🚅 LiteLLM
Call all LLM APIs using the OpenAI format [Anthropic, Huggingface, Cohere, Azure OpenAI etc.]
LiteLLM manages
- Translating inputs to the provider's completion and embedding endpoints
- Guarantees [consistent output](https://litellm.readthedocs.io/en/latest/output/), text responses will always be available at `['choices'][0]['message']['content']`
- Exception mapping - common exceptions across providers are mapped to the [OpenAI exception types](https://help.openai.com/en/articles/6897213-openai-library-error-types-guidance)
# Usage
```
pip install litellm
```
```python
from litellm import completion
## set ENV variables
os.environ["OPENAI_API_KEY"] = "openai key"
os.environ["COHERE_API_KEY"] = "cohere key"
os.environ["ANTHROPIC_API_KEY"] = "anthropic key"
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)
# cohere call
response = completion(model="command-nightly", messages=messages)
# anthropic
response = completion(model="claude-2", messages=messages)
```
Stable version
```
pip install litellm==0.1.424
```
## Streaming
liteLLM supports streaming the model response back, pass `stream=True` to get a streaming iterator in response.
Streaming is supported for OpenAI, Azure, Anthropic, Huggingface models
```python
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
print(chunk['choices'][0]['delta'])
# claude 2
result = completion('claude-2', messages, stream=True)
for chunk in result:
print(chunk['choices'][0]['delta'])
```
# support / talk with founders
- [Schedule Demo 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)
- [Community Discord 💭](https://discord.gg/wuPM9dRgDw)
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai
# why did we build this
- **Need for simplicity**: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI, Cohere