import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem'; # Fireworks AI https://fireworks.ai/ :::info **We support ALL Fireworks AI models, just set `fireworks_ai/` as a prefix when sending completion requests** ::: ## API Key ```python # env variable os.environ['FIREWORKS_AI_API_KEY'] ``` ## Sample Usage ```python from litellm import completion import os os.environ['FIREWORKS_AI_API_KEY'] = "" response = completion( model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct", messages=[ {"role": "user", "content": "hello from litellm"} ], ) print(response) ``` ## Sample Usage - Streaming ```python from litellm import completion import os os.environ['FIREWORKS_AI_API_KEY'] = "" response = completion( model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct", messages=[ {"role": "user", "content": "hello from litellm"} ], stream=True ) for chunk in response: print(chunk) ``` ## Usage with LiteLLM Proxy ### 1. Set Fireworks AI Models on config.yaml ```yaml model_list: - model_name: fireworks-llama-v3-70b-instruct litellm_params: model: fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct api_key: "os.environ/FIREWORKS_AI_API_KEY" ``` ### 2. Start Proxy ``` litellm --config config.yaml ``` ### 3. Test it ```shell curl --location 'http://0.0.0.0:4000/chat/completions' \ --header 'Content-Type: application/json' \ --data ' { "model": "fireworks-llama-v3-70b-instruct", "messages": [ { "role": "user", "content": "what llm are you" } ] } ' ``` ```python import openai client = openai.OpenAI( api_key="anything", base_url="http://0.0.0.0:4000" ) # request sent to model set on litellm proxy, `litellm --model` response = client.chat.completions.create(model="fireworks-llama-v3-70b-instruct", messages = [ { "role": "user", "content": "this is a test request, write a short poem" } ]) print(response) ``` ```python from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import HumanMessage, SystemMessage chat = ChatOpenAI( openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy model = "fireworks-llama-v3-70b-instruct", temperature=0.1 ) messages = [ SystemMessage( content="You are a helpful assistant that im using to make a test request to." ), HumanMessage( content="test from litellm. tell me why it's amazing in 1 sentence" ), ] response = chat(messages) print(response) ``` ## Supported Models - ALL Fireworks AI Models Supported! :::info We support ALL Fireworks AI models, just set `fireworks_ai/` as a prefix when sending completion requests ::: | Model Name | Function Call | |--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | mixtral-8x7b-instruct | `completion(model="fireworks_ai/mixtral-8x7b-instruct", messages)` | | firefunction-v1 | `completion(model="fireworks_ai/firefunction-v1", messages)` | | llama-v2-70b-chat | `completion(model="fireworks_ai/llama-v2-70b-chat", messages)` |