{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Defaulting to user installation because normal site-packages is not writeable\n", "Requirement already satisfied: litellm==0.1.723 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (0.1.723)\n", "Requirement already satisfied: importlib-metadata<7.0.0,>=6.8.0 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from litellm==0.1.723) (6.8.0)\n", "Requirement already satisfied: openai<0.29.0,>=0.27.0 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from litellm==0.1.723) (0.28.0)\n", "Requirement already satisfied: python-dotenv>=0.2.0 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from litellm==0.1.723) (1.0.0)\n", "Requirement already satisfied: tiktoken<0.5.0,>=0.4.0 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from litellm==0.1.723) (0.4.0)\n", "Requirement already satisfied: zipp>=0.5 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from importlib-metadata<7.0.0,>=6.8.0->litellm==0.1.723) (3.15.0)\n", "Requirement already satisfied: requests>=2.20 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from openai<0.29.0,>=0.27.0->litellm==0.1.723) (2.28.2)\n", "Requirement already satisfied: tqdm in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from openai<0.29.0,>=0.27.0->litellm==0.1.723) (4.65.0)\n", "Requirement already satisfied: aiohttp in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from openai<0.29.0,>=0.27.0->litellm==0.1.723) (3.8.4)\n", "Requirement already satisfied: regex>=2022.1.18 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from tiktoken<0.5.0,>=0.4.0->litellm==0.1.723) (2023.6.3)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from requests>=2.20->openai<0.29.0,>=0.27.0->litellm==0.1.723) (3.1.0)\n", "Requirement already satisfied: idna<4,>=2.5 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from requests>=2.20->openai<0.29.0,>=0.27.0->litellm==0.1.723) (3.4)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from requests>=2.20->openai<0.29.0,>=0.27.0->litellm==0.1.723) (1.26.6)\n", "Requirement already satisfied: certifi>=2017.4.17 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from requests>=2.20->openai<0.29.0,>=0.27.0->litellm==0.1.723) (2023.5.7)\n", "Requirement already satisfied: attrs>=17.3.0 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from aiohttp->openai<0.29.0,>=0.27.0->litellm==0.1.723) (23.1.0)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from aiohttp->openai<0.29.0,>=0.27.0->litellm==0.1.723) (6.0.4)\n", "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from aiohttp->openai<0.29.0,>=0.27.0->litellm==0.1.723) (4.0.2)\n", "Requirement already satisfied: yarl<2.0,>=1.0 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from aiohttp->openai<0.29.0,>=0.27.0->litellm==0.1.723) (1.9.2)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from aiohttp->openai<0.29.0,>=0.27.0->litellm==0.1.723) (1.3.3)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (from aiohttp->openai<0.29.0,>=0.27.0->litellm==0.1.723) (1.3.1)\n", "Defaulting to user installation because normal site-packages is not writeable\n", "Requirement already satisfied: async_generator in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (1.10)\n" ] } ], "source": [ "!pip install litellm==0.1.723\n", "!pip install async_generator" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Call Ollama - llama2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "{'role': 'assistant', 'content': ' I'}\n", "{'role': 'assistant', 'content': ' am'}\n", "{'role': 'assistant', 'content': ' L'}\n", "{'role': 'assistant', 'content': 'La'}\n", "{'role': 'assistant', 'content': 'MA'}\n", "{'role': 'assistant', 'content': ','}\n", "{'role': 'assistant', 'content': ' an'}\n", "{'role': 'assistant', 'content': ' A'}\n", "{'role': 'assistant', 'content': 'I'}\n", "{'role': 'assistant', 'content': ' assistant'}\n", "{'role': 'assistant', 'content': ' developed'}\n", "{'role': 'assistant', 'content': ' by'}\n", "{'role': 'assistant', 'content': ' Meta'}\n", "{'role': 'assistant', 'content': ' A'}\n", "{'role': 'assistant', 'content': 'I'}\n", "{'role': 'assistant', 'content': ' that'}\n", "{'role': 'assistant', 'content': ' can'}\n", "{'role': 'assistant', 'content': ' understand'}\n", "{'role': 'assistant', 'content': ' and'}\n", "{'role': 'assistant', 'content': ' respond'}\n", "{'role': 'assistant', 'content': ' to'}\n", "{'role': 'assistant', 'content': ' human'}\n", "{'role': 'assistant', 'content': ' input'}\n", "{'role': 'assistant', 'content': ' in'}\n", "{'role': 'assistant', 'content': ' a'}\n", "{'role': 'assistant', 'content': ' convers'}\n", "{'role': 'assistant', 'content': 'ational'}\n", "{'role': 'assistant', 'content': ' manner'}\n", "{'role': 'assistant', 'content': '.'}\n" ] } ], "source": [ "from litellm import completion\n", "\n", "response = completion(\n", " model=\"ollama/llama2\", \n", " messages=[{ \"content\": \"respond in 20 words. who are you?\",\"role\": \"user\"}], \n", " api_base=\"http://localhost:11434\", \n", " stream=True\n", ")\n", "print(response)\n", "for chunk in response:\n", " print(chunk['choices'][0]['delta'])\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Call Ollama - Llama2 with Acompletion + Streaming" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'choices': [{'delta': {'role': 'assistant', 'content': ' I'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' am'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' text'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': 'based'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' A'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': 'I'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' language'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' model'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' I'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' don'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': 't'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' access'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' real'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': 'time'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' weather'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' information'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': 'ℝ'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' However'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' I'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' can'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' tell'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' current'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' weather'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' conditions'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' specific'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' location'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' provide'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' me'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' city'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' or'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' zip'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' code'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' Alternatively'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' can'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' check'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' weather'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' any'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' location'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' world'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' by'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' using'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' search'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' engine'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' or'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' visit'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' weather'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': ' website'}}]}\n", "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", "None\n" ] }, { "ename": "TypeError", "evalue": "'async for' requires an object with __aiter__ method, got NoneType", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[4], line 15\u001b[0m\n\u001b[1;32m 13\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mawait\u001b[39;00m async_ollama()\n\u001b[1;32m 14\u001b[0m \u001b[39mprint\u001b[39m(result)\n\u001b[0;32m---> 15\u001b[0m \u001b[39masync\u001b[39;00m \u001b[39mfor\u001b[39;00m chunk \u001b[39min\u001b[39;00m result:\n\u001b[1;32m 16\u001b[0m \u001b[39mprint\u001b[39m(chunk)\n", "\u001b[0;31mTypeError\u001b[0m: 'async for' requires an object with __aiter__ method, got NoneType" ] } ], "source": [ "import litellm\n", "\n", "async def async_ollama():\n", " response = await litellm.acompletion(\n", " model=\"ollama/llama2\", \n", " messages=[{ \"content\": \"what's the weather\" ,\"role\": \"user\"}], \n", " api_base=\"http://localhost:11434\", \n", " stream=True\n", " )\n", " async for chunk in response:\n", " print(chunk)\n", "\n", "result = await async_ollama()\n", "print(result)\n", "async for chunk in result:\n", " print(chunk)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }