Exception("Empty response received") # except Exception: # pytest.fail(f"error occurred: {traceback.format_exc()}") # test_maritalk_streaming() # test on openai completion call # # test on ai21 completion call def ai21_completion_call(): try: messages = [ { "role": "system", "content": "You are an all-knowing oracle", }, {"role": "user", "content": "What is the meaning of the Universe?"}, ] response = completion( model="j2-ultra", messages=messages, stream=True, max_tokens=500 ) print(f"response: {response}") has_finished = False complete_response = "" start_time = time.time() for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) has_finished = finished complete_response += chunk if finished: break if has_finished is False: raise Exception("finished reason missing from final chunk") if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except Exception: pytest.fail(f"error occurred: {traceback.format_exc()}") # ai21_completion_call() def ai21_completion_call_bad_key(): try: api_key = "bad-key" response = completion( model="j2-ultra", messages=messages, stream=True, api_key=api_key ) print(f"response: {response}") complete_response = "" start_time = time.time() for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) if finished: break complete_response += chunk if complete_response.strip() == "": raise Exception("Empty response received") print(f"completion_response: {complete_response}") except Exception: pytest.fail(f"error occurred: {traceback.format_exc()}") # ai21_completion_call_bad_key() @pytest.mark.skip(reason="flaky test") @pytest.mark.asyncio async def test_hf_completion_tgi_stream(): try: response = await acompletion( model="huggingface/HuggingFaceH4/zephyr-7b-beta", messages=[{"content": "Hello, how are you?", "role": "user"}], stream=True, ) # Add any assertions here to check the response print(f"response: {response}") complete_response = "" start_time = time.time() idx = 0 async for chunk in response: chunk, finished = streaming_format_tests(idx, chunk) complete_response += chunk if finished: break idx += 1 print(f"completion_response: {complete_response}") except litellm.ServiceUnavailableError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # hf_test_completion_tgi_stream() # def test_completion_aleph_alpha(): # try: # response = completion( # model="luminous-base", messages=messages, stream=True # ) # # Add any assertions here to check the response # has_finished = False # complete_response = "" # start_time = time.time() # for idx, chunk in enumerate(response): # chunk, finished = streaming_format_tests(idx, chunk) # has_finished = finished # complete_response += chunk # if finished: # break # if has_finished is False: # raise Exception("finished reason missing from final chunk") # if complete_response.strip() == "": # raise Exception("Empty response received") # except Exception as e: # pytest.fail(f"Error occurred: {e}") # # test_completion_aleph_alpha() # def test_completion_aleph_alpha_bad_key(): # try: # api_key = "bad-key" # response = completion( # model="luminous-base", messages=messages, stream=True, api_key=api_key # ) # # Add any assertions here to check the response # has_finished = False # complete_response = "" # start_time = time.time() # for idx, chunk in enumerate(response): # chunk, finished = streaming_format_tests(idx, chunk) # has_finished = finished # complete_response += chunk # if finished: # break # if has_finished is False: # raise Exception("finished reason missing from final chunk") # if complete_response.strip() == "": # raise Exception("Empty response received") # except InvalidRequestError as e: # pass # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_aleph_alpha_bad_key() # test on openai completion call def test_openai_chat_completion_call(): litellm.set_verbose = False litellm.return_response_headers = True response = completion(model="gpt-3.5-turbo", messages=messages, stream=True) assert isinstance( response._hidden_params["additional_headers"][ "llm_provider-x-ratelimit-remaining-requests" ], str, ) print(f"response._hidden_params: {response._hidden_params}") complete_response = "" start_time = time.time() for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) print(f"outside chunk: {chunk}") if finished: break complete_response += chunk # print(f'complete_chunk: {complete_response}') if complete_response.strip() == "": raise Exception("Empty response received") print(f"complete response: {complete_response}") # test_openai_chat_completion_call() def test_openai_chat_completion_complete_response_call(): try: complete_response = completion( model="gpt-3.5-turbo", messages=messages, stream=True, complete_response=True, ) print(f"complete response: {complete_response}") except Exception: print(f"error occurred: {traceback.format_exc()}") pass # test_openai_chat_completion_complete_response_call() @pytest.mark.parametrize( "model", [ "gpt-3.5-turbo", "azure/chatgpt-v-2", "claude-3-haiku-20240307", "o1-preview", "azure/fake-o1-mini", ], ) @pytest.mark.parametrize( "sync", [True, False], ) @pytest.mark.asyncio async def test_openai_stream_options_call(model, sync): litellm.enable_preview_features = True litellm.set_verbose = True usage = None chunks = [] if sync: response = litellm.completion( model=model, messages=[ {"role": "user", "content": "say GM - we're going to make it "}, ], stream=True, stream_options={"include_usage": True}, ) for chunk in response: print("chunk: ", chunk) chunks.append(chunk) else: response = await litellm.acompletion( model=model, messages=[{"role": "user", "content": "say GM - we're going to make it "}], stream=True, stream_options={"include_usage": True}, ) async for chunk in response: print("chunk: ", chunk) chunks.append(chunk) last_chunk = chunks[-1] print("last chunk: ", last_chunk) """ Assert that: - Last Chunk includes Usage - All chunks prior to last chunk have