import json import os import sys import traceback from dotenv import load_dotenv load_dotenv() import io import os sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import os from unittest.mock import AsyncMock, MagicMock, patch import pytest import litellm from litellm import RateLimitError, Timeout, completion, completion_cost, embedding from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler from litellm.llms.prompt_templates.factory import anthropic_messages_pt # litellm.num_retries=3 litellm.cache = None litellm.success_callback = [] user_message = "Write a short poem about the sky" messages = [{"content": user_message, "role": "user"}] def logger_fn(user_model_dict): print(f"user_model_dict: {user_model_dict}") @pytest.fixture(autouse=True) def reset_callbacks(): print("\npytest fixture - resetting callbacks") litellm.success_callback = [] litellm._async_success_callback = [] litellm.failure_callback = [] litellm.callbacks = [] @pytest.mark.skip(reason="Local test") def test_response_model_none(): """ Addresses:https://github.com/BerriAI/litellm/issues/2972 """ x = completion( model="mymodel", custom_llm_provider="openai", messages=[{"role": "user", "content": "Hello!"}], api_base="http://0.0.0.0:8080", api_key="my-api-key", ) print(f"x: {x}") assert isinstance(x, litellm.ModelResponse) def test_completion_custom_provider_model_name(): try: litellm.cache = None response = completion( model="together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1", messages=messages, logger_fn=logger_fn, ) # Add assertions here to check the-response print(response) print(response["choices"][0]["finish_reason"]) except litellm.Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") def _openai_mock_response(*args, **kwargs) -> litellm.ModelResponse: new_response = MagicMock() new_response.headers = {"hello": "world"} response_object = { "id": "chatcmpl-123", "object": "chat.completion", "created": 1677652288, "model": "gpt-3.5-turbo-0125", "system_fingerprint": "fp_44709d6fcb", "choices": [ { "index": 0, "message": { "role": "assistant", "content": "\n\nHello there, how may I assist you today?", }, "logprobs": None, "finish_reason": "stop", } ], "usage": {"prompt_tokens": 9, "completion_tokens": 12, "total_tokens": 21}, } from openai import OpenAI from openai.types.chat.chat_completion import ChatCompletion pydantic_obj = ChatCompletion(**response_object) # type: ignore pydantic_obj.choices[0].message.role = None # type: ignore new_response.parse.return_value = pydantic_obj return new_response def test_null_role_response(): """ Test if the api returns 'null' role, 'assistant' role is still returned """ import openai openai_client = openai.OpenAI() with patch.object( openai_client.chat.completions, "create", side_effect=_openai_mock_response ) as mock_response: response = litellm.completion( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey! how's it going?"}], client=openai_client, ) print(f"response: {response}") assert response.id == "chatcmpl-123" assert response.choices[0].message.role == "assistant" def test_completion_azure_ai_command_r(): try: import os litellm.set_verbose = True os.environ["AZURE_AI_API_BASE"] = os.getenv("AZURE_COHERE_API_BASE", "") os.environ["AZURE_AI_API_KEY"] = os.getenv("AZURE_COHERE_API_KEY", "") response = completion( model="azure_ai/command-r-plus", messages=[ { "role": "user", "content": [ {"type": "text", "text": "What is the meaning of life?"} ], } ], ) # type: ignore assert "azure_ai" in response.model except litellm.Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_completion_azure_ai_mistral_invalid_params(sync_mode): try: import os litellm.set_verbose = True os.environ["AZURE_AI_API_BASE"] = os.getenv("AZURE_MISTRAL_API_BASE", "") os.environ["AZURE_AI_API_KEY"] = os.getenv("AZURE_MISTRAL_API_KEY", "") data = { "model": "azure_ai/mistral", "messages": [{"role": "user", "content": "What is the meaning of life?"}], "frequency_penalty": 0.1, "presence_penalty": 0.1, "drop_params": True, } if sync_mode: response: litellm.ModelResponse = completion(**data) # type: ignore else: response: litellm.ModelResponse = await litellm.acompletion(**data) # type: ignore assert "azure_ai" in response.model except litellm.Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") def test_completion_azure_command_r(): try: litellm.set_verbose = True response = completion( model="azure/command-r-plus", api_base=os.getenv("AZURE_COHERE_API_BASE"), api_key=os.getenv("AZURE_COHERE_API_KEY"), messages=[{"role": "user", "content": "What is the meaning of life?"}], ) print(response) except litellm.Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize( "api_base", [ "https://litellm8397336933.openai.azure.com", "https://litellm8397336933.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2023-03-15-preview", ], ) def test_completion_azure_ai_gpt_4o(api_base): try: litellm.set_verbose = True response = completion( model="azure_ai/gpt-4o", api_base=api_base, api_key=os.getenv("AZURE_AI_OPENAI_KEY"), messages=[{"role": "user", "content": "What is the meaning of life?"}], ) print(response) except litellm.Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_completion_databricks(sync_mode): litellm.set_verbose = True if sync_mode: response: litellm.ModelResponse = completion( model="databricks/databricks-dbrx-instruct", messages=[{"role": "user", "content": "Hey, how's it going?"}], ) # type: ignore else: response: litellm.ModelResponse = await litellm.acompletion( model="databricks/databricks-dbrx-instruct", messages=[{"role": "user", "content": "Hey, how's it going?"}], ) # type: ignore print(f"response: {response}") response_format_tests(response=response) def predibase_mock_post(url, data=None, json=None, headers=None, timeout=None): mock_response = MagicMock() mock_response.status_code = 200 mock_response.headers = {"Content-Type": "application/json"} mock_response.json.return_value = { "generated_text": " Is it to find happiness, to achieve success,", "details": { "finish_reason": "length", "prompt_tokens": 8, "generated_tokens": 10, "seed": None, "prefill": [], "tokens": [ {"id": 2209, "text": " Is", "logprob": -1.7568359, "special": False}, {"id": 433, "text": " it", "logprob": -0.2220459, "special": False}, {"id": 311, "text": " to", "logprob": -0.6928711, "special": False}, {"id": 1505, "text": " find", "logprob": -0.6425781, "special": False}, { "id": 23871, "text": " happiness", "logprob": -0.07519531, "special": False, }, {"id": 11, "text": ",", "logprob": -0.07110596, "special": False}, {"id": 311, "text": " to", "logprob": -0.79296875, "special": False}, { "id": 11322, "text": " achieve", "logprob": -0.7602539, "special": False, }, { "id": 2450, "text": " success", "logprob": -0.03656006, "special": False, }, {"id": 11, "text": ",", "logprob": -0.0011510849, "special": False}, ], }, } return mock_response # @pytest.mark.skip(reason="local-only test") @pytest.mark.asyncio async def test_completion_predibase(): try: litellm.set_verbose = True # with patch("requests.post", side_effect=predibase_mock_post): response = await litellm.acompletion( model="predibase/llama-3-8b-instruct", tenant_id="c4768f95", api_key=os.getenv("PREDIBASE_API_KEY"), messages=[{"role": "user", "content": "who are u?"}], max_tokens=10, timeout=5, ) print(response) except litellm.Timeout as e: print("got a timeout error from predibase") pass except litellm.ServiceUnavailableError as e: pass except litellm.InternalServerError: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_predibase() # test_completion_claude() @pytest.mark.skip(reason="No empower api key") def test_completion_empower(): litellm.set_verbose = True messages = [ { "role": "user", "content": "\nWhat is the query for `console.log` => `console.error`\n", }, { "role": "assistant", "content": "\nThis is the GritQL query for the given before/after examples:\n\n`console.log` => `console.error`\n\n", }, { "role": "user", "content": "\nWhat is the query for `console.info` => `consdole.heaven`\n", }, ] try: # test without max tokens response = completion( model="empower/empower-functions-small", messages=messages, ) # Add any assertions, here to check response args print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") def test_completion_github_api(): litellm.set_verbose = True messages = [ { "role": "user", "content": "\nWhat is the query for `console.log` => `console.error`\n", }, { "role": "assistant", "content": "\nThis is the GritQL query for the given before/after examples:\n\n`console.log` => `console.error`\n\n", }, { "role": "user", "content": "\nWhat is the query for `console.info` => `consdole.heaven`\n", }, ] try: # test without max tokens response = completion( model="github/gpt-4o", messages=messages, ) # Add any assertions, here to check response args print(response) except litellm.AuthenticationError: pass except Exception as e: pytest.fail(f"Error occurred: {e}") def test_completion_claude_3_empty_response(): litellm.set_verbose = True messages = [ { "role": "system", "content": [{"type": "text", "text": "You are 2twNLGfqk4GMOn3ffp4p."}], }, {"role": "user", "content": "Hi gm!", "name": "ishaan"}, {"role": "assistant", "content": "Good morning! How are you doing today?"}, { "role": "user", "content": "I was hoping we could chat a bit", }, ] try: response = litellm.completion(model="claude-3-opus-20240229", messages=messages) print(response) except litellm.InternalServerError as e: pytest.skip(f"InternalServerError - {str(e)}") except Exception as e: pytest.fail(f"Error occurred: {e}") def test_completion_claude_3(): litellm.set_verbose = True messages = [ { "role": "user", "content": "\nWhat is the query for `console.log` => `console.error`\n", }, { "role": "assistant", "content": "\nThis is the GritQL query for the given before/after examples:\n\n`console.log` => `console.error`\n\n", }, { "role": "user", "content": "\nWhat is the query for `console.info` => `consdole.heaven`\n", }, ] try: # test without max tokens response = completion( model="anthropic/claude-3-opus-20240229", messages=messages, ) # Add any assertions, here to check response args print(response) except litellm.InternalServerError as e: pytest.skip(f"InternalServerError - {str(e)}") except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize( "model", ["anthropic/claude-3-opus-20240229", "anthropic.claude-3-sonnet-20240229-v1:0"], ) def test_completion_claude_3_function_call(model): litellm.set_verbose = True tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [ { "role": "user", "content": "What's the weather like in Boston today in Fahrenheit?", } ] try: # test without max tokens response = completion( model=model, messages=messages, tools=tools, tool_choice={ "type": "function", "function": {"name": "get_current_weather"}, }, drop_params=True, ) # Add any assertions here to check response args print(response) assert isinstance(response.choices[0].message.tool_calls[0].function.name, str) assert isinstance( response.choices[0].message.tool_calls[0].function.arguments, str ) messages.append( response.choices[0].message.model_dump() ) # Add assistant tool invokes tool_result = ( '{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}' ) # Add user submitted tool results in the OpenAI format messages.append( { "tool_call_id": response.choices[0].message.tool_calls[0].id, "role": "tool", "name": response.choices[0].message.tool_calls[0].function.name, "content": tool_result, } ) # In the second response, Claude should deduce answer from tool results second_response = completion( model=model, messages=messages, tools=tools, tool_choice="auto", drop_params=True, ) print(second_response) except litellm.InternalServerError: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize("sync_mode", [True]) @pytest.mark.parametrize( "model, api_key, api_base", [ ("gpt-3.5-turbo", None, None), ("claude-3-opus-20240229", None, None), ("command-r", None, None), ("anthropic.claude-3-sonnet-20240229-v1:0", None, None), ( "azure_ai/command-r-plus", os.getenv("AZURE_COHERE_API_KEY"), os.getenv("AZURE_COHERE_API_BASE"), ), ], ) @pytest.mark.asyncio async def test_model_function_invoke(model, sync_mode, api_key, api_base): try: litellm.set_verbose = True messages = [ { "role": "system", "content": "Your name is Litellm Bot, you are a helpful assistant", }, # User asks for their name and weather in San Francisco { "role": "user", "content": "Hello, what is your name and can you tell me the weather?", }, # Assistant replies with a tool call { "role": "assistant", "content": "", "tool_calls": [ { "id": "call_123", "type": "function", "index": 0, "function": { "name": "get_weather", "arguments": '{"location": "San Francisco, CA"}', }, } ], }, # The result of the tool call is added to the history { "role": "tool", "tool_call_id": "call_123", "content": "27 degrees celsius and clear in San Francisco, CA", }, # Now the assistant can reply with the result of the tool call. ] tools = [ { "type": "function", "function": { "name": "get_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", } }, "required": ["location"], }, }, } ] data = { "model": model, "messages": messages, "tools": tools, "api_key": api_key, "api_base": api_base, } if sync_mode: response = litellm.completion(**data) else: response = await litellm.acompletion(**data) print(f"response: {response}") except litellm.InternalServerError: pass except litellm.RateLimitError as e: pass except Exception as e: if "429 Quota exceeded" in str(e): pass else: pytest.fail("An unexpected exception occurred - {}".format(str(e))) @pytest.mark.asyncio async def test_anthropic_no_content_error(): """ https://github.com/BerriAI/litellm/discussions/3440#discussioncomment-9323402 """ try: litellm.drop_params = True response = await litellm.acompletion( model="anthropic/claude-3-opus-20240229", api_key=os.getenv("ANTHROPIC_API_KEY"), messages=[ { "role": "system", "content": "You will be given a list of fruits. Use the submitFruit function to submit a fruit. Don't say anything after.", }, {"role": "user", "content": "I like apples"}, { "content": "The most relevant tool for this request is the submitFruit function.", "role": "assistant", "tool_calls": [ { "function": { "arguments": '{"name": "Apple"}', "name": "submitFruit", }, "id": "toolu_012ZTYKWD4VqrXGXyE7kEnAK", "type": "function", } ], }, { "role": "tool", "content": '{"success":true}', "tool_call_id": "toolu_012ZTYKWD4VqrXGXyE7kEnAK", }, ], max_tokens=2000, temperature=1, tools=[ { "type": "function", "function": { "name": "submitFruit", "description": "Submits a fruit", "parameters": { "type": "object", "properties": { "name": { "type": "string", "description": "The name of the fruit", } }, "required": ["name"], }, }, } ], frequency_penalty=0.8, ) pass except litellm.InternalServerError: pass except litellm.APIError as e: assert e.status_code == 500 except Exception as e: pytest.fail(f"An unexpected error occurred - {str(e)}") def test_gemini_completion_call_error(): try: print("test completion + streaming") litellm.num_retries = 3 litellm.set_verbose = True messages = [{"role": "user", "content": "what is the capital of congo?"