import Image from '@theme/IdealImage';
# LiteLLM Proxy - 1K RPS Load test on locust
Tutorial on how to get to 1K+ RPS with LiteLLM Proxy on locust
## Pre-Testing Checklist
- [ ] Ensure you're using the **latest `-stable` version** of litellm
- [Github releases](https://github.com/BerriAI/litellm/releases)
- [litellm docker containers](https://github.com/BerriAI/litellm/pkgs/container/litellm)
- [litellm database docker container](https://github.com/BerriAI/litellm/pkgs/container/litellm-database)
- [ ] Ensure you're following **ALL** [best practices for production](./proxy/production_setup.md)
- [ ] Locust - Ensure you're Locust instance can create 1K+ requests per second
- 👉 You can use our **[maintained locust instance here](https://locust-load-tester-production.up.railway.app/)**
- If you're self hosting locust
- [here's the spec used for our locust machine](#machine-specifications-for-running-locust)
- [here is the locustfile.py used for our tests](#locust-file-used-for-testing)
- [ ] Use this [**machine specification for running litellm proxy**](#machine-specifications-for-running-litellm-proxy)
- [ ] **Enterprise LiteLLM** - Use `prometheus` as a callback in your `proxy_config.yaml` to get metrics on your load test
Set `litellm_settings.callbacks` to monitor success/failures/all types of errors
```yaml
litellm_settings:
callbacks: ["prometheus"] # Enterprise LiteLLM Only - use prometheus to get metrics on your load test
```
## Load Test - Fake OpenAI Endpoint
### Expected Performance
| Metric | Value |
|--------|-------|
| Requests per Second | 1174+ |
| Median Response Time | `96ms` |
| Average Response Time | `142.18ms` |
### Run Test
1. Add `fake-openai-endpoint` to your proxy config.yaml and start your litellm proxy
litellm provides a hosted `fake-openai-endpoint` you can load test against
```yaml
model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
litellm_settings:
callbacks: ["prometheus"] # Enterprise LiteLLM Only - use prometheus to get metrics on your load test
```
2. `pip install locust`
3. Create a file called `locustfile.py` on your local machine. Copy the contents from the litellm load test located [here](https://github.com/BerriAI/litellm/blob/main/.github/workflows/locustfile.py)
4. Start locust
Run `locust` in the same directory as your `locustfile.py` from step 2
```shell
locust -f locustfile.py --processes 4
```
5. Run Load test on locust
Head to the locust UI on http://0.0.0.0:8089
Set **Users=1000, Ramp Up Users=1000**, Host=Base URL of your LiteLLM Proxy
6. Expected results
## Load test - Endpoints with Rate Limits
Run a load test on 2 LLM deployments each with 10K RPM Quota. Expect to see ~20K RPM
### Expected Performance
- We expect to see 20,000+ successful responses in 1 minute
- The remaining requests **fail because the endpoint exceeds it's 10K RPM quota limit - from the LLM API provider**
| Metric | Value |
|--------|-------|
| Successful Responses in 1 minute | 20,000+ |
| Requests per Second | ~1170+ |
| Median Response Time | `70ms` |
| Average Response Time | `640.18ms` |
### Run Test
1. Add 2 `gemini-vision` deployments on your config.yaml. Each deployment can handle 10K RPM. (We setup a fake endpoint with a rate limit of 1000 RPM on the `/v1/projects/bad-adroit-crow` route below )
:::info
All requests with `model="gemini-vision"` will be load balanced equally across the 2 deployments.
:::
```yaml
model_list:
- model_name: gemini-vision
litellm_params:
model: vertex_ai/gemini-1.0-pro-vision-001
api_base: https://exampleopenaiendpoint-production.up.railway.app/v1/projects/bad-adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision-001
vertex_project: "adroit-crow-413218"
vertex_location: "us-central1"
vertex_credentials: /etc/secrets/adroit_crow.json
- model_name: gemini-vision
litellm_params:
model: vertex_ai/gemini-1.0-pro-vision-001
api_base: https://exampleopenaiendpoint-production-c715.up.railway.app/v1/projects/bad-adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision-001
vertex_project: "adroit-crow-413218"
vertex_location: "us-central1"
vertex_credentials: /etc/secrets/adroit_crow.json
litellm_settings:
callbacks: ["prometheus"] # Enterprise LiteLLM Only - use prometheus to get metrics on your load test
```
2. `pip install locust`
3. Create a file called `locustfile.py` on your local machine. Copy the contents from the litellm load test located [here](https://github.com/BerriAI/litellm/blob/main/.github/workflows/locustfile.py)
4. Start locust
Run `locust` in the same directory as your `locustfile.py` from step 2
```shell
locust -f locustfile.py --processes 4 -t 60
```
5. Run Load test on locust
Head to the locust UI on http://0.0.0.0:8089 and use the following settings
6. Expected results
- Successful responses in 1 minute = 19,800 = (69415 - 49615)
- Requests per second = 1170
- Median response time = 70ms
- Average response time = 640ms
## Prometheus Metrics for debugging load tests
Use the following [prometheus metrics to debug your load tests / failures](./proxy/prometheus)
| Metric Name | Description |
|----------------------|--------------------------------------|
| `litellm_deployment_failure_responses` | Total number of failed LLM API calls for a specific LLM deployment. Labels: `"requested_model", "litellm_model_name", "model_id", "api_base", "api_provider", "hashed_api_key", "api_key_alias", "team", "team_alias", "exception_status", "exception_class"` |
| `litellm_deployment_cooled_down` | Number of times a deployment has been cooled down by LiteLLM load balancing logic. Labels: `"litellm_model_name", "model_id", "api_base", "api_provider", "exception_status"` |
## Machine Specifications for Running Locust
| Metric | Value |
|--------|-------|
| `locust --processes 4` | 4|
| `vCPUs` on Load Testing Machine | 2.0 vCPUs |
| `Memory` on Load Testing Machine | 450 MB |
| `Replicas` of Load Testing Machine | 1 |
## Machine Specifications for Running LiteLLM Proxy
👉 **Number of Replicas of LiteLLM Proxy=20** for getting 1K+ RPS
| Service | Spec | CPUs | Memory | Architecture | Version|
| --- | --- | --- | --- | --- | --- |
| Server | `t2.large`. | `2vCPUs` | `8GB` | `x86` |
## Locust file used for testing
```python
import os
import uuid
from locust import HttpUser, task, between
class MyUser(HttpUser):
wait_time = between(0.5, 1) # Random wait time between requests
@task(100)
def litellm_completion(self):
# no cache hits with this
payload = {
"model": "fake-openai-endpoint",
"messages": [{"role": "user", "content": f"{uuid.uuid4()} This is a test there will be no cache hits and we'll fill up the context" * 150 }],
"user": "my-new-end-user-1"
}
response = self.client.post("chat/completions", json=payload)
if response.status_code != 200:
# log the errors in error.txt
with open("error.txt", "a") as error_log:
error_log.write(response.text + "\n")
def on_start(self):
self.api_key = os.getenv('API_KEY', 'sk-1234')
self.client.headers.update({'Authorization': f'Bearer {self.api_key}'})
```