usage=None """ assert last_chunk.usage is not None assert isinstance(last_chunk.usage, litellm.Usage) assert last_chunk.usage.total_tokens > 0 assert last_chunk.usage.prompt_tokens > 0 assert last_chunk.usage.completion_tokens > 0 # assert all non last chunks have usage=None # Improved assertion with detailed error message non_last_chunks_with_usage = [ chunk for chunk in chunks[:-1] if hasattr(chunk, "usage") and chunk.usage is not None ] assert ( not non_last_chunks_with_usage ), f"Non-last chunks with usage not None:\n" + "\n".join( f"Chunk ID: {chunk.id}, Usage: {chunk.usage}, Content: {chunk.choices[0].delta.content}" for chunk in non_last_chunks_with_usage ) def test_openai_stream_options_call_text_completion(): litellm.set_verbose = False for idx in range(3): try: response = litellm.text_completion( model="gpt-3.5-turbo-instruct", prompt="say GM - we're going to make it ", stream=True, stream_options={"include_usage": True}, max_tokens=10, ) usage = None chunks = [] for chunk in response: print("chunk: ", chunk) chunks.append(chunk) last_chunk = chunks[-1] print("last chunk: ", last_chunk) """ Assert that: - Last Chunk includes Usage - All chunks prior to last chunk have usage=None """ assert last_chunk.usage is not None assert last_chunk.usage.total_tokens > 0 assert last_chunk.usage.prompt_tokens > 0 assert last_chunk.usage.completion_tokens > 0 # assert all non last chunks have usage=None assert all(chunk.usage is None for chunk in chunks[:-1]) break except Exception as e: if idx < 2: pass else: raise e def test_openai_text_completion_call(): try: litellm.set_verbose = True response = completion( model="gpt-3.5-turbo-instruct", messages=messages, stream=True ) complete_response = "" start_time = time.time() for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) print(f"chunk: {chunk}") complete_response += chunk if finished: break # print(f'complete_chunk: {complete_response}') if complete_response.strip() == "": raise Exception("Empty response received") print(f"complete response: {complete_response}") except Exception: print(f"error occurred: {traceback.format_exc()}") pass # test_openai_text_completion_call() # # test on together ai completion call - starcoder def test_together_ai_completion_call_mistral(): try: litellm.set_verbose = False start_time = time.time() response = completion( model="together_ai/mistralai/Mistral-7B-Instruct-v0.2", messages=messages, logger_fn=logger_fn, stream=True, ) complete_response = "" print(f"returned response object: {response}") has_finish_reason = False for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished if finished: break complete_response += chunk if has_finish_reason is False: raise Exception("Finish reason not set for last chunk") if complete_response == "": raise Exception("Empty response received") print(f"complete response: {complete_response}") except Exception: print(f"error occurred: {traceback.format_exc()}") pass # # test on together ai completion call - starcoder @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_openai_o1_completion_call_streaming(sync_mode): try: litellm.set_verbose = False if sync_mode: response = completion( model="o1-preview", messages=messages, stream=True, ) complete_response = "" print(f"returned response object: {response}") has_finish_reason = False for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished if finished: break complete_response += chunk if has_finish_reason is False: raise Exception("Finish reason not set for last chunk") if complete_response == "": raise Exception("Empty response received") else: response = await acompletion( model="o1-preview", messages=messages, stream=True, ) complete_response = "" print(f"returned response object: {response}") has_finish_reason = False idx = 0 async for chunk in response: chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished if finished: break complete_response += chunk idx += 1 if has_finish_reason is False: raise Exception("Finish reason not set for last chunk") if complete_response == "": raise Exception("Empty response received") print(f"complete response: {complete_response}") except Exception: pytest.fail(f"error occurred: {traceback.format_exc()}") def test_together_ai_completion_call_starcoder_bad_key(): try: api_key = "bad-key" start_time = time.time() response = completion( model="together_ai/bigcode/starcoder", messages=messages, stream=True, api_key=api_key, ) complete_response = "" has_finish_reason = False for idx, chunk in enumerate(response): chunk, finished = streaming_format_tests(idx, chunk) has_finish_reason = finished if finished: break complete_response += chunk if has_finish_reason is False: raise Exception("Finish reason not set for last chunk") if complete_response == "": raise Exception("Empty response received") print(f"complete response: {complete_response}") except BadRequestError as e: pass except Exception: print(f"error occurred: {traceback.format_exc()}") pass # test_together_ai_completion_call_starcoder_bad_key() #### Test Function calling + streaming #### def test_completion_openai_with_functions(): function1 = [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, } ] try: litellm.set_verbose = False response = completion( model="gpt-3.5-turbo-1106", messages=[{"role": "user", "content": "what's the weather in SF"}], functions=function1, stream=True, ) # Add any assertions here to check the response print(response) for chunk in response: print(chunk) if chunk["choices"][0]["finish_reason"] == "stop": break print(chunk["choices"][0]["finish_reason"]) print(chunk["choices"][0]["delta"]["content"]) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_openai_with_functions() #### Test Async streaming #### # # test on ai21 completion call async def ai21_async_completion_call(): try: response = completion( model="j2-ultra", messages=messages, stream=True, logger_fn=logger_fn ) print(f"response: {response}") complete_response = "" start_time = time.time() # Change for loop to async for loop idx = 0 async for chunk in response: chunk, finished = streaming_format_tests(idx, chunk) if finished: break complete_response += chunk idx += 1 if complete_response.strip() == "": raise Exception("Empty response received") print(f"complete response: {complete_response}") except Exception: print(f"error occurred: {traceback.format_exc()}") pass # asyncio.run(ai21_async_completion_call()) async def completion_call(): try: response = completion( model="gpt-3.5-turbo", messages=messages, stream=True, logger_fn=logger_fn, max_tokens=10, ) print(f"response: {response}") complete_response = "" start_time = time.time() # Change for loop to async for loop idx = 0 async for chunk in response: chunk, finished = streaming_format_tests(idx, chunk) if finished: break complete_response += chunk idx += 1 if complete_response.strip() == "": raise Exception("Empty response received") print(f"complete response: {complete_response}") except Exception: print(f"error occurred: {traceback.format_exc()}") pass # asyncio.run(completion_call()) #### Test Function Calling + Streaming #### final_openai_function_call_example = { "id": "chatcmpl-7zVNA4sXUftpIg6W8WlntCyeBj2JY", "object": "chat.completion", "created": 1694892960, "model": "gpt-3.5-turbo", "choices": [ { "index": 0, "message": { "role": "assistant", "content": None, "function_call": { "name": "get_current_weather", "arguments": '{\n "location": "Boston, MA"\n}', }, }, "finish_reason": "function_call", } ], "usage": {"prompt_tokens": 82, "completion_tokens": 18, "total_tokens": 100}, } function_calling_output_structure = { "id": str, "object": str, "created": int, "model": str, "choices": [ { "index": int, "message": { "role": str, "content": (type(None), str), "function_call": {"name": str, "arguments": str}, }, "finish_reason": str, } ], "usage": {"prompt_tokens": int, "completion_tokens": int, "total_tokens": int}, } def validate_final_structure(item, structure=function_calling_output_structure): if isinstance(item, list): if not all(validate_final_structure(i, structure[0]) for i in item): return Exception( "Function calling final output doesn't match expected output format" ) elif isinstance(item, dict): if not all( k in item and validate_final_structure(item[k], v) for k, v in structure.items() ): return Exception( "Function calling final output doesn't match expected output format" ) else: if not isinstance(item, structure): return Exception( "Function calling final output doesn't match expected output format" ) return True first_openai_function_call_example = { "id": "chatcmpl-7zVRoE5HjHYsCMaVSNgOjzdhbS3P0", "object": "chat.completion.chunk", "created": 1694893248, "model": "gpt-3.5-turbo", "choices": [ { "index": 0, "delta": { "role": "assistant", "content": None, "function_call": {"name": "get_current_weather", "arguments": ""}, }, "finish_reason": None, } ], } def validate_first_function_call_chunk_structure(item): if not (isinstance(item, dict) or isinstance(item, litellm.ModelResponse)): raise Exception(f"Incorrect format, type of item: {type(item)}") required_keys = {"id", "object", "created", "model", "choices"} for key in required_keys: if key not in item: raise Exception("Incorrect format") if not isinstance(item["choices"], list) or not item["choices"]: raise Exception("Incorrect format") required_keys_in_choices_array = {"index", "delta", "finish_reason"} for choice in item["choices"]: if not ( isinstance(choice, dict) or isinstance(choice, litellm.utils.StreamingChoices) ): raise Exception(f"Incorrect format, type of choice: {type(choice)}") for key in required_keys_in_choices_array: if key not in choice: raise Exception("Incorrect format") if not ( isinstance(choice["delta"], dict) or isinstance(choice["delta"], litellm.utils.Delta) ): raise Exception( f"Incorrect format, type of choice: {type(choice['delta'])}" ) required_keys_in_delta = {"role", "content", "function_call"} for key in required_keys_in_delta: if key not in choice["delta"]: raise Exception("Incorrect format") if not ( isinstance(choice["delta"]["function_call"], dict) or isinstance(choice["delta"]["function_call"], BaseModel) ): raise Exception( f"Incorrect format, type of function call: {type(choice['delta']['function_call'])}" ) required_keys_in_function_call = {"name", "arguments"} for key in required_keys_in_function_call: if not hasattr(choice["delta"]["function_call"], key): raise Exception( f"Incorrect format, expected key={key}; actual keys: {choice['delta']['function_call']}, eval: {hasattr(choice['delta']['function_call'], key)}" ) return True second_function_call_chunk_format = { "id": "chatcmpl-7zVRoE5HjHYsCMaVSNgOjzdhbS3P0", "object": "chat.completion.chunk", "created": 1694893248, "model": "gpt-3.5-turbo", "choices": [ { "index": 0, "delta": {"function_call": {"arguments": "{\n"}}, "finish_reason": None, } ], } def validate_second_function_call_chunk_structure(data): if not isinstance(data, dict): raise Exception("Incorrect format") required_keys = {"id", "object", "created", "model", "choices"} for key in required_keys: if key not in data: raise Exception("Incorrect format") if not isinstance(data["choices"], list) or not data["choices"]: raise Exception("Incorrect format") required_keys_in_choices_array = {"index", "delta", "finish_reason"} for choice in data["choices"]: if not isinstance(choice, dict): raise Exception("Incorrect format") for key in required_keys_in_choices_array: if key not in choice: raise Exception("Incorrect format") if ( "function_call" not in choice["delta"] or "arguments" not in choice["delta"]["function_call"] ): raise Exception("Incorrect format") return True final_function_call_chunk_example = { "id": "chatcmpl-7zVRoE5HjHYsCMaVSNgOjzdhbS3P0", "object": "chat.completion.chunk", "created": 