#### What this tests #### # This tests if prompts are being correctly formatted import os import sys import pytest sys.path.insert(0, os.path.abspath("../..")) from typing import Union # from litellm.llms.prompt_templates.factory import prompt_factory import litellm from litellm import completion from litellm.llms.prompt_templates.factory import ( _bedrock_tools_pt, anthropic_messages_pt, anthropic_pt, claude_2_1_pt, convert_to_anthropic_image_obj, convert_url_to_base64, llama_2_chat_pt, prompt_factory, ) from litellm.llms.prompt_templates.common_utils import ( get_completion_messages, ) from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import ( _gemini_convert_messages_with_history, ) from unittest.mock import AsyncMock, MagicMock, patch def test_llama_3_prompt(): messages = [ {"role": "system", "content": "You are a good bot"}, {"role": "user", "content": "Hey, how's it going?"}, ] received_prompt = prompt_factory( model="meta-llama/Meta-Llama-3-8B-Instruct", messages=messages ) print(f"received_prompt: {received_prompt}") expected_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a good bot<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHey, how's it going?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""" assert received_prompt == expected_prompt def test_codellama_prompt_format(): messages = [ {"role": "system", "content": "You are a good bot"}, {"role": "user", "content": "Hey, how's it going?"}, ] expected_prompt = "[INST] <>\nYou are a good bot\n<>\n [/INST]\n[INST] Hey, how's it going? [/INST]\n" assert llama_2_chat_pt(messages) == expected_prompt def test_claude_2_1_pt_formatting(): # Test case: User only, should add Assistant messages = [{"role": "user", "content": "Hello"}] expected_prompt = "\n\nHuman: Hello\n\nAssistant: " assert claude_2_1_pt(messages) == expected_prompt # Test case: System, User, and Assistant "pre-fill" sequence, # Should return pre-fill messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": 'Please return "Hello World" as a JSON object.'}, {"role": "assistant", "content": "{"}, ] expected_prompt = 'You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {' assert claude_2_1_pt(messages) == expected_prompt # Test case: System, Assistant sequence, should insert blank Human message # before Assistant pre-fill messages = [ {"role": "system", "content": "You are a storyteller."}, {"role": "assistant", "content": "Once upon a time, there "}, ] expected_prompt = ( "You are a storyteller.\n\nHuman: \n\nAssistant: Once upon a time, there " ) assert claude_2_1_pt(messages) == expected_prompt # Test case: System, User sequence messages = [ {"role": "system", "content": "System reboot"}, {"role": "user", "content": "Is everything okay?"}, ] expected_prompt = "System reboot\n\nHuman: Is everything okay?\n\nAssistant: " assert claude_2_1_pt(messages) == expected_prompt def test_anthropic_pt_formatting(): # Test case: User only, should add Assistant messages = [{"role": "user", "content": "Hello"}] expected_prompt = "\n\nHuman: Hello\n\nAssistant: " assert anthropic_pt(messages) == expected_prompt # Test case: System, User, and Assistant "pre-fill" sequence, # Should return pre-fill messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": 'Please return "Hello World" as a JSON object.'}, {"role": "assistant", "content": "{"}, ] expected_prompt = '\n\nHuman: You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {' assert anthropic_pt(messages) == expected_prompt # Test case: System, Assistant sequence, should NOT insert blank Human message # before Assistant pre-fill, because "System" messages are Human # messages wrapped with messages = [ {"role": "system", "content": "You are a storyteller."}, {"role": "assistant", "content": "Once upon a time, there "}, ] expected_prompt = "\n\nHuman: You are a storyteller.\n\nAssistant: Once upon a time, there " assert anthropic_pt(messages) == expected_prompt # Test case: System, User sequence messages = [ {"role": "system", "content": "System reboot"}, {"role": "user", "content": "Is everything okay?"}, ] expected_prompt = "\n\nHuman: System reboot\n\nHuman: Is everything okay?\n\nAssistant: " assert anthropic_pt(messages) == expected_prompt def test_anthropic_messages_pt(): # Test case: No messages (filtered system messages only) litellm.modify_params = True messages = [] expected_messages = [{"role": "user", "content": [{"type": "text", "text": "."}]}] assert ( anthropic_messages_pt( messages, model="claude-3-sonnet-20240229", llm_provider="anthropic" ) == expected_messages ) # Test case: No messages (filtered system messages only) when modify_params is False should raise error litellm.modify_params = False messages = [] with pytest.raises(Exception) as err: anthropic_messages_pt( messages, model="claude-3-sonnet-20240229", llm_provider="anthropic" ) assert "Invalid first message" in str(err.value) def test_anthropic_messages_nested_pt(): from litellm.types.llms.anthropic import ( AnthopicMessagesAssistantMessageParam, AnthropicMessagesUserMessageParam, ) messages = [ {"content": [{"text": "here is a task", "type": "text"}], "role": "user"}, { "content": [{"text": "sure happy to help", "type": "text"}], "role": "assistant", }, { "content": [ { "text": "Here is a screenshot of the current desktop with the " "mouse coordinates (500, 350). Please select an action " "from the provided schema.", "type": "text", } ], "role": "user", }, ] new_messages = anthropic_messages_pt( messages, model="claude-3-sonnet-20240229", llm_provider="anthropic" ) assert isinstance(new_messages[1]["content"][0]["text"], str) # codellama_prompt_format() def test_bedrock_tool_calling_pt(): tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] converted_tools = _bedrock_tools_pt(tools=tools) print(converted_tools) def test_convert_url_to_img(): response_url = convert_url_to_base64( url="https://images.pexels.com/photos/1319515/pexels-photo-1319515.