import Image from '@theme/IdealImage'; # LiteLLM Proxy - 1K RPS Load test on locust Tutorial on how to get to 1K+ RPS with LiteLLM Proxy on locust ## Pre-Testing Checklist - [ ] Ensure you're using the **latest `-stable` version** of litellm - [Github releases](https://github.com/BerriAI/litellm/releases) - [litellm docker containers](https://github.com/BerriAI/litellm/pkgs/container/litellm) - [litellm database docker container](https://github.com/BerriAI/litellm/pkgs/container/litellm-database) - [ ] Ensure you're following **ALL** [best practices for production](./proxy/production_setup.md) - [ ] Locust - Ensure you're Locust instance can create 1K+ requests per second - 👉 You can use our **[maintained locust instance here](https://locust-load-tester-production.up.railway.app/)** - If you're self hosting locust - [here's the spec used for our locust machine](#machine-specifications-for-running-locust) - [here is the locustfile.py used for our tests](#locust-file-used-for-testing) - [ ] Use this [**machine specification for running litellm proxy**](#machine-specifications-for-running-litellm-proxy) - [ ] **Enterprise LiteLLM** - Use `prometheus` as a callback in your `proxy_config.yaml` to get metrics on your load test Set `litellm_settings.callbacks` to monitor success/failures/all types of errors ```yaml litellm_settings: callbacks: ["prometheus"] # Enterprise LiteLLM Only - use prometheus to get metrics on your load test ``` ## Load Test - Fake OpenAI Endpoint ### Expected Performance | Metric | Value | |--------|-------| | Requests per Second | 1174+ | | Median Response Time | `96ms` | | Average Response Time | `142.18ms` | ### Run Test 1. Add `fake-openai-endpoint` to your proxy config.yaml and start your litellm proxy litellm provides a hosted `fake-openai-endpoint` you can load test against ```yaml model_list: - model_name: fake-openai-endpoint litellm_params: model: openai/fake api_key: fake-key api_base: https://exampleopenaiendpoint-production.up.railway.app/ litellm_settings: callbacks: ["prometheus"] # Enterprise LiteLLM Only - use prometheus to get metrics on your load test ``` 2. `pip install locust` 3. Create a file called `locustfile.py` on your local machine. Copy the contents from the litellm load test located [here](https://github.com/BerriAI/litellm/blob/main/.github/workflows/locustfile.py) 4. Start locust Run `locust` in the same directory as your `locustfile.py` from step 2 ```shell locust -f locustfile.py --processes 4 ``` 5. Run Load test on locust Head to the locust UI on http://0.0.0.0:8089 Set **Users=1000, Ramp Up Users=1000**, Host=Base URL of your LiteLLM Proxy 6. Expected results ## Load test - Endpoints with Rate Limits Run a load test on 2 LLM deployments each with 10K RPM Quota. Expect to see ~20K RPM ### Expected Performance - We expect to see 20,000+ successful responses in 1 minute - The remaining requests **fail because the endpoint exceeds it's 10K RPM quota limit - from the LLM API provider** | Metric | Value | |--------|-------| | Successful Responses in 1 minute | 20,000+ | | Requests per Second | ~1170+ | | Median Response Time | `70ms` | | Average Response Time | `640.18ms` | ### Run Test 1. Add 2 `gemini-vision` deployments on your config.yaml. Each deployment can handle 10K RPM. (We setup a fake endpoint with a rate limit of 1000 RPM on the `/v1/projects/bad-adroit-crow` route below ) :::info All requests with `model="gemini-vision"` will be load balanced equally across the 2 deployments. ::: ```yaml model_list: - model_name: gemini-vision litellm_params: model: vertex_ai/gemini-1.0-pro-vision-001 api_base: https://exampleopenaiendpoint-production.up.railway.app/v1/projects/bad-adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision-001 vertex_project: "adroit-crow-413218" vertex_location: "us-central1" vertex_credentials: /etc/secrets/adroit_crow.json - model_name: gemini-vision litellm_params: model: vertex_ai/gemini-1.0-pro-vision-001 api_base: https://exampleopenaiendpoint-production-c715.up.railway.app/v1/projects/bad-adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision-001 vertex_project: "adroit-crow-413218" vertex_location: "us-central1" vertex_credentials: /etc/secrets/adroit_crow.json litellm_settings: callbacks: ["prometheus"] # Enterprise LiteLLM Only - use prometheus to get metrics on your load test ``` 2. `pip install locust` 3. Create a file called `locustfile.py` on your local machine. Copy the contents from the litellm load test located [here](https://github.com/BerriAI/litellm/blob/main/.github/workflows/locustfile.py) 4. Start locust Run `locust` in the same directory as your `locustfile.py` from step 2 ```shell locust -f locustfile.py --processes 4 -t 60 ``` 5. Run Load test on locust Head to the locust UI on http://0.0.0.0:8089 and use the following settings 6. Expected results - Successful responses in 1 minute = 19,800 = (69415 - 49615) - Requests per second = 1170 - Median response time = 70ms - Average response time = 640ms ## Prometheus Metrics for debugging load tests Use the following [prometheus metrics to debug your load tests / failures](./proxy/prometheus) | Metric Name | Description | |----------------------|--------------------------------------| | `litellm_deployment_failure_responses` | Total number of failed LLM API calls for a specific LLM deployment. Labels: `"requested_model", "litellm_model_name", "model_id", "api_base", "api_provider", "hashed_api_key", "api_key_alias", "team", "team_alias", "exception_status", "exception_class"` | | `litellm_deployment_cooled_down` | Number of times a deployment has been cooled down by LiteLLM load balancing logic. Labels: `"litellm_model_name", "model_id", "api_base", "api_provider", "exception_status"` | ## Machine Specifications for Running Locust | Metric | Value | |--------|-------| | `locust --processes 4` | 4| | `vCPUs` on Load Testing Machine | 2.0 vCPUs | | `Memory` on Load Testing Machine | 450 MB | | `Replicas` of Load Testing Machine | 1 | ## Machine Specifications for Running LiteLLM Proxy 👉 **Number of Replicas of LiteLLM Proxy=20** for getting 1K+ RPS | Service | Spec | CPUs | Memory | Architecture | Version| | --- | --- | --- | --- | --- | --- | | Server | `t2.large`. | `2vCPUs` | `8GB` | `x86` | ## Locust file used for testing ```python import os import uuid from locust import HttpUser, task, between class MyUser(HttpUser): wait_time = between(0.5, 1) # Random wait time between requests @task(100) def litellm_completion(self): # no cache hits with this payload = { "model": "fake-openai-endpoint", "messages": [{"role": "user", "content": f"{uuid.uuid4()} This is a test there will be no cache hits and we'll fill up the context" * 150 }], "user": "my-new-end-user-1" } response = self.client.post("chat/completions", json=payload) if response.status_code != 200: # log the errors in error.txt with open("error.txt", "a") as error_log: error_log.write(response.text + "\n") def on_start(self): self.api_key = os.getenv('API_KEY', 'sk-1234') self.client.headers.update({'Authorization': f'Bearer {self.api_key}'}) ```