1694893248, "model": "gpt-3.5-turbo", "choices": [{"index": 0, "delta": {}, "finish_reason": "function_call"}], } def validate_final_function_call_chunk_structure(data): if not (isinstance(data, dict) or isinstance(data, litellm.ModelResponse)): raise Exception("Incorrect format") required_keys = {"id", "object", "created", "model", "choices"} for key in required_keys: if key not in data: raise Exception("Incorrect format") if not isinstance(data["choices"], list) or not data["choices"]: raise Exception("Incorrect format") required_keys_in_choices_array = {"index", "delta", "finish_reason"} for choice in data["choices"]: if not ( isinstance(choice, dict) or isinstance(choice["delta"], litellm.utils.Delta) ): raise Exception("Incorrect format") for key in required_keys_in_choices_array: if key not in choice: raise Exception("Incorrect format") return True def streaming_and_function_calling_format_tests(idx, chunk): extracted_chunk = "" finished = False print(f"idx: {idx}") print(f"chunk: {chunk}") decision = False if idx == 0: # ensure role assistant is set decision = validate_first_function_call_chunk_structure(chunk) role = chunk["choices"][0]["delta"]["role"] assert role == "assistant" elif idx != 0: # second chunk try: decision = validate_second_function_call_chunk_structure(data=chunk) except Exception: # check if it's the last chunk (returns an empty delta {} ) decision = validate_final_function_call_chunk_structure(data=chunk) finished = True if "content" in chunk["choices"][0]["delta"]: extracted_chunk = chunk["choices"][0]["delta"]["content"] if decision == False: raise Exception("incorrect format") return extracted_chunk, finished @pytest.mark.parametrize( "model", [ # "gpt-3.5-turbo", # "anthropic.claude-3-sonnet-20240229-v1:0", "claude-3-haiku-20240307", ], ) def test_streaming_and_function_calling(model): import json tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [{"role": "user", "content": "What is the weather like in Boston?"}] try: # litellm.set_verbose = True response: litellm.CustomStreamWrapper = completion( model=model, tools=tools, messages=messages, stream=True, tool_choice="required", ) # type: ignore # Add any assertions here to check the response json_str = "" for idx, chunk in enumerate(response): # continue # print("\n{}\n".format(chunk)) if idx == 0: assert ( chunk.choices[0].delta.tool_calls[0].function.arguments is not None ) assert isinstance( chunk.choices[0].delta.tool_calls[0].function.arguments, str ) if chunk.choices[0].delta.tool_calls is not None: json_str += chunk.choices[0].delta.tool_calls[0].function.arguments print(json.loads(json_str)) except Exception as e: pytest.fail(f"Error occurred: {e}") raise e # test_azure_streaming_and_function_calling() def test_success_callback_streaming(): def success_callback(kwargs, completion_response, start_time, end_time): print( { "success": True, "input": kwargs, "output": completion_response, "start_time": start_time, "end_time": end_time, } ) litellm.success_callback = [success_callback] messages = [{"role": "user", "content": "hello"}] print("TESTING LITELLM COMPLETION CALL") response = litellm.completion( model="gpt-3.5-turbo", messages=messages, stream=True, max_tokens=5, ) print(response) for chunk in response: print(chunk["choices"][0]) # test_success_callback_streaming() from typing import List, Optional #### STREAMING + FUNCTION CALLING ### from pydantic import BaseModel class Function(BaseModel): name: str arguments: str class ToolCalls(BaseModel): index: int id: str type: str function: Function class Delta(BaseModel): role: str content: Optional[str] tool_calls: List[ToolCalls] class Choices(BaseModel): index: int delta: Delta logprobs: Optional[str] finish_reason: Optional[str] class Chunk(BaseModel): id: str object: str created: int model: str # system_fingerprint: str choices: List[Choices] def validate_first_streaming_function_calling_chunk(chunk: ModelResponse): chunk_instance = Chunk(**chunk.model_dump()) ### Chunk 1 # { # "id": "chatcmpl-8vdVjtzxc0JqGjq93NxC79dMp6Qcs", # "object": "chat.completion.chunk", # "created": 1708747267, # "model": "gpt-3.5-turbo-0125", # "system_fingerprint": "fp_86156a94a0", # "choices": [ # { # "index": 0, # "delta": { # "role": "assistant", # "content": null, # "tool_calls": [ # { # "index": 0, # "id": "call_oN10vaaC9iA8GLFRIFwjCsN7", # "type": "function", # "function": { # "name": "get_current_weather", # "arguments": "" # } # } # ] # }, # "logprobs": null, # "finish_reason": null # } # ] # } class Function2(BaseModel): arguments: str class ToolCalls2(BaseModel): index: int function: Optional[Function2] class Delta2(BaseModel): tool_calls: List[ToolCalls2] class Choices2(BaseModel): index: int delta: Delta2 logprobs: Optional[str] finish_reason: Optional[str] class Chunk2(BaseModel): id: str object: str created: int model: str system_fingerprint: Optional[str] choices: List[Choices2] ## Chunk 2 # { # "id": "chatcmpl-8vdVjtzxc0JqGjq93NxC79dMp6Qcs", # "object": "chat.completion.chunk", # "created": 1708747267, # "model": "gpt-3.5-turbo-0125", # "system_fingerprint": "fp_86156a94a0", # "choices": [ # { # "index": 0, # "delta": { # "tool_calls": [ # { # "index": 0, # "function": { # "arguments": "{\"" # } # } # ] # }, # "logprobs": null, # "finish_reason": null # } # ] # } def validate_second_streaming_function_calling_chunk(chunk: ModelResponse): chunk_instance = Chunk2(**chunk.model_dump()) class Delta3(BaseModel): content: Optional[str] = None role: Optional[str] = None function_call: Optional[dict] = None tool_calls: Optional[List] = None class Choices3(BaseModel): index: int delta: Delta3 logprobs: Optional[str] finish_reason: str class Chunk3(BaseModel): id: str object: str created: int model: str # system_fingerprint: str choices: List[Choices3] def validate_final_streaming_function_calling_chunk(chunk: ModelResponse): chunk_instance = Chunk3(**chunk.model_dump()) def test_azure_streaming_and_function_calling(): tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [{"role": "user", "content": "What is the weather like in Boston?"