}] response = completion( model="gemini/gemini-1.5-pro-latest", messages=messages, stream=True, max_tokens=10, ) print(f"response: {response}") for chunk in response: print(chunk) except litellm.RateLimitError: pass except litellm.InternalServerError: pass except Exception as e: pytest.fail(f"error occurred: {str(e)}") def test_completion_cohere_command_r_plus_function_call(): litellm.set_verbose = True tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [ { "role": "user", "content": "What's the weather like in Boston today in Fahrenheit?", } ] try: # test without max tokens response = completion( model="command-r-plus", messages=messages, tools=tools, tool_choice="auto", ) # Add any assertions, here to check response args print(response) assert isinstance(response.choices[0].message.tool_calls[0].function.name, str) assert isinstance( response.choices[0].message.tool_calls[0].function.arguments, str ) messages.append( response.choices[0].message.model_dump() ) # Add assistant tool invokes tool_result = ( '{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}' ) # Add user submitted tool results in the OpenAI format messages.append( { "tool_call_id": response.choices[0].message.tool_calls[0].id, "role": "tool", "name": response.choices[0].message.tool_calls[0].function.name, "content": tool_result, } ) # In the second response, Cohere should deduce answer from tool results second_response = completion( model="command-r-plus", messages=messages, tools=tools, tool_choice="auto", force_single_step=True, ) print(second_response) except litellm.Timeout: pass except Exception as e: pytest.fail(f"Error occurred: {e}") def test_parse_xml_params(): from litellm.llms.prompt_templates.factory import parse_xml_params ## SCENARIO 1 ## - W/ ARRAY xml_content = """return_list_of_str\n\n\napple\nbanana\norange\n\n""" json_schema = { "properties": { "value": { "items": {"type": "string"}, "title": "Value", "type": "array", } }, "required": ["value"], "type": "object", } response = parse_xml_params(xml_content=xml_content, json_schema=json_schema) print(f"response: {response}") assert response["value"] == ["apple", "banana", "orange"] ## SCENARIO 2 ## - W/OUT ARRAY xml_content = """get_current_weather\n\nBoston, MA\nfahrenheit\n""" json_schema = { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], } response = parse_xml_params(xml_content=xml_content, json_schema=json_schema) print(f"response: {response}") assert response["location"] == "Boston, MA" assert response["unit"] == "fahrenheit" def test_completion_claude_3_multi_turn_conversations(): litellm.set_verbose = True litellm.modify_params = True messages = [ {"role": "assistant", "content": "?"}, # test first user message auto injection {"role": "user", "content": "Hi!"}, { "role": "user", "content": [{"type": "text", "text": "What is the weather like today?"}], }, {"role": "assistant", "content": "Hi! I am Claude. "}, {"role": "assistant", "content": "Today is a sunny "}, ] try: response = completion( model="anthropic/claude-3-opus-20240229", messages=messages, ) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") def test_completion_claude_3_stream(): litellm.set_verbose = False messages = [{"role": "user", "content": "Hello, world"}] try: # test without max tokens response = completion( model="anthropic/claude-3-opus-20240229", messages=messages, max_tokens=10, stream=True, ) # Add any assertions, here to check response args print(response) for chunk in response: print(chunk) except Exception as e: pytest.fail(f"Error occurred: {e}") def encode_image(image_path): import base64 with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") @pytest.mark.parametrize( "model", [ "gpt-4o", "azure/gpt-4o", "anthropic/claude-3-opus-20240229", ], ) # def test_completion_base64(model): try: import base64 import requests litellm.set_verbose = True url = "https://dummyimage.com/100/100/fff&text=Test+image" response = requests.get(url) file_data = response.content encoded_file = base64.b64encode(file_data).decode("utf-8") base64_image = f"data:image/png;base64,{encoded_file}" resp = litellm.completion( model=model, messages=[ { "role": "user", "content": [ {"type": "text", "text": "Whats in this image?"}, { "type": "image_url", "image_url": {"url": base64_image}, }, ], } ], ) print(f"\nResponse: {resp}") prompt_tokens = resp.usage.prompt_tokens except litellm.ServiceUnavailableError as e: print("got service unavailable error: ", e) pass except litellm.InternalServerError as e: print("got internal server error: ", e) pass except Exception as e: if "500 Internal error encountered.'" in str(e): pass else: pytest.fail(f"An exception occurred - {str(e)}") @pytest.mark.parametrize("model", ["claude-3-sonnet-20240229"]) def test_completion_function_plus_image(model): litellm.set_verbose = True image_content = [ {"type": "text", "text": "What’s in this image?"}, { "type": "image_url", "image_url": { "url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png" }, }, ] image_message = {"role": "user", "content": image_content} tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"], }, }, "required": ["location"], }, }, } ] tool_choice = {"type": "function", "function": {"name": "get_current_weather"}} messages = [ { "role": "user", "content": "What's the weather like in Boston today in Fahrenheit?", } ] try: response = completion( model=model, messages=[image_message], tool_choice=tool_choice, tools=tools, stream=False, ) print(response) except litellm.InternalServerError: pass @pytest.mark.parametrize( "provider", ["azure", "azure_ai"], ) def test_completion_azure_mistral_large_function_calling(provider): """ This primarily tests if the 'Function()' pydantic object correctly handles argument param passed in as a dict vs. string """ litellm.set_verbose = True tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [ { "role": "user", "content": "What's the weather like in Boston today in Fahrenheit?", } ] response = completion( model="{}/mistral-large-latest".format(provider), api_base=os.getenv("AZURE_MISTRAL_API_BASE"), api_key=os.getenv("AZURE_MISTRAL_API_KEY"), messages=messages, tools=tools, tool_choice="auto", ) # Add any assertions, here to check response args print(response) assert isinstance(response.choices[0].message.tool_calls[0].function.name, str) assert isinstance(response.choices[0].message.tool_calls[0].function.arguments, str) def test_completion_mistral_api(): try: litellm.set_verbose = True response = completion( model="mistral/mistral-tiny", max_tokens=5, messages=[ { "role": "user", "content": "Hey, how's it going?", } ], seed=10, ) # Add any assertions here to check the response print(response) cost = litellm.completion_cost(completion_response=response) print("cost to make mistral completion=", cost) assert cost > 0.0 except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="backend api unavailable") @pytest.mark.asyncio async def test_completion_codestral_chat_api(): try: litellm.set_verbose = True response = await litellm.acompletion( model="codestral/codestral-latest", messages=[ { "role": "user", "content": "Hey, how's it going?", } ], temperature=0.0, top_p=1, max_tokens=10, safe_prompt=False, seed=12, ) # Add any assertions here to-check the response print(response) # cost = litellm.completion_cost(completion_response=response) # print("cost to make mistral completion=", cost) # assert cost > 0.0 except Exception as e: pytest.fail(f"Error occurred: {e}") def test_completion_mistral_api_mistral_large_function_call(): litellm.set_verbose = True tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [ { "role": "user", "content": "What's the weather like in Boston today in Fahrenheit?", } ] try: # test without max tokens response = completion( model="mistral/mistral-large-latest", messages=messages, tools=tools, tool_choice="auto", ) # Add any assertions, here to check response args print(response) assert isinstance(response.choices[0].message.tool_calls[0].function.name, str) assert isinstance( response.choices[0].message.tool_calls[0].function.arguments, str ) messages.append( response.choices[0].message.model_dump() ) # Add assistant tool invokes tool_result = ( '{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}' ) # Add user submitted tool results in the OpenAI format messages.append( { "tool_call_id": response.choices[0].message.tool_calls[0].id, "role": "tool", "name": response.choices[0].message.tool_calls[0].function.name, "content": tool_result, } ) # In the second response, Mistral should deduce answer from tool results second_response = completion( model="mistral/mistral-large-latest", messages=messages, tools=tools, tool_choice="auto", ) print(second_response) except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip( reason="Since we already test mistral/mistral-tiny in test_completion_mistral_api. This is only for locally verifying azure mistral works" ) def test_completion_mistral_azure(): try: litellm.set_verbose = True response = completion( model="mistral/Mistral-large-nmefg", api_key=os.environ["MISTRAL_AZURE_API_KEY"], api_base=os.environ["MISTRAL_AZURE_API_BASE"], max_tokens=5, messages=[ { "role": "user", "content": "Hi from litellm", } ], ) # Add any assertions here to check, the response print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_mistral_api() def test_completion_mistral_api_modified_input(): try: litellm.set_verbose = True response = completion( model="mistral/mistral-tiny", max_tokens=5, messages=[ { "role": "user", "content": [{"type": "text", "text": "Hey, how's it going?"}], } ], ) # Add any assertions here to check the response print(response) cost = litellm.completion_cost(completion_response=response) print("cost to make mistral completion=", cost) assert cost > 0.0 except Exception as e: if "500" in str(e): pass else: pytest.fail(f"Error occurred: {e}") def test_completion_claude2_1(): try: litellm.set_verbose = True print("claude2.1 test request") messages = [ { "role": "system", "content": "Your goal is generate a joke on the topic user gives.", }, {"role": "user", "content": "Generate a 3 liner joke for me"}, ] # test without max tokens response = completion(model="claude-2.1", messages=messages) # Add any assertions here to check the response print(response) print(response.usage) print(response.usage.completion_tokens) print(response["usage"]["completion_tokens"]) # print("new cost tracking") except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_claude2_1() @pytest.mark.asyncio async def test_acompletion_claude2_1(): try: litellm.set_verbose = True print("claude2.1 test request") messages = [ { "role": "system", "content": "Your goal is generate a joke on the topic user gives.", }, {"role": "user", "content": "Generate a 3 liner joke for me"}, ] # test without max-tokens response = await litellm.acompletion(model="claude-2.1", messages=messages) # Add any assertions here to check the response print(response) print(response.usage) print(response.usage.completion_tokens) print(response["usage"]["completion_tokens"]) # print("new cost tracking") except Exception as e: pytest.fail(f"Error occurred: {e}") # def test_completion_oobabooga(): # try: # response = completion( # model="oobabooga/vicuna-1.3b", messages=messages, api_base="http://127.0.0.1:5000" # ) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_oobabooga() # aleph alpha # def test_completion_aleph_alpha(): # try: # response = completion( # model="luminous-base", messages=messages, logger_fn=logger_fn # ) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_aleph_alpha() # def test_completion_aleph_alpha_control_models(): # try: # response = completion( # model="luminous-base-control", messages=messages, logger_fn=logger_fn # ) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_aleph_alpha_control_models() import openai def test_completion_gpt4_turbo(): litellm.set_verbose = True try: response = completion( model="gpt-4-1106-preview", messages=messages, max_completion_tokens=10, ) print(response) except openai.RateLimitError: print("got a rate liimt error") pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_gpt4_turbo() def test_completion_gpt4_turbo_0125(): try: response = completion( model="gpt-4-0125-preview", messages=messages, max_tokens=10, ) print(response) except openai.RateLimitError: print("got a rate liimt error") pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="this test is flaky") def test_completion_gpt4_vision(): try: litellm.set_verbose = True response = completion( model="gpt-4-vision-preview", messages=[ { "role": "user", "content": [ {"type": "text", "text": "Whats in this image?"}, { "type": "image_url", "image_url": { "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }, }, ], } ], ) print(response) except openai.RateLimitError: print("got a rate liimt error") pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_gpt4_vision() def test_completion_azure_gpt4_vision(): # azure/gpt-4, vision takes 5-seconds to respond try: litellm.set_verbose = True response = completion( model="azure/gpt-4-vision", timeout=5, messages=[ { "role": "user", "content": [ {"type": "text", "text": "Whats in this image?"}, { "type": "image_url", "image_url": { "url": "https://avatars.githubusercontent.com/u/29436595?v=4" }, }, ], } ], base_url="https://gpt-4-vision-resource.openai.azure.com/openai/deployments/gpt-4-vision/extensions", api_key=os.getenv("AZURE_VISION_API_KEY"), enhancements={"ocr": {"enabled": True}, "grounding": {"enabled": True}}, dataSources=[ { "type": "AzureComputerVision", "parameters": { "endpoint": "https://gpt-4-vision-enhancement.cognitiveservices.azure.com/", "key": os.environ["AZURE_VISION_ENHANCE_KEY"], }, } ], ) print(response) except openai.APIError as e: pass except openai.APITimeoutError: print("got a timeout error") pass except openai.RateLimitError as e: print("got a rate liimt error", e) pass except openai.APIStatusError as e: print("got an api status error", e) pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_azure_gpt4_vision() def test_completion_openai_response_headers(): """ Tests if LiteLLM reurns response hea """ litellm.return_response_headers = True # /chat/completion messages = [ { "role": "user", "content": "hi", } ] response = completion( model="gpt-4o-mini", messages=messages, ) print(f"response: {response}") print("response_headers=", response._response_headers) assert response._response_headers is not None assert "x-ratelimit-remaining-tokens" in response._response_headers assert isinstance( response._hidden_params["additional_headers"][ "llm_provider-x-ratelimit-remaining-requests" ], str, ) # /chat/completion - with streaming streaming_response = litellm.completion( model="gpt-4o-mini", messages=messages, stream=True, ) response_headers = streaming_response._response_headers print("streaming response_headers=", response_headers) assert response_headers is not None assert "x-ratelimit-remaining-tokens" in response_headers assert isinstance( response._hidden_params["additional_headers"][ "llm_provider-x-ratelimit-remaining-requests" ], str, ) for chunk in streaming_response: print("chunk=", chunk) # embedding embedding_response = litellm.embedding( model="text-embedding-ada-002", input="hello", ) embedding_response_headers = embedding_response._response_headers print("embedding_response_headers=", embedding_response_headers) assert embedding_response_headers is not None assert "x-ratelimit-remaining-tokens" in embedding_response_headers assert isinstance( response._hidden_params["additional_headers"][ "llm_provider-x-ratelimit-remaining-requests" ], str, ) litellm.return_response_headers = False @pytest.mark.asyncio() async def test_async_completion_openai_response_headers(): """ Tests if LiteLLM reurns response hea """ litellm.return_response_headers = True # /chat/completion messages = [ { "role": "user", "content": "hi", } ] response = await litellm.acompletion( model="gpt-4o-mini", messages=messages, ) print(f"response: {response}") print("response_headers=", response._response_headers) assert response._response_headers is not None assert "x-ratelimit-remaining-tokens" in response._response_headers # /chat/completion with streaming streaming_response = await litellm.acompletion( model="gpt-4o-mini", messages=messages, stream=True, ) response_headers = streaming_response._response_headers print("streaming response_headers=", response_headers) assert response_headers is not None assert "x-ratelimit-remaining-tokens" in response_headers async for chunk in streaming_response: print("chunk=", chunk) # embedding embedding_response = await litellm.aembedding( model="text-embedding-ada-002", input="hello", ) embedding_response_headers = embedding_response._response_headers print("embedding_response_headers=", embedding_response_headers) assert embedding_response_headers is not None assert "x-ratelimit-remaining-tokens" in embedding_response_headers litellm.return_response_headers = False @pytest.mark.parametrize("model", ["gpt-3.5-turbo", "gpt-4", "gpt-4o"]) def test_completion_openai_params(model): litellm.drop_params = True messages = [ { "role": "user", "content": """Generate JSON about Bill Gates: { "full_name": "", "title": "" }""", } ] response = completion( model=model, messages=messages, response_format={"type": "json_object"}, ) print(f"response: {response}") def test_completion_fireworks_ai(): try: litellm.set_verbose = True messages = [ {"role": "system", "content": "You're a good bot"}, { "role": "user", "content": "Hey", }, ] response = completion( model="fireworks_ai/accounts/fireworks/models/mixtral-8x7b-instruct", messages=messages, ) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize( "api_key, api_base", [(None, "my-bad-api-base"), ("my-bad-api-key", None)] ) def test_completion_fireworks_ai_dynamic_params(api_key, api_base): try: litellm.set_verbose = True messages = [ {"role": "system", "content": "You're a good bot"}, { "role": "user", "content": "Hey", }, ] response = completion( model="fireworks_ai/accounts/fireworks/models/mixtral-8x7b-instruct", messages=messages, api_base=api_base, api_key=api_key, ) pytest.fail(f"This call should have failed!") except Exception as e: pass # @pytest.mark.skip(reason="this test is flaky") def test_completion_perplexity_api(): try: response_object = { "id": "a8f37485-026e-45da-81a9-cf0184896840", "model": "llama-3-sonar-small-32k-online", "created": 1722186391, "usage": {"prompt_tokens": 17, "completion_tokens": 65, "total_tokens": 82}, "citations": [ "https://www.sciencedirect.com/science/article/pii/S007961232200156X", "https://www.britannica.com/event/World-War-II", "https://www.loc.gov/classroom-materials/united-states-history-primary-source-timeline/great-depression-and-world-war-ii-1929-1945/world-war-ii/", "https://www.nationalww2museum.org/war/topics/end-world-war-ii-1945", "https://en.wikipedia.org/wiki/World_War_II", ], "object": "chat.completion", "choices": [ { "index": 0, "finish_reason": "stop", "message": { "role": "assistant", "content": "World War II was won by the Allied powers, which included the United States, the Soviet Union, Great Britain, France, China, and other countries. The war concluded with the surrender of Germany on May 8, 1945, and Japan on September 2, 1945[2][3][4].", }, "delta": {"role": "assistant", "content": ""}, } ], } from openai import OpenAI from openai.types.chat.chat_completion import ChatCompletion pydantic_obj = ChatCompletion(**response_object) def _return_pydantic_obj(*args, **kwargs): new_response = MagicMock() new_response.headers = {"hello": "world"} new_response.parse.return_value = pydantic_obj return new_response openai_client = OpenAI() with patch.object( openai_client.chat.completions.with_raw_response, "create", side_effect=_return_pydantic_obj, ) as mock_client: # litellm.set_verbose= True messages = [ {"role": "system", "content": "You're a good bot"}, { "role": "user", "content": "Hey", }, { "role": "user", "content": "Hey", }, ] response = completion( model="mistral-7b-instruct", messages=messages, api_base="https://api.perplexity.ai", client=openai_client, ) print(response) assert hasattr(response, "citations") except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_perplexity_api() @pytest.mark.skip(reason="this test is flaky") def test_completion_perplexity_api_2(): try: # litellm.set_verbose=True messages = [ {"role": "system", "content": "You're a good bot"}, { "role": "user", "content": "Hey", }, { "role": "user", "content": "Hey", }, ] response = completion(model="perplexity/mistral-7b-instruct", messages=messages) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_perplexity_api_2() # commenting out as this is a flaky test on circle-ci # def test_completion_nlp_cloud(): # try: # messages = [ # {"role": "system", "content": "You are a helpful assistant."}, # { # "role": "user", # "content": "how does a court case get to the Supreme Court?", # }, # ] # response = completion(model="dolphin", messages=messages, logger_fn=logger_fn) # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_nlp_cloud() ######### HUGGING FACE TESTS ######################## ##################################################### """ HF Tests we should pass - TGI: - Pro Inference API - Deployed Endpoint - Coversational - Free Inference API - Deployed Endpoint - Neither TGI or Coversational - Free Inference API - Deployed Endpoint """ ##################################################### ##################################################### # Test util to sort models to TGI, conv, None def test_get_hf_task_for_model(): model = "glaiveai/glaive-coder-7b" model_type, _ = litellm.llms.huggingface_restapi.get_hf_task_for_model(model) print(f"model:{model}, model type: {model_type}") assert model_type == "text-generation-inference" model = "meta-llama/Llama-2-7b-hf" model_type, _ = litellm.llms.huggingface_restapi.get_hf_task_for_model(model) print(f"model:{model}, model type: {model_type}") assert model_type == "text-generation-inference" model = "facebook/blenderbot-400M-distill" model_type, _ = litellm.llms.huggingface_restapi.get_hf_task_for_model(model) print(f"model:{model}, model type: {model_type}") assert model_type == "conversational" model = "facebook/blenderbot-3B" model_type, _ = litellm.llms.huggingface_restapi.get_hf_task_for_model(model) print(f"model:{model}, model type: {model_type}") assert model_type == "conversational" # neither Conv or None model = "roneneldan/TinyStories-3M" model_type, _ = litellm.llms.huggingface_restapi.get_hf_task_for_model(model) print(f"model:{model}, model type: {model_type}") assert model_type == "text-generation" # test_get_hf_task_for_model() # litellm.set_verbose=False # ################### Hugging Face TGI models ######################## # # TGI model # # this is a TGI model https://huggingface.co/glaiveai/glaive-coder-7b def tgi_mock_post(url, **kwargs): mock_response = MagicMock() mock_response.status_code = 200 mock_response.headers = {"Content-Type": "application/json"} mock_response.json.return_value = [ { "generated_text": "<|assistant|>\nI'm", "details": { "finish_reason": "length", "generated_tokens": 10, "seed": None, "prefill": [], "tokens": [ { "id": 28789, "text": "<", "logprob": -0.025222778, "special": False, }, { "id": 28766, "text": "|", "logprob": -0.000003695488, "special": False, }, { "id": 489, "text": "ass", "logprob": -0.0000019073486, "special": False, }, { "id": 11143, "text": "istant", "logprob": -0.000002026558, "special": False, }, { "id": 28766, "text": "|", "logprob": -0.0000015497208, "special": False, }, { "id": 28767, "text": ">", "logprob": -0.0000011920929, "special": False, }, { "id": 13, "text": "\n", "logprob": -0.00009703636, "special": False, }, {"id": 28737, "text": "I", "logprob": -0.1953125, "special": False}, { "id": 28742, "text": "'", "logprob": -0.88183594, "special": False, }, { "id": 28719, "text": "m", "logprob": -0.00032639503, "special": False, }, ], }, } ] return mock_response def test_hf_test_completion_tgi(): litellm.set_verbose = True try: with patch("requests.post", side_effect=tgi_mock_post) as mock_client: response = completion( model="huggingface/HuggingFaceH4/zephyr-7b-beta", messages=[{"content": "Hello, how are you?", "role": "user"}], max_tokens=10, wait_for_model=True, ) # Add any assertions-here to check the response print(response) assert "options" in mock_client.call_args.kwargs["data"] json_data = json.loads(mock_client.call_args.kwargs["data"]) assert "wait_for_model" in json_data["options"] assert json_data["options"]["wait_for_model"] is True except