import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem'; # Audio Transcription Use this to loadbalance across Azure + OpenAI. ## Quick Start ```python from litellm import transcription import os # set api keys os.environ["OPENAI_API_KEY"] = "" audio_file = open("/path/to/audio.mp3", "rb") response = transcription(model="whisper", file=audio_file) print(f"response: {response}") ``` ## Proxy Usage ### Add model to config ```yaml model_list: - model_name: whisper litellm_params: model: whisper-1 api_key: os.environ/OPENAI_API_KEY model_info: mode: audio_transcription general_settings: master_key: sk-1234 ``` ```yaml model_list: - model_name: whisper litellm_params: model: whisper-1 api_key: os.environ/OPENAI_API_KEY model_info: mode: audio_transcription - model_name: whisper litellm_params: model: azure/azure-whisper api_version: 2024-02-15-preview api_base: os.environ/AZURE_EUROPE_API_BASE api_key: os.environ/AZURE_EUROPE_API_KEY model_info: mode: audio_transcription general_settings: master_key: sk-1234 ``` ### Start proxy ```bash litellm --config /path/to/config.yaml # RUNNING on http://0.0.0.0:8000 ``` ### Test ```bash curl --location 'http://0.0.0.0:8000/v1/audio/transcriptions' \ --header 'Authorization: Bearer sk-1234' \ --form 'file=@"/Users/krrishdholakia/Downloads/gettysburg.wav"' \ --form 'model="whisper"' ``` ```python from openai import OpenAI client = openai.OpenAI( api_key="sk-1234", base_url="http://0.0.0.0:8000" ) audio_file = open("speech.mp3", "rb") transcript = client.audio.transcriptions.create( model="whisper", file=audio_file ) ```