import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# 🐳 Docker, Deploying LiteLLM Proxy
You can find the Dockerfile to build litellm proxy [here](https://github.com/BerriAI/litellm/blob/main/Dockerfile)
## Quick Start
See the latest available ghcr docker image here:
https://github.com/berriai/litellm/pkgs/container/litellm
```shell
docker pull ghcr.io/berriai/litellm:main-latest
```
```shell
docker run ghcr.io/berriai/litellm:main-latest
```
### Run with LiteLLM CLI args
See all supported CLI args [here](https://docs.litellm.ai/docs/proxy/cli):
Here's how you can run the docker image and pass your config to `litellm`
```shell
docker run ghcr.io/berriai/litellm:main-latest --config your_config.yaml
```
Here's how you can run the docker image and start litellm on port 8002 with `num_workers=8`
```shell
docker run ghcr.io/berriai/litellm:main-latest --port 8002 --num_workers 8
```
```shell
# Use the provided base image
FROM ghcr.io/berriai/litellm:main-latest
# Set the working directory to /app
WORKDIR /app
# Copy the configuration file into the container at /app
COPY config.yaml .
# Make sure your entrypoint.sh is executable
RUN chmod +x entrypoint.sh
# Expose the necessary port
EXPOSE 4000/tcp
# Override the CMD instruction with your desired command and arguments
CMD ["--port", "4000", "--config", "config.yaml", "--detailed_debug", "--run_gunicorn"]
```
## Deploy with Database
We maintain a [seperate Dockerfile](https://github.com/BerriAI/litellm/pkgs/container/litellm-database) for reducing build time when running LiteLLM proxy with a connected Postgres Database
```
docker pull docker pull ghcr.io/berriai/litellm-database:main-latest
```
```
docker run --name litellm-proxy \
-e DATABASE_URL=postgresql://:@:/ \
-p 4000:4000 \
ghcr.io/berriai/litellm-database:main-latest
```
Your OpenAI proxy server is now running on `http://0.0.0.0:4000`.
### Step 1. Create deployment.yaml
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: litellm-deployment
spec:
replicas: 1
selector:
matchLabels:
app: litellm
template:
metadata:
labels:
app: litellm
spec:
containers:
- name: litellm-container
image: ghcr.io/berriai/litellm-database:main-latest
env:
- name: DATABASE_URL
value: postgresql://:@:/
```
```bash
kubectl apply -f /path/to/deployment.yaml
```
### Step 2. Create service.yaml
```yaml
apiVersion: v1
kind: Service
metadata:
name: litellm-service
spec:
selector:
app: litellm
ports:
- protocol: TCP
port: 4000
targetPort: 4000
type: NodePort
```
```bash
kubectl apply -f /path/to/service.yaml
```
### Step 3. Start server
```
kubectl port-forward service/litellm-service 4000:4000
```
Your OpenAI proxy server is now running on `http://0.0.0.0:4000`.
### Step 1. Clone the repository
```bash
git clone https://github.com/BerriAI/litellm.git
```
### Step 2. Deploy with Helm
```bash
helm install \
--set masterkey=SuPeRsEcReT \
mydeploy \
deploy/charts/litellm
```
### Step 3. Expose the service to localhost
```bash
kubectl \
port-forward \
service/mydeploy-litellm \
8000:8000
```
Your OpenAI proxy server is now running on `http://127.0.0.1:8000`.
## Setting SSL Certification
Use this, If you need to set ssl certificates for your on prem litellm proxy
Pass `ssl_keyfile_path` (Path to the SSL keyfile) and `ssl_certfile_path` (Path to the SSL certfile) when starting litellm proxy
```shell
docker run ghcr.io/berriai/litellm:main-latest \
--ssl_keyfile_path ssl_test/keyfile.key \
--ssl_certfile_path ssl_test/certfile.crt
```
Provide an ssl certificate when starting litellm proxy server
## Platform-specific Guide
### Deploy on Google Cloud Run
**Click the button** to deploy to Google Cloud Run
[](https://deploy.cloud.run/?git_repo=https://github.com/BerriAI/litellm)
#### Testing your deployed proxy
**Assuming the required keys are set as Environment Variables**
https://litellm-7yjrj3ha2q-uc.a.run.app is our example proxy, substitute it with your deployed cloud run app
```shell
curl https://litellm-7yjrj3ha2q-uc.a.run.app/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"temperature": 0.7
}'
```
### Deploy on Render https://render.com/
### Deploy on Railway https://railway.app
**Step 1: Click the button** to deploy to Railway
[](https://railway.app/template/S7P9sn?referralCode=t3ukrU)
**Step 2:** Set `PORT` = 4000 on Railway Environment Variables
## Extras
### Run with docker compose
**Step 1**
- (Recommended) Use the example file `docker-compose.example.yml` given in the project root. e.g. https://github.com/BerriAI/litellm/blob/main/docker-compose.example.yml
- Rename the file `docker-compose.example.yml` to `docker-compose.yml`.
Here's an example `docker-compose.yml` file
```yaml
version: "3.9"
services:
litellm:
build:
context: .
args:
target: runtime
image: ghcr.io/berriai/litellm:main-latest
ports:
- "8000:8000" # Map the container port to the host, change the host port if necessary
volumes:
- ./litellm-config.yaml:/app/config.yaml # Mount the local configuration file
# You can change the port or number of workers as per your requirements or pass any new supported CLI augument. Make sure the port passed here matches with the container port defined above in `ports` value
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
# ...rest of your docker-compose config if any
```
**Step 2**
Create a `litellm-config.yaml` file with your LiteLLM config relative to your `docker-compose.yml` file.
Check the config doc [here](https://docs.litellm.ai/docs/proxy/configs)
**Step 3**
Run the command `docker-compose up` or `docker compose up` as per your docker installation.
> Use `-d` flag to run the container in detached mode (background) e.g. `docker compose up -d`
Your LiteLLM container should be running now on the defined port e.g. `8000`.
## LiteLLM Proxy Performance
LiteLLM proxy has been load tested to handle 1500 req/s.
### Throughput - 30% Increase
LiteLLM proxy + Load Balancer gives **30% increase** in throughput compared to Raw OpenAI API
### Latency Added - 0.00325 seconds
LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw OpenAI API