litellm.ServiceUnavailableError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # hf_test_completion_tgi() @pytest.mark.parametrize( "provider", ["openai", "hosted_vllm", "lm_studio"] ) # "vertex_ai", @pytest.mark.asyncio async def test_openai_compatible_custom_api_base(provider): litellm.set_verbose = True messages = [ { "role": "user", "content": "Hello world", } ] from openai import OpenAI openai_client = OpenAI(api_key="fake-key") with patch.object( openai_client.chat.completions, "create", new=MagicMock() ) as mock_call: try: completion( model="{provider}/my-vllm-model".format(provider=provider), messages=messages, response_format={"type": "json_object"}, client=openai_client, api_base="my-custom-api-base", hello="world", ) except Exception as e: print(e) mock_call.assert_called_once() print("Call KWARGS - {}".format(mock_call.call_args.kwargs)) assert "hello" in mock_call.call_args.kwargs["extra_body"] @pytest.mark.asyncio async def test_litellm_gateway_from_sdk(): litellm.set_verbose = True messages = [ { "role": "user", "content": "Hello world", } ] from openai import OpenAI openai_client = OpenAI(api_key="fake-key") with patch.object( openai_client.chat.completions, "create", new=MagicMock() ) as mock_call: try: completion( model="litellm_proxy/my-vllm-model", messages=messages, response_format={"type": "json_object"}, client=openai_client, api_base="my-custom-api-base", hello="world", ) except Exception as e: print(e) mock_call.assert_called_once() print("Call KWARGS - {}".format(mock_call.call_args.kwargs)) assert "hello" in mock_call.call_args.kwargs["extra_body"] # ################### Hugging Face Conversational models ######################## # def hf_test_completion_conv(): # try: # response = litellm.completion( # model="huggingface/facebook/blenderbot-3B", # messages=[{ "content": "Hello, how are you?","role": "user"}], # ) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # hf_test_completion_conv() # ################### Hugging Face Neither TGI or Conversational models ######################## # # Neither TGI or Conversational task # def hf_test_completion_none_task(): # try: # user_message = "My name is Merve and my favorite" # messages = [{ "content": user_message,"role": "user"}] # response = completion( # model="huggingface/roneneldan/TinyStories-3M", # messages=messages, # api_base="https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud", # ) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # hf_test_completion_none_task() def mock_post(url, **kwargs): print(f"url={url}") if "text-classification" in url: raise Exception("Model not found") mock_response = MagicMock() mock_response.status_code = 200 mock_response.headers = {"Content-Type": "application/json"} mock_response.json.return_value = [ [ {"label": "LABEL_0", "score": 0.9990691542625427}, {"label": "LABEL_1", "score": 0.0009308889275416732}, ] ] return mock_response def test_hf_classifier_task(): try: with patch("requests.post", side_effect=mock_post): litellm.set_verbose = True user_message = "I like you. I love you" messages = [{"content": user_message, "role": "user"}] response = completion( model="huggingface/text-classification/shahrukhx01/question-vs-statement-classifier", messages=messages, ) print(f"response: {response}") assert isinstance(response, litellm.ModelResponse) assert isinstance(response.choices[0], litellm.Choices) assert response.choices[0].message.content is not None assert isinstance(response.choices[0].message.content, str) except Exception as e: pytest.fail(f"Error occurred: {str(e)}") def test_ollama_image(): """ Test that datauri prefixes are removed, JPEG/PNG images are passed through, and other image formats are converted to JPEG. Non-image data is untouched. """ import base64 import io from PIL import Image def mock_post(url, **kwargs): mock_response = MagicMock() mock_response.status_code = 200 mock_response.headers = {"Content-Type": "application/json"} mock_response.json.return_value = { # return the image in the response so that it can be tested # against the original "response": kwargs["json"]["images"] } return mock_response def make_b64image(format): image = Image.new(mode="RGB", size=(1, 1)) image_buffer = io.BytesIO() image.save(image_buffer, format) return base64.b64encode(image_buffer.getvalue()).decode("utf-8") jpeg_image = make_b64image("JPEG") webp_image = make_b64image("WEBP") png_image = make_b64image("PNG") base64_data = base64.b64encode(b"some random data") datauri_base64_data = f"data:text/plain;base64,{base64_data}" tests = [ # input expected [jpeg_image, jpeg_image], [webp_image, None], [png_image, png_image], [f"data:image/jpeg;base64,{jpeg_image}", jpeg_image], [f"data:image/webp;base64,{webp_image}", None], [f"data:image/png;base64,{png_image}", png_image], [datauri_base64_data, datauri_base64_data], ] for test in tests: try: with patch("requests.post", side_effect=mock_post): response = completion( model="ollama/llava", messages=[ { "role": "user", "content": [ {"type": "text", "text": "Whats in this image?"}, { "type": "image_url", "image_url": {"url": test[0]}, }, ], } ], ) if not test[1]: # the conversion process may not always generate the same image, # so just check for a JPEG image when a conversion was done. image_data = response["choices"][0]["message"]["content"][0] image = Image.open(io.BytesIO(base64.b64decode(image_data))) assert image.format == "JPEG" else: assert response["choices"][0]["message"]["content"][0] == test[1] except Exception as e: pytest.fail(f"Error occurred: {e}") ########################### End of Hugging Face Tests ############################################## # def test_completion_hf_api(): # # failing on circle-ci commenting out # try: # user_message = "write some code to find the sum of two numbers" # messages = [{ "content": user_message,"role": "user"}] # api_base = "https://a8l9e3ucxinyl3oj.us-east-1.aws.endpoints.huggingface.cloud" # response = completion(model="huggingface/meta-llama/Llama-2-7b-chat-hf", messages=messages, api_base=api_base) # # Add any assertions here to check the response # print(response) # except Exception as e: # if "loading" in str(e): # pass # pytest.fail(f"Error occurred: {e}") # test_completion_hf_api() # def test_completion_hf_api_best_of(): # # failing on circle ci commenting out # try: # user_message = "write some code to find the sum of two numbers" # messages = [{ "content": user_message,"role": "user"}] # api_base = "https://a8l9e3ucxinyl3oj.us-east-1.aws.endpoints.huggingface.cloud" # response = completion(model="huggingface/meta-llama/Llama-2-7b-chat-hf", messages=messages, api_base=api_base, n=2) # # Add any assertions here to check the response # print(response) # except Exception as e: # if "loading" in str(e): # pass # pytest.fail(f"Error occurred: {e}") # test_completion_hf_api_best_of() # def test_completion_hf_deployed_api(): # try: # user_message = "There's a llama in my garden 😱 What should I do?" # messages = [{ "content": user_message,"role": "user"}] # response = completion(model="huggingface/https://ji16r2iys9a8rjk2.us-east-1.aws.endpoints.huggingface.cloud", messages=messages, logger_fn=logger_fn) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # this should throw an exception, to trigger https://logs.litellm.ai/ # def hf_test_error_logs(): # try: # litellm.set_verbose=True # user_message = "My name is Merve and my favorite" # messages = [{ "content": user_message,"role": "user"}] # response = completion( # model="huggingface/roneneldan/TinyStories-3M", # messages=messages, # api_base="https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud", # ) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # hf_test_error_logs() # def test_completion_cohere(): # commenting out,for now as the cohere endpoint is being flaky # try: # litellm.CohereConfig(max_tokens=10, stop_sequences=["a"]) # response = completion( # model="command-nightly", messages=messages, logger_fn=logger_fn # ) # # Add any assertions here to check the response # print(response) # response_str = response["choices"][0]["message"]["content"] # response_str_2 = response.choices[0].message.content # if type(response_str) != str: # pytest.fail(f"Error occurred: {e}") # if type(response_str_2) != str: # pytest.fail(f"Error occurred: {e}") # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_cohere() def test_completion_openai(): try: litellm.set_verbose = True litellm.drop_params = True print(f"api key: {os.environ['OPENAI_API_KEY']}") litellm.api_key = os.environ["OPENAI_API_KEY"] response = completion( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey"}], max_tokens=10, metadata={"hi": "bye"}, ) print("This is the response object\n", response) response_str = response["choices"][0]["message"]["content"] response_str_2 = response.choices[0].message.content cost = completion_cost(completion_response=response) print("Cost for completion call with gpt-3.5-turbo: ", f"${float(cost):.10f}") assert response_str == response_str_2 assert type(response_str) == str assert len(response_str) > 1 litellm.api_key = None except Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize( "model, api_version", [ ("gpt-4o-2024-08-06", None), ("azure/chatgpt-v-2", None), ("bedrock/anthropic.claude-3-sonnet-20240229-v1:0", None), ("azure/gpt-4o", "2024-08-01-preview"), ], ) @pytest.mark.flaky(retries=3, delay=1) def test_completion_openai_pydantic(model, api_version): try: litellm.set_verbose = True from pydantic import BaseModel messages = [ {"role": "user", "content": "List 5 important events in the XIX century"} ] class CalendarEvent(BaseModel): name: str date: str participants: list[str] class EventsList(BaseModel): events: list[CalendarEvent] litellm.enable_json_schema_validation = True for _ in range(3): try: response = completion( model=model, messages=messages, metadata={"hi": "bye"}, response_format=EventsList, api_version=api_version, ) break except litellm.JSONSchemaValidationError: pytest.fail("ERROR OCCURRED! INVALID JSON") print("This is the response object\n", response) response_str = response["choices"][0]["message"]["content"] print(f"response_str: {response_str}") json.loads(response_str) # check valid json is returned except Timeout: pass except Exception as e: pytest.fail(f"Error occurred: {e}") def test_completion_openai_organization(): try: litellm.set_verbose = True try: response = completion( model="gpt-3.5-turbo", messages=messages, organization="org-ikDc4ex8NB" ) pytest.fail("Request should have failed - This organization does not exist") except Exception as e: assert "No such organization: org-ikDc4ex8NB" in str(e) except Exception as e: print(e) pytest.fail(f"Error occurred: {e}") def test_completion_text_openai(): try: # litellm.set_verbose =True response = completion(model="gpt-3.5-turbo-instruct", messages=messages) print(response["choices"][0]["message"]["content"]) except Exception as e: print(e) pytest.fail(f"Error occurred: {e}") @pytest.mark.asyncio async def test_completion_text_openai_async(): try: # litellm.set_verbose =True response = await litellm.acompletion( model="gpt-3.5-turbo-instruct", messages=messages ) print(response["choices"][0]["message"]["content"]) except Exception as e: print(e) pytest.fail(f"Error occurred: {e}") def custom_callback( kwargs, # kwargs to completion completion_response, # response from completion start_time, end_time, # start/end time ): # Your custom code here try: print("LITELLM: in custom callback function") print("\nkwargs\n", kwargs) model = kwargs["model"] messages = kwargs["messages"] user = kwargs.get("user") ################################################# print( f""" Model: {model}, Messages: {messages}, User: {user}, Seed: {kwargs["seed"]}, temperature: {kwargs["temperature"]}, """ ) assert kwargs["user"] == "ishaans app" assert kwargs["model"] == "gpt-3.5-turbo-1106" assert kwargs["seed"] == 12 assert kwargs["temperature"] == 0.5 except Exception as e: pytest.fail(f"Error occurred: {e}") def test_completion_openai_with_optional_params(): # [Proxy PROD TEST] WARNING: DO NOT DELETE THIS TEST # assert that `user` gets passed to the completion call # Note: This tests that we actually send the optional params to the completion call # We use custom callbacks to test this try: litellm.set_verbose = True litellm.success_callback = [custom_callback] response = completion( model="gpt-3.5-turbo-1106", messages=[ {"role": "user", "content": "respond in valid, json - what is the day"} ], temperature=0.5, top_p=0.1, seed=12, response_format={"type": "json_object"}, logit_bias=None, user="ishaans app", ) # Add any assertions here to check the response print(response) litellm.success_callback = [] # unset callbacks except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_openai_with_optional_params() def test_completion_logprobs(): """ This function is used to test the litellm.completion logprobs functionality. Parameters: None Returns: None """ try: litellm.set_verbose = True response = completion( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "what is the time"}], temperature=0.5, top_p=0.1, seed=12, logit_bias=None, user="ishaans app", logprobs=True, top_logprobs=3, ) # Add any assertions here to check the response print(response) print(len(response.choices[0].logprobs["content"][0]["top_logprobs"])) assert "logprobs" in response.choices[0] assert "content" in response.choices[0]["logprobs"] assert len(response.choices[0].logprobs["content"][0]["top_logprobs"]) == 3 except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_logprobs() def test_completion_logprobs_stream(): """ This function is used to test the litellm.completion logprobs functionality. Parameters: None Returns: None """ try: litellm.set_verbose = False response = completion( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "what is the time"}], temperature=0.5, top_p=0.1, seed=12, max_tokens=5, logit_bias=None, user="ishaans app", logprobs=True, top_logprobs=3, stream=True, ) # Add any assertions here to check the response print(response) found_logprob = False for chunk in response: # check if atleast one chunk has log probs print(chunk) print(f"chunk.choices[0]: {chunk.choices[0]}") if "logprobs" in chunk.choices[0]: # assert we got a valid logprob in the choices assert len(chunk.choices[0].logprobs.content[0].top_logprobs) == 3 found_logprob = True break print(chunk) assert found_logprob == True except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_logprobs_stream() def test_completion_openai_litellm_key(): try: litellm.set_verbose = True litellm.num_retries = 0 litellm.api_key = os.environ["OPENAI_API_KEY"] # ensure key is set to None in .env and in openai.api_key os.environ["OPENAI_API_KEY"] = "" import openai openai.api_key = "" ########################################################## response = completion( model="gpt-3.5-turbo", messages=messages, temperature=0.5, top_p=0.1, max_tokens=10, user="ishaan_dev@berri.ai", ) # Add any assertions here to check the response print(response) ###### reset environ key os.environ["OPENAI_API_KEY"] = litellm.api_key ##### unset litellm var litellm.api_key = None except Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_ completion_openai_litellm_key() @pytest.mark.skip(reason="Unresponsive endpoint.[TODO] Rehost this somewhere else") def test_completion_ollama_hosted(): try: litellm.request_timeout = 20 # give ollama 20 seconds to response litellm.set_verbose = True response = completion( model="ollama/phi", messages=messages, max_tokens=2, api_base="https://test-ollama-endpoint.onrender.com", ) # Add any assertions here to check the response print(response) except openai.APITimeoutError as e: print("got a timeout error. Passed ! ") litellm.request_timeout = None pass except Exception as e: if "try pulling it first" in str(e): return pytest.fail(f"Error occurred: {e}") # test_completion_ollama_hosted() @pytest.mark.skip(reason="Local test") @pytest.mark.parametrize( ("model"), [ "ollama/llama2", "ollama_chat/llama2", ], ) def test_completion_ollama_function_call(model): messages = [ {"role": "user", "content": "What's the weather like in San Francisco?"} ] tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] try: litellm.set_verbose = True response = litellm.completion(model=model, messages=messages, tools=tools) print(response) assert response.choices[0].message.tool_calls assert ( response.choices[0].message.tool_calls[0].function.name == "get_current_weather" ) assert response.choices[0].finish_reason == "tool_calls" except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="Local test") @pytest.mark.parametrize( ("model"), [ "ollama/llama2", "ollama_chat/llama2", ], ) def test_completion_ollama_function_call_stream(model): messages = [ {"role": "user", "content": "What's the weather like in San Francisco?"} ] tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] try: litellm.set_verbose = True response = litellm.completion( model=model, messages=messages, tools=tools, stream=True ) print(response) first_chunk = next(response) assert first_chunk.choices[0].delta.tool_calls assert ( first_chunk.choices[0].delta.tool_calls[0].function.name == "get_current_weather" ) assert first_chunk.choices[0].finish_reason == "tool_calls" except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="local test") @pytest.mark.parametrize( ("model"), [ "ollama/llama2", "ollama_chat/llama2", ], ) @pytest.mark.asyncio async def test_acompletion_ollama_function_call(model): messages = [ {"role": "user", "content": "What's the weather like in San Francisco?"} ] tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] try: litellm.set_verbose = True response = await litellm.acompletion( model=model, messages=messages, tools=tools ) print(response) assert response.choices[0].message.tool_calls assert ( response.choices[0].message.tool_calls[0].function.name == "get_current_weather" ) assert response.choices[0].finish_reason == "tool_calls" except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="local test") @pytest.mark.parametrize( ("model"), [ "ollama/llama2", "ollama_chat/llama2", ], ) @pytest.mark.asyncio async def test_acompletion_ollama_function_call_stream(model): messages = [ {"role": "user", "content": "What's the weather like in San Francisco?"} ] tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] try: litellm.set_verbose = True response = await litellm.acompletion( model=model, messages=messages, tools=tools, stream=True ) print(response) first_chunk = await anext(response) assert first_chunk.choices[0].delta.tool_calls assert ( first_chunk.choices[0].delta.tool_calls[0].function.name == "get_current_weather" ) assert first_chunk.choices[0].finish_reason == "tool_calls" except Exception as e: pytest.fail(f"Error occurred: {e}") def test_completion_openrouter1(): try: litellm.set_verbose = True response = completion( model="openrouter/mistralai/mistral-tiny", messages=messages, max_tokens=5, ) # Add any assertions here to check the response print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_openrouter1() def test_completion_hf_model_no_provider(): try: response = completion( model="WizardLM/WizardLM-70B-V1.0", messages=messages, max_tokens=5, ) # Add any assertions here to check the response print(response) pytest.fail(f"Error occurred: {e}") except Exception as e: pass # test_completion_hf_model_no_provider() def gemini_mock_post(*args, **kwargs): mock_response = MagicMock() mock_response.status_code = 200 mock_response.headers = {"Content-Type": "application/json"} mock_response.json = MagicMock( return_value={ "candidates": [ { "content": { "parts": [ { "functionCall": { "name": "get_current_weather", "args": {"location": "Boston, MA"}, } } ], "role": "model", }, "finishReason": "STOP", "index": 0, "safetyRatings": [ { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "probability": "NEGLIGIBLE", }, { "category": "HARM_CATEGORY_HARASSMENT", "probability": "NEGLIGIBLE", }, { "category": "HARM_CATEGORY_HATE_SPEECH", "probability": "NEGLIGIBLE", }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "probability": "NEGLIGIBLE", }, ], } ], "usageMetadata": { "promptTokenCount": 86, "candidatesTokenCount": 19, "totalTokenCount": 105, }, } ) return mock_response @pytest.mark.asyncio async def test_completion_functions_param(): litellm.set_verbose = True function1 = [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, } ] try: from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler messages = [{"role": "user", "content": "What is the weather like in Boston?"}] client = AsyncHTTPHandler(concurrent_limit=1) with patch.object(client, "post", side_effect=gemini_mock_post) as mock_client: response: litellm.ModelResponse = await litellm.acompletion( model="gemini/gemini-1.5-pro", messages=messages, functions=function1, client=client, ) print(response) # Add any assertions here to check the response mock_client.assert_called() print(f"mock_client.call_args.kwargs: {mock_client.call_args.kwargs}") assert "tools" in mock_client.call_args.kwargs["json"] assert ( "litellm_param_is_function_call" not in mock_client.call_args.kwargs["json"] ) assert ( "litellm_param_is_function_call" not in mock_client.call_args.kwargs["json"]["generationConfig"] ) assert response.choices[0].message.function_call is not None except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_anyscale_with_functions() def test_completion_azure_extra_headers(): # this tests if we can pass api_key to completion, when it's not in the env. # DO NOT REMOVE THIS TEST. No MATTER WHAT Happens! # If you want to remove it, speak to Ishaan! # Ishaan will be very disappointed if this test is removed -> this is a standard way to pass api_key + the router + proxy use this from httpx import Client from openai import AzureOpenAI from litellm.llms.custom_httpx.httpx_handler import HTTPHandler http_client = Client() with patch.object(http_client, "send", new=MagicMock()) as mock_client: litellm.client_session = http_client try: response = completion( model="azure/chatgpt-v-2", messages=messages, api_base=os.getenv("AZURE_API_BASE"), api_version="2023-07-01-preview", api_key=os.getenv("AZURE_API_KEY"), extra_headers={ "Authorization": "my-bad-key", "Ocp-Apim-Subscription-Key": "hello-world-testing", }, ) print(response) pytest.fail("Expected this to fail") except Exception as e: pass mock_client.assert_called() print(f"mock_client.call_args: {mock_client.call_args}") request = mock_client.call_args[0][0] print(request.method) # This will print 'POST' print(request.url) # This will print the full URL print(request.headers) # This will print the full URL auth_header = request.headers.get("Authorization") apim_key = request.headers.get("Ocp-Apim-Subscription-Key") print(auth_header) assert auth_header == "my-bad-key" assert apim_key == "hello-world-testing" def test_completion_azure_ad_token(): # this tests if we can pass api_key to completion, when it's not in the env. # DO NOT REMOVE THIS TEST. No MATTER WHAT Happens! # If you want to remove it, speak to Ishaan! # Ishaan will be very disappointed if this test is removed -> this is a standard way to pass api_key + the router + proxy use this from httpx import Client from litellm import completion litellm.set_verbose = True old_key = os.environ["AZURE_API_KEY"] os.environ.pop("AZURE_API_KEY", None) http_client = Client() with patch.object(http_client, "send", new=MagicMock()) as mock_client: litellm.client_session = http_client try: response = completion( model="azure/chatgpt-v-2", messages=messages, azure_ad_token="my-special-token", ) print(response) except Exception as e: pass finally: os.environ["AZURE_API_KEY"] = old_key mock_client.assert_called_once() request = mock_client.call_args[0][0] print(request.method) # This will print 'POST' print(request.url) # This will print the full URL print(request.headers) # This will print the full URL auth_header = request.headers.get("Authorization") assert auth_header == "Bearer my-special-token" def test_completion_azure_key_completion_arg(): # this tests if we can pass api_key to completion, when it's not in the env. # DO NOT REMOVE THIS TEST. No MATTER WHAT Happens! # If you want to remove it, speak to Ishaan! # Ishaan will be very disappointed if this test is removed -> this is a standard way to pass api_key + the router + proxy use this old_key = os.environ["AZURE_API_KEY"] os.environ.pop("AZURE_API_KEY", None) try: print("azure gpt-3.5 test\n\n") litellm.set_verbose = True ## Test azure call response = completion( model="azure/chatgpt-v-2", messages=messages, api_key=old_key, logprobs=True, max_tokens=10, ) print(f"response: {response}") print("Hidden Params", response._hidden_params) assert response._hidden_params["custom_llm_provider"] == "azure" os.environ["AZURE_API_KEY"] = old_key except Exception as e: os.environ["AZURE_API_KEY"] = old_key pytest.fail(f"Error occurred: {e}") # test_completion_azure_key_completion_arg() def test_azure_instruct(): litellm.set_verbose = True response = completion( model="azure_text/instruct-model", messages=[{"role": "user", "content": "What is the weather like in Boston?"}], max_tokens=10, ) print("response", response) @pytest.mark.asyncio async def test_azure_instruct_stream(): litellm.set_verbose = False response = await litellm.acompletion( model="azure_text/instruct-model", messages=[{"role": "user", "content": "What is the weather like in Boston?"