}] try: response = completion( model="azure/gpt-4-nov-release", tools=tools, tool_choice="auto", messages=messages, stream=True, api_base=os.getenv("AZURE_FRANCE_API_BASE"), api_key=os.getenv("AZURE_FRANCE_API_KEY"), api_version="2024-02-15-preview", ) # Add any assertions here to check the response for idx, chunk in enumerate(response): print(f"chunk: {chunk}") if idx == 0: assert ( chunk.choices[0].delta.tool_calls[0].function.arguments is not None ) assert isinstance( chunk.choices[0].delta.tool_calls[0].function.arguments, str ) validate_first_streaming_function_calling_chunk(chunk=chunk) elif idx == 1: validate_second_streaming_function_calling_chunk(chunk=chunk) elif chunk.choices[0].finish_reason is not None: # last chunk validate_final_streaming_function_calling_chunk(chunk=chunk) except Exception as e: pytest.fail(f"Error occurred: {e}") raise e @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_completion_azure_ai_mistral_invalid_params(sync_mode): try: import os litellm.set_verbose = True os.environ["AZURE_AI_API_BASE"] = os.getenv("AZURE_MISTRAL_API_BASE", "") os.environ["AZURE_AI_API_KEY"] = os.getenv("AZURE_MISTRAL_API_KEY", "") data = { "model": "azure_ai/mistral", "messages": [{"role": "user", "content": "What is the meaning of life?"}], "frequency_penalty": 0.1, "presence_penalty": 0.1, "drop_params": True, "stream": True, } if sync_mode: response: litellm.ModelResponse = completion(**data) # type: ignore for chunk in response: print(chunk) else: response: litellm.ModelResponse = await litellm.acompletion(**data) # type: ignore async for chunk in response: print(chunk) except litellm.Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.asyncio async def test_azure_astreaming_and_function_calling(): import uuid tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [ { "role": "user", "content": f"What is the weather like in Boston? {uuid.uuid4()}", } ] from litellm.caching.caching import Cache litellm.cache = Cache( type="redis", host=os.environ["REDIS_HOST"], port=os.environ["REDIS_PORT"], password=os.environ["REDIS_PASSWORD"], ) try: litellm.set_verbose = True response = await litellm.acompletion( model="azure/gpt-4-nov-release", tools=tools, tool_choice="auto", messages=messages, stream=True, api_base=os.getenv("AZURE_FRANCE_API_BASE"), api_key=os.getenv("AZURE_FRANCE_API_KEY"), api_version="2024-02-15-preview", caching=True, ) # Add any assertions here to check the response idx = 0 async for chunk in response: print(f"chunk: {chunk}") if idx == 0: assert ( chunk.choices[0].delta.tool_calls[0].function.arguments is not None ) assert isinstance( chunk.choices[0].delta.tool_calls[0].function.arguments, str ) validate_first_streaming_function_calling_chunk(chunk=chunk) elif idx == 1: validate_second_streaming_function_calling_chunk(chunk=chunk) elif chunk.choices[0].finish_reason is not None: # last chunk validate_final_streaming_function_calling_chunk(chunk=chunk) idx += 1 ## CACHING TEST print("\n\nCACHING TESTS\n\n") response = await litellm.acompletion( model="azure/gpt-4-nov-release", tools=tools, tool_choice="auto", messages=messages, stream=True, api_base=os.getenv("AZURE_FRANCE_API_BASE"), api_key=os.getenv("AZURE_FRANCE_API_KEY"), api_version="2024-02-15-preview", caching=True, ) # Add any assertions here to check the response idx = 0 async for chunk in response: print(f"chunk: {chunk}") if idx == 0: assert ( chunk.choices[0].delta.tool_calls[0].function.arguments is not None ) assert isinstance( chunk.choices[0].delta.tool_calls[0].function.arguments, str ) validate_first_streaming_function_calling_chunk(chunk=chunk) elif idx == 1 and chunk.choices[0].finish_reason is None: validate_second_streaming_function_calling_chunk(chunk=chunk) elif chunk.choices[0].finish_reason is not None: # last chunk validate_final_streaming_function_calling_chunk(chunk=chunk) idx += 1 except Exception as e: pytest.fail(f"Error occurred: {e}") raise e def test_completion_claude_3_function_call_with_streaming(): tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [ { "role": "user", "content": "What's the weather like in Boston today in fahrenheit?", } ] try: # test without max tokens response = completion( model="claude-3-opus-20240229", messages=messages, tools=tools, tool_choice="required", stream=True, ) idx = 0 for chunk in response: print(f"chunk in response: {chunk}") if idx == 0: assert ( chunk.choices[0].delta.tool_calls[0].function.arguments is not None ) assert isinstance( chunk.choices[0].delta.tool_calls[0].function.arguments, str ) validate_first_streaming_function_calling_chunk(chunk=chunk) elif idx == 1 and chunk.choices[0].finish_reason is None: validate_second_streaming_function_calling_chunk(chunk=chunk) elif chunk.choices[0].finish_reason is not None: # last chunk assert "usage" in chunk._hidden_params validate_final_streaming_function_calling_chunk(chunk=chunk) idx += 1 # raise Exception("it worked!") except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize( "model", [ "gemini/gemini-1.5-flash", ], # "claude-3-opus-20240229" ) # @pytest.mark.asyncio async def test_acompletion_function_call_with_streaming(model): litellm.set_verbose = True tools = [ { "type": "function", "function": { "name": "generate_series_of_questions", "description": "Generate a series of questions, given a topic.", "parameters": { "type": "object", "properties": { "questions": { "type": "array", "description": "The questions to be generated.", "items": {"type": "string"}, }, }, "required": ["questions"], }, }, }, ] SYSTEM_PROMPT = "You are an AI assistant" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": "Generate 3 questions about civil engineering.", }, ] try: # test without max tokens response = await acompletion( model=model, # model="claude-3-5-sonnet-20240620", messages=messages, stream=True, temperature=0.75, tools=tools, stream_options={"include_usage": True}, ) idx = 0 print(f"response: {response}") async for chunk in response: print(f"chunk in test: {chunk}") if idx == 0: assert ( chunk.choices[0].delta.tool_calls[0].function.arguments is not None ) assert isinstance( chunk.choices[0].delta.tool_calls[0].function.arguments, str ) validate_first_streaming_function_calling_chunk(chunk=chunk) elif idx == 1 and chunk.choices[0].finish_reason is None: validate_second_streaming_function_calling_chunk(chunk=chunk) elif chunk.choices[0].finish_reason is not None: # last chunk validate_final_streaming_function_calling_chunk(chunk=chunk) idx += 1 # raise Exception("it worked! ") except litellm.InternalServerError as e: pytest.skip(f"InternalServerError - {str(e)}") except litellm.ServiceUnavailableError: pass except Exception as e: pytest.fail(f"Error occurred: {e}") class ModelResponseIterator: def __init__(self, model_response): self.model_response = model_response self.is_done = False # Sync iterator def __iter__(self): return self def __next__(self): if self.is_done: raise StopIteration self.is_done = True return self.model_response # Async iterator def __aiter__(self): return self async def __anext__(self): if self.is_done: raise StopAsyncIteration self.is_done = True return self.model_response def test_unit_test_custom_stream_wrapper(): """ Test if last streaming chunk ends with '?', if the message repeats itself. """ litellm.set_verbose = False chunk = { "id": "chatcmpl-123", "object": "chat.completion.chunk", "created": 1694268190, "model": "gpt-3.5-turbo-0125", "system_fingerprint": "fp_44709d6fcb", "choices": [ {"index": 0, "delta": {"content": "How are you?"}, "finish_reason": "stop"} ], } chunk = litellm.ModelResponse(**chunk, stream=True) completion_stream = ModelResponseIterator(model_response=chunk) response = litellm.CustomStreamWrapper( completion_stream=completion_stream, model="gpt-3.5-turbo", custom_llm_provider="cached_response", logging_obj=litellm.Logging( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey"}], stream=True, call_type="completion", start_time=time.time(), litellm_call_id="12345", function_id="1245", ), ) freq = 0 for chunk in response: if chunk.choices[0].delta.content is not None: if "How are you?" in chunk.choices[0].delta.content: freq += 1 assert freq == 1 @pytest.mark.parametrize( "loop_amount", [ litellm.REPEATED_STREAMING_CHUNK_LIMIT + 1, litellm.REPEATED_STREAMING_CHUNK_LIMIT - 1, ], ) @pytest.mark.parametrize( "chunk_value, expected_chunk_fail", [("How are you?", True), ("{", False), ("", False), (None, False)], ) def test_unit_test_custom_stream_wrapper_repeating_chunk( loop_amount, chunk_value, expected_chunk_fail ): """ Test if InternalServerError raised if model enters infinite loop Test if request passes if model loop is below accepted limit """ litellm.set_verbose = False chunks = [ litellm.ModelResponse( **{ "id": "chatcmpl-123", "object": "chat.completion.chunk", "created": 1694268190, "model": "gpt-3.5-turbo-0125", "system_fingerprint": "fp_44709d6fcb", "choices": [ { "index": 0, "delta": {"content": chunk_value}, "finish_reason": "stop", } ], }, stream=True, ) ] * loop_amount completion_stream = ModelResponseListIterator(model_responses=chunks) response = litellm.CustomStreamWrapper( completion_stream=completion_stream, model="gpt-3.5-turbo", custom_llm_provider="cached_response", logging_obj=litellm.Logging( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey"}], stream=True, call_type="completion", start_time=time.time(), litellm_call_id="12345", function_id="1245", ), ) print(f"expected_chunk_fail: {expected_chunk_fail}") if (loop_amount > litellm.REPEATED_STREAMING_CHUNK_LIMIT) and expected_chunk_fail: with pytest.raises(litellm.InternalServerError): for chunk in response: continue else: for chunk in response: continue def test_unit_test_gemini_streaming_content_filter(): chunks = [ { "text": "##", "tool_use": None, "is_finished": False, "finish_reason": "stop", "usage": {"prompt_tokens": 37, "completion_tokens": 1, "total_tokens": 38}, "index": 0, }, { "text": "", "is_finished": False, "finish_reason": "", "usage": None, "index": 0, "tool_use": None, }, { "text": " Downsides of Prompt Hacking in a Customer Portal\n\nWhile prompt engineering can be incredibly", "tool_use": None, "is_finished": False, "finish_reason": "stop", "usage": {"prompt_tokens": 37, "completion_tokens": 17, "total_tokens": 54}, "index": 0, }, { "text": "", "is_finished": False, "finish_reason": "", "usage": None, "index": 0, "tool_use": None, }, { "text": "", "tool_use": None, "is_finished": False, "finish_reason": "content_filter", "usage": {"prompt_tokens": 37, "completion_tokens": 17, "total_tokens": 54}, "index": 0, }, { "text": "", "is_finished": False, "finish_reason": "", "usage": None, "index": 0, "tool_use": None, }, ] completion_stream = ModelResponseListIterator(model_responses=chunks) response = litellm.CustomStreamWrapper( completion_stream=completion_stream, model="gemini/gemini-1.5-pro", custom_llm_provider="gemini", logging_obj=litellm.Logging( model="gemini/gemini-1.5-pro", messages=[{"role": "user", "content": "Hey"}], stream=True, call_type="completion", start_time=time.time(), litellm_call_id="12345", function_id="1245", ), ) stream_finish_reason: Optional[str] = None idx = 0 for chunk in response: print(f"chunk: {chunk}") if chunk.choices[0].finish_reason is not None: stream_finish_reason = chunk.choices[0].finish_reason idx += 1 print(f"num chunks: {idx}") assert stream_finish_reason == "content_filter" def test_unit_test_custom_stream_wrapper_openai(): """ Test if last streaming chunk ends with '?', if the message repeats itself. """ litellm.set_verbose = False chunk = { "id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi", "choices": [ litellm.utils.StreamingChoices( delta=litellm.utils.Delta( content=None, function_call=None, role=None, tool_calls=None ), finish_reason="content_filter", index=0, logprobs=None, ) ], "created": 1721353246, "model": "gpt-3.5-turbo", "object": "chat.completion.chunk", "system_fingerprint": None, "usage": None, } chunk = litellm.ModelResponse(**chunk, stream=True) completion_stream = ModelResponseIterator(model_response=chunk) response = litellm.CustomStreamWrapper( completion_stream=completion_stream, model="gpt-3.5-turbo", custom_llm_provider="azure", logging_obj=litellm.Logging( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey"}], stream=True, call_type="completion", start_time=time.time(), litellm_call_id="12345", function_id="1245", ), ) stream_finish_reason: Optional[str] = None for chunk in response: assert chunk.choices[0].delta.content is None if chunk.choices[0].finish_reason is not None: stream_finish_reason = chunk.choices[0].finish_reason assert stream_finish_reason == "content_filter" def test_aamazing_unit_test_custom_stream_wrapper_n(): """ Test if the translated output maps exactly to the received openai input Relevant issue: https://github.com/BerriAI/litellm/issues/3276 """ chunks = [ { "id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe", "object": "chat.completion.chunk", "created": 1714075272, "model": "gpt-4-0613", "system_fingerprint": None, "choices": [ { "index": 0, "delta": {"content": "It"}, "logprobs": { "content": [ { "token": "It", "logprob": -1.5952516, "bytes": [73, 116], "top_logprobs": [ { "token": "Brown", "logprob": -0.7358765, "bytes": [66, 114, 111, 119, 110], } ], } ] }, "finish_reason": None, } ], }, { "id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe", "object": "chat.completion.chunk", "created": 1714075272, "model": "gpt-4-0613", "system_fingerprint": None, "choices": [ { "index": 1, "delta": {"content": "Brown"}, "logprobs": { "content": [ { "token": "Brown", "logprob": -0.7358765, "bytes": [66, 114, 111, 119, 110], "top_logprobs": [ { "token": "Brown", "logprob": -0.7358765, "bytes": [66, 114, 111, 119, 110], } ], } ] }, "finish_reason": None, } ], }, { "id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe", "object": "chat.completion.chunk", "created": 1714075272, "model": "gpt-4-0613", "system_fingerprint": None, "choices": [ { "index": 0, "delta": {"content": "'s"}, "logprobs": { "content": [ { "token": "'s", "logprob": -0.006786893, "bytes": [39, 115], "top_logprobs": [ { "token": "'s", "logprob": -0.006786893, "bytes": [39, 115], } ], } ] }, "finish_reason": None, } ], }, { "id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe", "object": "chat.completion.chunk", "created": 1714075272, "model": "gpt-4-0613", "system_fingerprint": None, "choices": [ { "index": 0, "delta": {"content": " impossible"}, "logprobs": { "content": [ { "token": " impossible", "logprob": -0.06528423, "bytes": [ 32, 105, 109, 112, 111, 115, 115, 105, 98, 108, 101, ], "top_logprobs": [ { "token": " impossible", "logprob": -0.06528423, "bytes": [ 32, 105, 109, 112, 111, 115, 115, 105, 98, 108, 101, ], } ], } ] }, "finish_reason": None, } ], }, { "id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe", "object": "chat.completion.chunk", "created": 1714075272, "model": "gpt-4-0613", "system_fingerprint": None, "choices": [ { "index": 0, "delta": {"content": "—even"}, "logprobs": { "content": [ { "token": "—even", "logprob": -9999.0, "bytes": [226, 128, 148, 101, 118, 101, 110], "top_logprobs": [ { "token": " to", "logprob": -0.12302828, "bytes": [32, 116, 111], } ], } ] }, "finish_reason": None, } ], }, { "id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe", "object": "chat.completion.chunk", "created": 1714075272, "model": "gpt-4-0613", "system_fingerprint": None, "choices": [ {"index": 0, "delta": {}, "logprobs": None, "finish_reason": "length"} ], }, { "id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe", "object": "chat.completion.chunk", "created": 1714075272, "model": "gpt-4-0613", "system_fingerprint": None, "choices": [ {"index": 1, "delta": {}, "logprobs": None, "finish_reason": "stop"} ], }, ] litellm.set_verbose = True chunk_list = [] for chunk in chunks: new_chunk = litellm.ModelResponse(stream=True, id=chunk["id"]) if "choices" in chunk and isinstance(chunk["choices"], list): print("INSIDE CHUNK CHOICES!") new_choices = [] for choice in chunk["choices"]: if isinstance(choice, litellm.utils.StreamingChoices): _new_choice = choice elif isinstance(choice, dict): _new_choice = litellm.utils.StreamingChoices(**choice) new_choices.append(_new_choice) new_chunk.choices = new_choices chunk_list.append(new_chunk) completion_stream = ModelResponseListIterator(model_responses=chunk_list) response = litellm.CustomStreamWrapper( completion_stream=completion_stream, model="gpt-4-0613", custom_llm_provider="cached_response", logging_obj=litellm.Logging( model="gpt-4-0613", messages=[{"role": "user", "content": "Hey"}], stream=True, call_type="completion", start_time=time.time(), litellm_call_id="12345", function_id="1245", ), ) for idx, chunk in enumerate(response): chunk_dict = {} try: chunk_dict = chunk.model_dump(exclude_none=True) except Exception: chunk_dict = chunk.dict(exclude_none=True) chunk_dict.pop("created") chunks[idx].pop("created") if chunks[idx]["system_fingerprint"] is None: chunks[idx].pop("system_fingerprint", None) if idx == 0: for choice in chunk_dict["choices"]: if "role" in choice["delta"]: choice["delta"].pop("role") for choice in chunks[idx]["choices"]: # ignore finish reason None - since our pydantic object is set to exclude_none = true if "finish_reason" in choice and choice["finish_reason"] is None: choice.pop("finish_reason") if "logprobs" in choice and choice["logprobs"] is None: choice.pop("logprobs") assert ( chunk_dict == chunks[idx] ), f"idx={idx} translated chunk = {chunk_dict} != openai chunk = {chunks[idx]}" def test_unit_test_custom_stream_wrapper_function_call(): """ Test if model returns a tool call, the finish reason is correctly set to 'tool_calls' """ from litellm.types.llms.openai import ChatCompletionDeltaChunk litellm.set_verbose = False delta: ChatCompletionDeltaChunk = { "content": None, "role": "assistant", "tool_calls": [ { "function": {"arguments": '"}'}, "type": "function", "index": 0, } ], } chunk = { "id": "chatcmpl-123", "object": "chat.completion.chunk", "created": 1694268190, "model": "gpt-3.5-turbo-0125", "system_fingerprint": "fp_44709d6fcb", "choices": [{"index": 0, "delta": delta, "finish_reason": "stop"}], } chunk = litellm.ModelResponse(**chunk, stream=True) completion_stream = ModelResponseIterator(model_response=chunk) response = litellm.CustomStreamWrapper( completion_stream=completion_stream, model="gpt-3.5-turbo", custom_llm_provider="cached_response", logging_obj=litellm.litellm_core_utils.litellm_logging.Logging( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey"}], stream=True, call_type="completion", start_time=time.time(), litellm_call_id="12345", function_id="1245", ), ) finish_reason: Optional[str] = None for chunk in response: if chunk.choices[0].finish_reason is not None: finish_reason = chunk.choices[0].finish_reason assert finish_reason == "tool_calls" ## UNIT TEST RECREATING MODEL RESPONSE from litellm.types.utils import ( ChatCompletionDeltaToolCall, Delta, Function, StreamingChoices, Usage, ) initial_model_response = litellm.ModelResponse( id="chatcmpl-842826b6-75a1-4ed4-8a68-7655e60654b3", choices=[ StreamingChoices( finish_reason=None, index=0, delta=Delta( content="", role="assistant", function_call=None, tool_calls=[ ChatCompletionDeltaToolCall( id="7ee88721-bfee-4584-8662-944a23d4c7a5", function=Function( arguments='{"questions": ["What are the main challenges facing civil engineers today?", "How has technology impacted the field of civil engineering?", "What are some of the most innovative projects in civil engineering in recent years?"]}', name="generate_series_of_questions", ), type="function", index=0, ) ], ), logprobs=None, ) ], created=1720755257, model="gemini-1.5-flash", object="chat.completion.chunk", system_fingerprint=None, usage=Usage(prompt_tokens=67, completion_tokens=55, total_tokens=122), stream=True, ) obj_dict = initial_model_response.dict() if "usage" in obj_dict: del obj_dict["usage"] new_model = response.model_response_creator(chunk=obj_dict) print("\n\n{}\n\n".format(new_model)) assert len(new_model.choices[0].delta.tool_calls) > 0 def test_unit_test_perplexity_citations_chunk(): """ Test if model returns a tool call, the finish reason is correctly set to 'tool_calls' """ from litellm.types.llms.openai import ChatCompletionDeltaChunk litellm.set_verbose = False delta: ChatCompletionDeltaChunk = { "content": "B", "role": "assistant", } chunk = { "id": "xxx", "model": "llama-3.1-sonar-small-128k-online", "created": 1725494279, "usage": {"prompt_tokens": 15, "completion_tokens": 1, "total_tokens": 16}, "citations": [ "https://x.com/bizzabo?lang=ur", "https://apps.apple.com/my/app/bizzabo/id408705047", "https://www.bizzabo.com/blog/maximize-event-data-strategies-for-success", ], "object": "chat.completion", "choices": [ { "index": 0, "finish_reason": None, "message": {"role": "assistant", "content": "B"}, "delta": delta, } ], } chunk = litellm.ModelResponse(**chunk, stream=True) completion_stream = ModelResponseIterator(model_response=chunk) response = litellm.CustomStreamWrapper( completion_stream=completion_stream, model="gpt-3.5-turbo", custom_llm_provider="cached_response", logging_obj=litellm.litellm_core_utils.litellm_logging.Logging( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey"}], stream=True, call_type="completion", start_time=time.time(), litellm_call_id="12345", function_id="1245", ), ) finish_reason: Optional[str] = None for response_chunk in response: if response_chunk.choices[0].delta.content is not None: print( f"response_chunk.choices[0].delta.content: {response_chunk.choices[0].delta.content}" ) assert "citations" in response_chunk @pytest.mark.parametrize( "model", [ "gpt-3.5-turbo", "claude-3-5-sonnet-20240620", "anthropic.claude-3-sonnet-20240229-v1:0", "vertex_ai/claude-3-5-sonnet@20240620", ], ) @pytest.mark.flaky(retries=3, delay=1) def test_streaming_tool_calls_valid_json_str(model): if "vertex_ai" in model: from test_amazing_vertex_completion import ( load_vertex_ai_credentials, ) load_vertex_ai_credentials() vertex_location = "us-east5" else: vertex_location = None litellm.set_verbose = False messages = [ {"role": "user", "content": "Hit the snooze button."}, ] tools = [ { "type": "function", "function": { "name": "snooze", "parameters": { "type": "object", "properties": {}, "required": [], }, }, } ] stream = litellm.completion( model, messages, tools=tools, stream=True, vertex_location=vertex_location ) chunks = [*stream] print(f"chunks: {chunks}") tool_call_id_arg_map = {} curr_tool_call_id = None curr_tool_call_str = "" for chunk in chunks: if chunk.choices[0].delta.tool_calls is not None: if chunk.choices[0].delta.tool_calls[0].id is not None: # flush prev tool call if curr_tool_call_id is not None: tool_call_id_arg_map[curr_tool_call_id] = curr_tool_call_str curr_tool_call_str = "" curr_tool_call_id = chunk.choices[0].delta.tool_calls[0].id tool_call_id_arg_map[curr_tool_call_id] = "" if chunk.choices[0].delta.tool_calls[0].function.arguments is not None: curr_tool_call_str += ( chunk.choices[0].delta.tool_calls[0].function.arguments ) # flush prev tool call if curr_tool_call_id is not None: tool_call_id_arg_map[curr_tool_call_id] = curr_tool_call_str for k, v in tool_call_id_arg_map.items(): print("k={}, v={}".format(k, v)) json.loads(v) # valid json str