}], max_tokens=10, stream=True, ) print("response", response) async for chunk in response: print(chunk) async def test_re_use_azure_async_client(): try: print("azure gpt-3.5 ASYNC with clie nttest\n\n") litellm.set_verbose = True import openai client = openai.AsyncAzureOpenAI( azure_endpoint=os.environ["AZURE_API_BASE"], api_key=os.environ["AZURE_API_KEY"], api_version="2023-07-01-preview", ) ## Test azure call for _ in range(3): response = await litellm.acompletion( model="azure/chatgpt-v-2", messages=messages, client=client ) print(f"response: {response}") except Exception as e: pytest.fail("got Exception", e) def test_re_use_openaiClient(): try: print("gpt-3.5 with client test\n\n") litellm.set_verbose = True import openai client = openai.OpenAI( api_key=os.environ["OPENAI_API_KEY"], ) ## Test OpenAI call for _ in range(2): response = litellm.completion( model="gpt-3.5-turbo", messages=messages, client=client ) print(f"response: {response}") except Exception as e: pytest.fail("got Exception", e) def test_completion_azure(): try: print("azure gpt-3.5 test\n\n") litellm.set_verbose = False ## Test azure call response = completion( model="azure/chatgpt-v-2", messages=messages, api_key="os.environ/AZURE_API_KEY", ) print(f"response: {response}") print(f"response hidden params: {response._hidden_params}") ## Test azure flag for backwards-compat # response = completion( # model="chatgpt-v-2", # messages=messages, # azure=True, # max_tokens=10 # ) # Add any assertions here to check the response print(response) cost = completion_cost(completion_response=response) assert cost > 0.0 print("Cost for azure completion request", cost) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_azure() def test_azure_openai_ad_token(): # this tests if the azure ad token is set in the request header # the request can fail since azure ad tokens expire after 30 mins, but the header MUST have the azure ad token # we use litellm.input_callbacks for this test def tester( kwargs, # kwargs to completion ): print(kwargs["additional_args"]) if kwargs["additional_args"]["headers"]["Authorization"] != "Bearer gm": pytest.fail("AZURE AD TOKEN Passed but not set in request header") return litellm.input_callback = [tester] try: response = litellm.completion( model="azure/chatgpt-v-2", # e.g. gpt-35-instant messages=[ { "role": "user", "content": "what is your name", }, ], azure_ad_token="gm", ) print("azure ad token respoonse\n") print(response) litellm.input_callback = [] except Exception as e: litellm.input_callback = [] pytest.fail(f"An exception occurs - {str(e)}") # test_azure_openai_ad_token() # test_completion_azure() def test_completion_azure2(): # test if we can pass api_base, api_version and api_key in compleition() try: print("azure gpt-3.5 test\n\n") litellm.set_verbose = False api_base = os.environ["AZURE_API_BASE"] api_key = os.environ["AZURE_API_KEY"] api_version = os.environ["AZURE_API_VERSION"] os.environ["AZURE_API_BASE"] = "" os.environ["AZURE_API_VERSION"] = "" os.environ["AZURE_API_KEY"] = "" ## Test azure call response = completion( model="azure/chatgpt-v-2", messages=messages, api_base=api_base, api_key=api_key, api_version=api_version, max_tokens=10, ) # Add any assertions here to check the response print(response) os.environ["AZURE_API_BASE"] = api_base os.environ["AZURE_API_VERSION"] = api_version os.environ["AZURE_API_KEY"] = api_key except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_azure2() def test_completion_azure3(): # test if we can pass api_base, api_version and api_key in compleition() try: print("azure gpt-3.5 test\n\n") litellm.set_verbose = True litellm.api_base = os.environ["AZURE_API_BASE"] litellm.api_key = os.environ["AZURE_API_KEY"] litellm.api_version = os.environ["AZURE_API_VERSION"] os.environ["AZURE_API_BASE"] = "" os.environ["AZURE_API_VERSION"] = "" os.environ["AZURE_API_KEY"] = "" ## Test azure call response = completion( model="azure/chatgpt-v-2", messages=messages, max_tokens=10, ) # Add any assertions here to check the response print(response) os.environ["AZURE_API_BASE"] = litellm.api_base os.environ["AZURE_API_VERSION"] = litellm.api_version os.environ["AZURE_API_KEY"] = litellm.api_key except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_azure3() # new azure test for using litellm. vars, # use the following vars in this test and make an azure_api_call # litellm.api_type = self.azure_api_type # litellm.api_base = self.azure_api_base # litellm.api_version = self.azure_api_version # litellm.api_key = self.api_key def test_completion_azure_with_litellm_key(): try: print("azure gpt-3.5 test\n\n") import openai #### set litellm vars litellm.api_type = "azure" litellm.api_base = os.environ["AZURE_API_BASE"] litellm.api_version = os.environ["AZURE_API_VERSION"] litellm.api_key = os.environ["AZURE_API_KEY"] ######### UNSET ENV VARs for this ################ os.environ["AZURE_API_BASE"] = "" os.environ["AZURE_API_VERSION"] = "" os.environ["AZURE_API_KEY"] = "" ######### UNSET OpenAI vars for this ############## openai.api_type = "" openai.api_base = "gm" openai.api_version = "333" openai.api_key = "ymca" response = completion( model="azure/chatgpt-v-2", messages=messages, ) # Add any assertions here to check the response print(response) ######### RESET ENV VARs for this ################ os.environ["AZURE_API_BASE"] = litellm.api_base os.environ["AZURE_API_VERSION"] = litellm.api_version os.environ["AZURE_API_KEY"] = litellm.api_key ######### UNSET litellm vars litellm.api_type = None litellm.api_base = None litellm.api_version = None litellm.api_key = None except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_azure() def test_completion_azure_deployment_id(): try: litellm.set_verbose = True response = completion( deployment_id="chatgpt-v-2", model="gpt-3.5-turbo", messages=messages, ) # Add any assertions here to check the response print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_azure_deployment_id() import asyncio @pytest.mark.parametrize("sync_mode", [False, True]) @pytest.mark.asyncio async def test_completion_replicate_llama3(sync_mode): litellm.set_verbose = True model_name = "replicate/meta/meta-llama-3-8b-instruct" try: if sync_mode: response = completion( model=model_name, messages=messages, ) else: response = await litellm.acompletion( model=model_name, messages=messages, ) print(f"ASYNC REPLICATE RESPONSE - {response}") print(response) # Add any assertions here to check the response assert isinstance(response, litellm.ModelResponse) response_format_tests(response=response) except litellm.APIError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="replicate endpoints take +2 mins just for this request") def test_completion_replicate_vicuna(): print("TESTING REPLICATE") litellm.set_verbose = True model_name = "replicate/meta/llama-2-7b-chat:f1d50bb24186c52daae319ca8366e53debdaa9e0ae7ff976e918df752732ccc4" try: response = completion( model=model_name, messages=messages, temperature=0.5, top_k=20, repetition_penalty=1, min_tokens=1, seed=-1, max_tokens=2, ) print(response) # Add any assertions here to check the response response_str = response["choices"][0]["message"]["content"] print("RESPONSE STRING\n", response_str) if type(response_str) != str: pytest.fail(f"Error occurred: {e}") except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_replicate_vicuna() def test_replicate_custom_prompt_dict(): litellm.set_verbose = True model_name = "replicate/meta/llama-2-7b" litellm.register_prompt_template( model="replicate/meta/llama-2-7b", initial_prompt_value="You are a good assistant", # [OPTIONAL] roles={ "system": { "pre_message": "[INST] <>\n", # [OPTIONAL] "post_message": "\n<>\n [/INST]\n", # [OPTIONAL] }, "user": { "pre_message": "[INST] ", # [OPTIONAL] "post_message": " [/INST]", # [OPTIONAL] }, "assistant": { "pre_message": "\n", # [OPTIONAL] "post_message": "\n", # [OPTIONAL] }, }, final_prompt_value="Now answer as best you can:", # [OPTIONAL] ) try: response = completion( model=model_name, messages=[ { "role": "user", "content": "what is yc write 1 paragraph", } ], mock_response="Hello world", repetition_penalty=0.1, num_retries=3, ) except litellm.APIError as e: pass except litellm.APIConnectionError as e: pass except Exception as e: pytest.fail(f"An exception occurred - {str(e)}") print(f"response: {response}") litellm.custom_prompt_dict = {} # reset # test_replicate_custom_prompt_dict() # commenthing this out since we won't be always testing a custom, replicate deployment # def test_completion_replicate_deployments(): # print("TESTING REPLICATE") # litellm.set_verbose=False # model_name = "replicate/deployments/ishaan-jaff/ishaan-mistral" # try: # response = completion( # model=model_name, # messages=messages, # temperature=0.5, # seed=-1, # ) # print(response) # # Add any assertions here to check the response # response_str = response["choices"][0]["message"]["content"] # print("RESPONSE STRING\n", response_str) # if type(response_str) != str: # pytest.fail(f"Error occurred: {e}") # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_replicate_deployments() ######## Test TogetherAI ######## @pytest.mark.skip(reason="Skip flaky test") def test_completion_together_ai_mixtral(): model_name = "together_ai/DiscoResearch/DiscoLM-mixtral-8x7b-v2" try: messages = [ {"role": "user", "content": "Who are you"}, {"role": "assistant", "content": "I am your helpful assistant."}, {"role": "user", "content": "Tell me a joke"}, ] response = completion( model=model_name, messages=messages, max_tokens=256, n=1, logger_fn=logger_fn, ) # Add any assertions here to check the response print(response) cost = completion_cost(completion_response=response) assert cost > 0.0 print( "Cost for completion call together-computer/llama-2-70b: ", f"${float(cost):.10f}", ) except litellm.Timeout as e: pass except litellm.ServiceUnavailableError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_together_ai_mixtral() def test_completion_together_ai_llama(): litellm.set_verbose = True model_name = "together_ai/meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" try: messages = [ {"role": "user", "content": "What llm are you?"}, ] response = completion(model=model_name, messages=messages, max_tokens=5) # Add any assertions here to check the response print(response) cost = completion_cost(completion_response=response) assert cost > 0.0 print( "Cost for completion call together-computer/llama-2-70b: ", f"${float(cost):.10f}", ) except litellm.Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_together_ai_yi_chat() # test_completion_together_ai() def test_customprompt_together_ai(): try: litellm.set_verbose = False litellm.num_retries = 0 print("in test_customprompt_together_ai") print(litellm.success_callback) print(litellm._async_success_callback) response = completion( model="together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1", messages=messages, roles={ "system": { "pre_message": "<|im_start|>system\n", "post_message": "<|im_end|>", }, "assistant": { "pre_message": "<|im_start|>assistant\n", "post_message": "<|im_end|>", }, "user": { "pre_message": "<|im_start|>user\n", "post_message": "<|im_end|>", }, }, ) print(response) except litellm.exceptions.Timeout as e: print(f"Timeout Error") pass except Exception as e: print(f"ERROR TYPE {type(e)}") pytest.fail(f"Error occurred: {e}") # test_customprompt_together_ai() def response_format_tests(response: litellm.ModelResponse): assert isinstance(response.id, str) assert response.id != "" assert isinstance(response.object, str) assert response.object != "" assert isinstance(response.created, int) assert isinstance(response.model, str) assert response.model != "" assert isinstance(response.choices, list) assert len(response.choices) == 1 choice = response.choices[0] assert isinstance(choice, litellm.Choices) assert isinstance(choice.get("index"), int) message = choice.get("message") assert isinstance(message, litellm.Message) assert isinstance(message.get("role"), str) assert message.get("role") != "" assert isinstance(message.get("content"), str) assert message.get("content") != "" assert choice.get("logprobs") is None assert isinstance(choice.get("finish_reason"), str) assert choice.get("finish_reason") != "" assert isinstance(response.usage, litellm.Usage) # type: ignore assert isinstance(response.usage.prompt_tokens, int) # type: ignore assert isinstance(response.usage.completion_tokens, int) # type: ignore assert isinstance(response.usage.total_tokens, int) # type: ignore @pytest.mark.parametrize( "model", [ "bedrock/mistral.mistral-large-2407-v1:0", "bedrock/cohere.command-r-plus-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0", "anthropic.claude-instant-v1", "mistral.mistral-7b-instruct-v0:2", # "bedrock/amazon.titan-tg1-large", "meta.llama3-8b-instruct-v1:0", ], ) @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_completion_bedrock_httpx_models(sync_mode, model): litellm.set_verbose = True try: if sync_mode: response = completion( model=model, messages=[{"role": "user", "content": "Hey! how's it going?"}], temperature=0.2, max_tokens=200, stop=["stop sequence"], ) assert isinstance(response, litellm.ModelResponse) response_format_tests(response=response) else: response = await litellm.acompletion( model=model, messages=[{"role": "user", "content": "Hey! how's it going?"}], temperature=0.2, max_tokens=100, stop=["stop sequence"], ) assert isinstance(response, litellm.ModelResponse) print(f"response: {response}") response_format_tests(response=response) print(f"response: {response}") except litellm.RateLimitError as e: print("got rate limit error=", e) pass except Exception as e: pytest.fail(f"An error occurred - {str(e)}") def test_completion_bedrock_titan_null_response(): try: response = completion( model="bedrock/amazon.titan-text-lite-v1", messages=[ { "role": "user", "content": "Hello!", }, { "role": "assistant", "content": "Hello! How can I help you?", }, { "role": "user", "content": "What model are you?", }, ], ) # Add any assertions here to check the response print(f"response: {response}") except Exception as e: pytest.fail(f"An error occurred - {str(e)}") # test_completion_bedrock_titan() # test_completion_bedrock_claude() # test_completion_bedrock_cohere() # def test_completion_bedrock_claude_stream(): # print("calling claude") # litellm.set_verbose = False # try: # response = completion( # model="bedrock/anthropic.claude-instant-v1", # messages=messages, # stream=True # ) # # Add any assertions here to check the response # print(response) # for chunk in response: # print(chunk) # except RateLimitError: # pass # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_bedrock_claude_stream() ######## Test VLLM ######## # def test_completion_vllm(): # try: # response = completion( # model="vllm/facebook/opt-125m", # messages=messages, # temperature=0.2, # max_tokens=80, # ) # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_vllm() # def test_completion_hosted_chatCompletion(): # # this tests calling a server where vllm is hosted # # this should make an openai.Completion() call to the specified api_base # # send a request to this proxy server: https://replit.com/@BerriAI/openai-proxy#main.py # # it checks if model == facebook/opt-125m and returns test passed # try: # litellm.set_verbose = True # response = completion( # model="facebook/opt-125m", # messages=messages, # temperature=0.2, # max_tokens=80, # api_base="https://openai-proxy.berriai.repl.co", # custom_llm_provider="openai" # ) # print(response) # if response['choices'][0]['message']['content'] != "passed": # # see https://replit.com/@BerriAI/openai-proxy#main.py # pytest.fail(f"Error occurred: proxy server did not respond") # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_hosted_chatCompletion() # def test_completion_custom_api_base(): # try: # response = completion( # model="custom/meta-llama/Llama-2-13b-hf", # messages=messages, # temperature=0.2, # max_tokens=10, # api_base="https://api.autoai.dev/inference", # request_timeout=300, # ) # # Add any assertions here to check the response # print("got response\n", response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_completion_custom_api_base() def test_completion_with_fallbacks(): print(f"RUNNING TEST COMPLETION WITH FALLBACKS - test_completion_with_fallbacks") fallbacks = ["gpt-3.5-turbo", "gpt-3.5-turbo", "command-nightly"] try: response = completion( model="bad-model", messages=messages, force_timeout=120, fallbacks=fallbacks ) # Add any assertions here to check the response print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_with_fallbacks() # @pytest.mark.parametrize( # "function_call", # [ # [{"role": "function", "name": "get_capital", "content": "Kokoko"}], # [ # {"role": "function", "name": "get_capital", "content": "Kokoko"}, # {"role": "function", "name": "get_capital", "content": "Kokoko"}, # ], # ], # ) # @pytest.mark.parametrize( # "tool_call", # [ # [{"role": "tool", "tool_call_id": "1234", "content": "Kokoko"}], # [ # {"role": "tool", "tool_call_id": "12344", "content": "Kokoko"}, # {"role": "tool", "tool_call_id": "1214", "content": "Kokoko"}, # ], # ], # ) def test_completion_anthropic_hanging(): litellm.set_verbose = True litellm.modify_params = True messages = [ { "role": "user", "content": "What's the capital of fictional country Ubabababababaaba? Use your tools.", }, { "role": "assistant", "function_call": { "name": "get_capital", "arguments": '{"country": "Ubabababababaaba"}', }, }, {"role": "function", "name": "get_capital", "content": "Kokoko"}, ] converted_messages = anthropic_messages_pt( messages, model="claude-3-sonnet-20240229", llm_provider="anthropic" ) print(f"converted_messages: {converted_messages}") ## ENSURE USER / ASSISTANT ALTERNATING for i, msg in enumerate(converted_messages): if i < len(converted_messages) - 1: assert msg["role"] != converted_messages[i + 1]["role"] @pytest.mark.skip(reason="anyscale stopped serving public api endpoints") def test_completion_anyscale_api(): try: # litellm.set_verbose = True messages = [ {"role": "system", "content": "You're a good bot"}, { "role": "user", "content": "Hey", }, { "role": "user", "content": "Hey", }, ] response = completion( model="anyscale/meta-llama/Llama-2-7b-chat-hf", messages=messages, ) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_anyscale_api() # @pytest.mark.skip(reason="flaky test, times out frequently") @pytest.mark.flaky(retries=6, delay=1) def test_completion_cohere(): try: # litellm.set_verbose=True messages = [ {"role": "system", "content": "You're a good bot"}, {"role": "assistant", "content": [{"text": "2", "type": "text"}]}, {"role": "assistant", "content": [{"text": "3", "type": "text"}]}, { "role": "user", "content": "Hey", }, ] response = completion( model="command-r", messages=messages, extra_headers={"Helicone-Property-Locale": "ko"}, ) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") # FYI - cohere_chat looks quite unstable, even when testing locally def test_chat_completion_cohere(): try: litellm.set_verbose = True messages = [ {"role": "system", "content": "You're a good bot"}, { "role": "user", "content": "Hey", }, ] response = completion( model="cohere_chat/command-r", messages=messages, max_tokens=10, ) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") def test_chat_completion_cohere_stream(): try: litellm.set_verbose = False messages = [ {"role": "system", "content": "You're a good bot"}, { "role": "user", "content": "Hey", }, ] response = completion( model="cohere_chat/command-r", messages=messages, max_tokens=10, stream=True, ) print(response) for chunk in response: print(chunk) except litellm.APIConnectionError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") def test_azure_cloudflare_api(): litellm.set_verbose = True try: messages = [ { "role": "user", "content": "How do I output all files in a directory using Python?", }, ] response = completion( model="azure/gpt-turbo", messages=messages, base_url=os.getenv("CLOUDFLARE_AZURE_BASE_URL"), api_key=os.getenv("AZURE_FRANCE_API_KEY"), ) print(f"response: {response}") except Exception as e: pytest.fail(f"Error occurred: {e}") traceback.print_exc() pass # test_azure_cloudflare_api() @pytest.mark.skip(reason="anyscale stopped serving public api endpoints") def test_completion_anyscale_2(): try: # litellm.set_verbose = True messages = [ {"role": "system", "content": "You're a good bot"}, { "role": "user", "content": "Hey", }, { "role": "user", "content": "Hey", }, ] response = completion( model="anyscale/meta-llama/Llama-2-7b-chat-hf", messages=messages ) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="anyscale stopped serving public api endpoints") def test_mistral_anyscale_stream(): litellm.set_verbose = False response = completion( model="anyscale/mistralai/Mistral-7B-Instruct-v0.1", messages=[{"content": "hello, good morning", "role": "user"}], stream=True, ) for chunk in response: # print(chunk) print(chunk["choices"][0]["delta"].get("content", ""), end="") # test_completion_anyscale_2() # def test_completion_with_fallbacks_multiple_keys(): # print(f"backup key 1: {os.getenv('BACKUP_OPENAI_API_KEY_1')}") # print(f"backup key 2: {os.getenv('BACKUP_OPENAI_API_KEY_2')}") # backup_keys = [{"api_key": os.getenv("BACKUP_OPENAI_API_KEY_1")}, {"api_key": os.getenv("BACKUP_OPENAI_API_KEY_2")}] # try: # api_key = "bad-key" # response = completion( # model="gpt-3.5-turbo", messages=messages, force_timeout=120, fallbacks=backup_keys, api_key=api_key # ) # # Add any assertions here to check the response # print(response) # except Exception as e: # error_str = traceback.format_exc() # pytest.fail(f"Error occurred: {error_str}") # test_completion_with_fallbacks_multiple_keys() # def test_petals(): # try: # response = completion(model="petals-team/StableBeluga2", messages=messages) # # Add any assertions here to check the response # print(response) # response = completion(model="petals-team/StableBeluga2", messages=messages) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # def test_baseten(): # try: # response = completion(model="baseten/7qQNLDB", messages=messages, logger_fn=logger_fn) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_baseten() # def test_baseten_falcon_7bcompletion(): # model_name = "qvv0xeq" # try: # response = completion(model=model_name, messages=messages, custom_llm_provider="baseten") # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # def test_baseten_falcon_7bcompletion_withbase(): # model_name = "qvv0xeq" # litellm.api_base = "https://app.baseten.co" # try: # response = completion(model=model_name, messages=messages) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # litellm.api_base = None # test_baseten_falcon_7bcompletion_withbase() # def test_baseten_wizardLMcompletion_withbase(): # model_name = "q841o8w" # litellm.api_base = "https://app.baseten.co" # try: # response = completion(model=model_name, messages=messages) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_baseten_wizardLMcompletion_withbase() # def test_baseten_mosaic_ML_completion_withbase(): # model_name = "31dxrj3", # litellm.api_base = "https://app.baseten.co" # try: # response = completion(model=model_name, messages=messages) # # Add any assertions here to check the response # print(response) # except Exception as e: # pytest.fail(f"Error occurred: {e}") #### Test A121 ################### @pytest.mark.skip(reason="Local test") def test_completion_ai21(): print("running ai21 j2light test") litellm.set_verbose = True model_name = "j2-light" try: response = completion( model=model_name, messages=messages, max_tokens=100, temperature=0.8 ) # Add any assertions here to check the response print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_ai21() # test_completion_ai21() ## test deep infra @pytest.mark.parametrize("drop_params", [True, False]) def test_completion_deep_infra(drop_params): litellm.set_verbose = False model_name = "deepinfra/meta-llama/Llama-2-70b-chat-hf" tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] messages = [ { "role": "user", "content": "What's the weather like in Boston today in Fahrenheit?", } ] try: response = completion( model=model_name, messages=messages, temperature=0, max_tokens=10, tools=tools, tool_choice={ "type": "function", "function": {"name": "get_current_weather"}, }, drop_params=drop_params, ) # Add any assertions here to check the response print(response) except Exception as e: if drop_params is True: pytest.fail(f"Error occurred: {e}") # test_completion_deep_infra() def test_completion_deep_infra_mistral(): print("deep infra test with temp=0") model_name = "deepinfra/mistralai/Mistral-7B-Instruct-v0.1" try: response = completion( model=model_name, messages=messages, temperature=0.01, # mistrail fails with temperature=0 max_tokens=10, ) # Add any assertions here to check the response print(response) except litellm.exceptions.Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_deep_infra_mistral() @pytest.mark.skip(reason="Local test - don't have a volcengine account as yet") def test_completion_volcengine(): litellm.set_verbose = True model_name = "volcengine/" try: response = completion( model=model_name, messages=[ { "role": "user", "content": "What's the weather like in Boston today in Fahrenheit?", } ], api_key="", ) # Add any assertions here to check the response print(response) except litellm.exceptions.Timeout as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # Gemini tests @pytest.mark.parametrize( "model", [ # "gemini-1.0-pro", "gemini-1.5-pro", # "gemini-1.5-flash", ], ) @pytest.mark.flaky(retries=3, delay=1) def test_completion_gemini(model): litellm.set_verbose = True model_name = "gemini/{}".format(model) messages = [ {"role": "system", "content": "Be a good bot!"}, {"role": "user", "content": "Hey, how's it going?"}, ] try: response = completion( model=model_name, messages=messages, safety_settings=[ { "category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE", }, { "category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE", }, { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE", }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE", }, ], ) # Add any assertions,here to check the response print(response) assert response.choices[0]["index"] == 0 except litellm.RateLimitError: pass except litellm.APIError: pass except Exception as e: if "InternalServerError" in str(e): pass else: pytest.fail(f"Error occurred:{e}") # test_completion_gemini() @pytest.mark.asyncio async def test_acompletion_gemini(): litellm.set_verbose = True model_name = "gemini/gemini-pro" messages = [{"role": "user", "content": "Hey, how's it going?"}] try: response = await litellm.acompletion(model=model_name, messages=messages) # Add any assertions here to check the response print(f"response: {response}") except litellm.Timeout as e: pass except litellm.APIError as e: pass except Exception as e: if "InternalServerError" in str(e): pass else: pytest.fail(f"Error occurred: {e}") # Deepseek tests def test_completion_deepseek(): litellm.set_verbose = True model_name = "deepseek/deepseek-chat" tools = [ { "type": "function", "function": { "name": "get_weather", "description": "Get weather of an location, the user shoud supply a location first", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", } }, "required": ["location"], }, }, }, ] messages = [{"role": "user", "content": "How's the weather in Hangzhou?"}] try: response = completion(model=model_name, messages=messages, tools=tools) # Add any assertions here to check the response print(response) except litellm.APIError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="Account deleted by IBM.") def test_completion_watsonx(): litellm.set_verbose = True model_name = "watsonx/ibm/granite-13b-chat-v2" try: response = completion( model=model_name, messages=messages, stop=["stop"], max_tokens=20, ) # Add any assertions here to check the response print(response) except litellm.APIError as e: pass except litellm.RateLimitError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="Skip test. account deleted.") def test_completion_stream_watsonx(): litellm.set_verbose = True model_name = "watsonx/ibm/granite-13b-chat-v2" try: response = completion( model=model_name, messages=messages, stop=["stop"], max_tokens=20, stream=True, ) for chunk in response: print(chunk) except litellm.APIError as e: pass except litellm.RateLimitError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.parametrize( "provider, model, project, region_name, token", [ ("azure", "chatgpt-v-2", None, None, "test-token"), ("vertex_ai", "anthropic-claude-3", "adroit-crow-1", "us-east1", None), ("watsonx", "ibm/granite", "96946574", "dallas", "1234"), ("bedrock", "anthropic.claude-3", None, "us-east-1", None), ], ) def test_unified_auth_params(provider, model, project, region_name, token): """ Check if params = ["project", "region_name", "token"] are correctly translated for = ["azure", "vertex_ai", "watsonx", "aws"] tests get_optional_params """ data = { "project": project, "region_name": region_name, "token": token, "custom_llm_provider": provider, "model": model, } translated_optional_params = litellm.utils.get_optional_params(**data) if provider == "azure": special_auth_params = ( litellm.AzureOpenAIConfig().get_mapped_special_auth_params() ) elif provider == "bedrock": special_auth_params = ( litellm.AmazonBedrockGlobalConfig().get_mapped_special_auth_params() ) elif provider == "vertex_ai": special_auth_params = litellm.VertexAIConfig().get_mapped_special_auth_params() elif provider == "watsonx": special_auth_params = ( litellm.IBMWatsonXAIConfig().get_mapped_special_auth_params() ) for param, value in special_auth_params.items(): assert param in data assert value in translated_optional_params @pytest.mark.skip(reason="Local test") @pytest.mark.asyncio async def test_acompletion_watsonx(): litellm.set_verbose = True model_name = "watsonx/ibm/granite-13b-chat-v2" print("testing watsonx") try: response = await litellm.acompletion( model=model_name, messages=messages, temperature=0.2, max_tokens=80, ) # Add any assertions here to check the response print(response) except litellm.RateLimitError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") @pytest.mark.skip(reason="Local test") @pytest.mark.asyncio async def test_acompletion_stream_watsonx(): litellm.set_verbose = True model_name = "watsonx/ibm/granite-13b-chat-v2" print("testing watsonx") try: response = await litellm.acompletion( model=model_name, messages=messages, temperature=0.2, max_tokens=80, stream=True, ) # Add any assertions here to check the response async for chunk in response: print(chunk) except litellm.RateLimitError as e: pass except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_palm_stream() # test_completion_deep_infra() # test_completion_ai21() # test config file with completion # # def test_completion_openai_config(): # try: # litellm.config_path = "../config.json" # litellm.set_verbose = True # response = litellm.config_completion(messages=messages) # # Add any assertions here to check the response # print(response) # litellm.config_path = None # except Exception as e: # pytest.fail(f"Error occurred: {e}") # def test_maritalk(): # messages = [{"role": "user", "content": "Hey"}] # try: # response = completion("maritalk", messages=messages) # print(f"response: {response}") # except Exception as e: # pytest.fail(f"Error occurred: {e}") # test_maritalk() def test_completion_together_ai_stream(): litellm.set_verbose = True user_message = "Write 1pg about YC & litellm" messages = [{"content": user_message, "role": "user"}] try: response = completion( model="together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1", messages=messages, stream=True, max_tokens=5, ) print(response) for chunk in response: print(chunk) # print(string_response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_together_ai_stream() # Cloud flare AI tests @pytest.mark.skip(reason="Flaky test-cloudflare is very unstable") def test_completion_cloudflare(): try: litellm.set_verbose = True response = completion( model="cloudflare/@cf/meta/llama-2-7b-chat-int8", messages=[{"content": "what llm are you", "role": "user"}], max_tokens=15, num_retries=3, ) print(response) except Exception as e: pytest.fail(f"Error occurred: {e}") # test_completion_cloudflare() def test_moderation(): response = litellm.moderation(input="i'm ishaan cto of litellm") print(response) output = response.results[0] print(output) return output @pytest.mark.parametrize("stream", [False, True]) @pytest.mark.parametrize("sync_mode", [False, True]) @pytest.mark.asyncio async def test_dynamic_azure_params(stream, sync_mode): """ If dynamic params are given, which are different from the initialized client, use a new client """ from openai import AsyncAzureOpenAI, AzureOpenAI if sync_mode: client = AzureOpenAI( api_key="my-test-key", base_url="my-test-base", api_version="my-test-version", ) mock_client = MagicMock(return_value="Hello world!") else: client = AsyncAzureOpenAI( api_key="my-test-key", base_url="my-test-base", api_version="my-test-version", ) mock_client = AsyncMock(return_value="Hello world!") ## CHECK IF CLIENT IS USED (NO PARAM CHANGE) with patch.object( client.chat.completions.with_raw_response, "create", new=mock_client ) as mock_client: try: # client.chat.completions.with_raw_response.create = mock_client if sync_mode: _ = completion( model="azure/chatgpt-v2", messages=[{"role": "user", "content": "Hello world"}], client=client, stream=stream, ) else: _ = await litellm.acompletion( model="azure/chatgpt-v2", messages=[{"role": "user", "content": "Hello world"}], client=client, stream=stream, ) except Exception: pass mock_client.assert_called() ## recreate mock client if sync_mode: mock_client = MagicMock(return_value="Hello world!") else: mock_client = AsyncMock(return_value="Hello world!") ## CHECK IF NEW CLIENT IS USED (PARAM CHANGE) with patch.object( client.chat.completions.with_raw_response, "create", new=mock_client ) as mock_client: try: if sync_mode: _ = completion( model="azure/chatgpt-v2", messages=[{"role": "user", "content": "Hello world"}], client=client, api_version="my-new-version", stream=stream, ) else: _ = await litellm.acompletion( model="azure/chatgpt-v2", messages=[{"role": "user", "content": "Hello world"}], client=client, api_version="my-new-version", stream=stream, ) except Exception: pass try: mock_client.assert_not_called() except Exception as e: raise e @pytest.mark.asyncio() @pytest.mark.flaky(retries=3, delay=1) async def test_completion_ai21_chat(): litellm.set_verbose = True response = await litellm.acompletion( model="jamba-1.5-large", user="ishaan", tool_choice="auto", seed=123, messages=[{"role": "user", "content": "what does the document say"}], documents=[ { "content": "hello world", "metadata": {"source": "google", "author": "ishaan"}, } ], ) @pytest.mark.parametrize( "model", ["gpt-4o", "azure/chatgpt-v-2", "claude-3-sonnet-20240229"], ) @pytest.mark.parametrize( "stream", [False, True], ) @pytest.mark.flaky(retries=3, delay=1) def test_completion_response_ratelimit_headers(model, stream): response = completion( model=model, messages=[{"role": "user", "content": "Hello world"}], stream=stream, ) hidden_params = response._hidden_params additional_headers = hidden_params.get("additional_headers", {}) print(additional_headers) for k, v in additional_headers.items(): assert v != "None" and v is not None assert "x-ratelimit-remaining-requests" in additional_headers assert "x-ratelimit-remaining-tokens" in additional_headers if model == "azure/chatgpt-v-2": # Azure OpenAI header assert "llm_provider-azureml-model-session" in additional_headers if model == "claude-3-sonnet-20240229": # anthropic header assert "llm_provider-anthropic-ratelimit-requests-reset" in additional_headers def _openai_hallucinated_tool_call_mock_response( *args, **kwargs ) -> litellm.ModelResponse: new_response = MagicMock() new_response.headers = {"hello": "world"} response_object = { "id": "chatcmpl-123", "object": "chat.completion", "created": 1677652288, "model": "gpt-3.5-turbo-0125", "system_fingerprint": "fp_44709d6fcb", "choices": [ { "index": 0, "message": { "content": None, "role": "assistant", "tool_calls": [ { "function": { "arguments": '{"tool_uses":[{"recipient_name":"product_title","parameters":{"content":"Story Scribe"}},{"recipient_name":"one_liner","parameters":{"content":"Transform interview transcripts into actionable user stories"}}]}', "name": "multi_tool_use.parallel", }, "id": "call_IzGXwVa5OfBd9XcCJOkt2q0s", "type": "function", } ], }, "logprobs": None, "finish_reason": "stop", } ], "usage": {"prompt_tokens": 9, "completion_tokens": 12, "total_tokens": 21}, } from openai import OpenAI from openai.types.chat.chat_completion import ChatCompletion pydantic_obj = ChatCompletion(**response_object) # type: ignore pydantic_obj.choices[0].message.role = None # type: ignore new_response.parse.return_value = pydantic_obj return new_response def test_openai_hallucinated_tool_call(): """ Patch for this issue: https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653 Handle openai invalid tool calling response. OpenAI assistant will sometimes return an invalid tool calling response, which needs to be parsed - "arguments": "{\"tool_uses\":[{\"recipient_name\":\"product_title\",\"parameters\":{\"content\":\"Story Scribe\"}},{\"recipient_name\":\"one_liner\",\"parameters\":{\"content\":\"Transform interview transcripts into actionable user stories\"}}]}", To extract actual tool calls: 1. Parse arguments JSON object 2. Iterate over tool_uses array to call functions: - get function name from recipient_name value - parameters will be JSON object for function arguments """ import openai openai_client = openai.OpenAI() with patch.object( openai_client.chat.completions, "create", side_effect=_openai_hallucinated_tool_call_mock_response, ) as mock_response: response = litellm.completion( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey! how's it going?"}], client=openai_client, ) print(f"response: {response}") response_dict = response.model_dump() tool_calls = response_dict["choices"][0]["message"]["tool_calls"] print(f"tool_calls: {tool_calls}") for idx, tc in enumerate(tool_calls): if idx == 0: print(f"tc in test_openai_hallucinated_tool_call: {tc}") assert tc == { "function": { "arguments": '{"content": "Story Scribe"}', "name": "product_title", }, "id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_0", "type": "function", } elif idx == 1: assert tc == { "function": { "arguments": '{"content": "Transform interview transcripts into actionable user stories"}', "name": "one_liner", }, "id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_1", "type": "function", } @pytest.mark.parametrize( "function_name, expect_modification", [ ("multi_tool_use.parallel", True), ("my-fake-function", False), ], ) def test_openai_hallucinated_tool_call_util(function_name, expect_modification): """ Patch for this issue: https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653 Handle openai invalid tool calling response. OpenAI assistant will sometimes return an invalid tool calling response, which needs to be parsed - "arguments": "{\"tool_uses\":[{\"recipient_name\":\"product_title\",\"parameters\":{\"content\":\"Story Scribe\"}},{\"recipient_name\":\"one_liner\",\"parameters\":{\"content\":\"Transform interview transcripts into actionable user stories\"}}]}", To extract actual tool calls: 1. Parse arguments JSON object 2. Iterate over tool_uses array to call functions: - get function name from recipient_name value - parameters will be JSON object for function arguments """ from litellm.utils import _handle_invalid_parallel_tool_calls from litellm.types.utils import ChatCompletionMessageToolCall response = _handle_invalid_parallel_tool_calls( tool_calls=[ ChatCompletionMessageToolCall( **{ "function": { "arguments": '{"tool_uses":[{"recipient_name":"product_title","parameters":{"content":"Story Scribe"}},{"recipient_name":"one_liner","parameters":{"content":"Transform interview transcripts into actionable user stories"}}]}', "name": function_name, }, "id": "call_IzGXwVa5OfBd9XcCJOkt2q0s", "type": "function", } ) ] ) print(f"response: {response}") if expect_modification: for idx, tc in enumerate(response): if idx == 0: assert tc.model_dump() == { "function": { "arguments": '{"content": "Story Scribe"}', "name": "product_title", }, "id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_0", "type": "function", } elif idx == 1: assert tc.model_dump() == { "function": { "arguments": '{"content": "Transform interview transcripts into actionable user stories"}', "name": "one_liner", }, "id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_1", "type": "function", } else: assert len(response) == 1 assert response[0].function.name == function_name