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1" ) assert "image/jpeg" in response_url @pytest.mark.parametrize( "url, expected_media_type", [ ("", "image/jpeg"), ("data:application/pdf;base64,1234", "application/pdf"), (r"data:image\/jpeg;base64,1234", "image/jpeg"), ], ) def test_base64_image_input(url, expected_media_type): response = convert_to_anthropic_image_obj(openai_image_url=url) assert response["media_type"] == expected_media_type def test_anthropic_messages_tool_call(): messages = [ { "role": "user", "content": "Would development of a software platform be under ASC 350-40 or ASC 985?", }, { "role": "assistant", "content": "", "tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656", "tool_calls": [ { "id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656", "function": { "arguments": '{"completed_steps": [], "next_steps": [{"tool_name": "AccountingResearchTool", "description": "Research ASC 350-40 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Research ASC 985 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}], "learnings": [], "potential_issues": ["The distinction between the two standards might not be clear-cut for all types of software development.", "There might be specific circumstances or details about the software platform that could affect which standard applies."], "missing_info": ["Specific details about the type of software platform being developed (e.g., for internal use or for sale).", "Whether the entity developing the software is also the end-user or if it\'s being developed for external customers."], "done": false, "required_formatting": null}', "name": "TaskPlanningTool", }, "type": "function", } ], }, { "role": "function", "content": '{"completed_steps":[],"next_steps":[{"tool_name":"AccountingResearchTool","description":"Research ASC 350-40 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Research ASC 985 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}],"formatting_step":null}', "name": "TaskPlanningTool", "tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656", }, ] translated_messages = anthropic_messages_pt( messages, model="claude-3-sonnet-20240229", llm_provider="anthropic" ) print(translated_messages) assert ( translated_messages[-1]["content"][0]["tool_use_id"] == "bc8cb4b6-88c4-4138-8993-3a9d9cd51656" ) def test_anthropic_cache_controls_pt(): "see anthropic docs for this: https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#continuing-a-multi-turn-conversation" messages = [ # marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache. { "role": "user", "content": [ { "type": "text", "text": "What are the key terms and conditions in this agreement?", "cache_control": {"type": "ephemeral"}, } ], }, { "role": "assistant", "content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo", }, # The final turn is marked with cache-control, for continuing in followups. { "role": "user", "content": [ { "type": "text", "text": "What are the key terms and conditions in this agreement?", "cache_control": {"type": "ephemeral"}, } ], }, { "role": "assistant", "content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo", "cache_control": {"type": "ephemeral"}, }, ] translated_messages = anthropic_messages_pt( messages, model="claude-3-5-sonnet-20240620", llm_provider="anthropic" ) for i, msg in enumerate(translated_messages): if i == 0: assert msg["content"][0]["cache_control"] == {"type": "ephemeral"} elif i == 1: assert "cache_controls" not in msg["content"][0] elif i == 2: assert msg["content"][0]["cache_control"] == {"type": "ephemeral"} elif i == 3: assert msg["content"][0]["cache_control"] == {"type": "ephemeral"} print("translated_messages: ", translated_messages) @pytest.mark.parametrize("provider", ["bedrock", "anthropic"]) def test_bedrock_parallel_tool_calling_pt(provider): """ Make sure parallel tool call blocks are merged correctly - https://github.com/BerriAI/litellm/issues/5277 """ from litellm.llms.prompt_templates.factory import _bedrock_converse_messages_pt from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message messages = [ { "role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses", }, Message( content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:", role="assistant", tool_calls=[ ChatCompletionMessageToolCall( index=1, function=Function( arguments='{"city": "New York"}', name="get_current_weather", ), id="tooluse_XcqEBfm8R-2YVaPhDUHsPQ", type="function", ), ChatCompletionMessageToolCall( index=2, function=Function( arguments='{"city": "London"}', name="get_current_weather", ), id="tooluse_VB9nk7UGRniVzGcaj6xrAQ", type="function", ), ], function_call=None, ), { "tool_call_id": "tooluse_XcqEBfm8R-2YVaPhDUHsPQ", "role": "tool", "name": "get_current_weather", "content": "25 degrees celsius.", }, { "tool_call_id": "tooluse_VB9nk7UGRniVzGcaj6xrAQ", "role": "tool", "name": "get_current_weather", "content": "28 degrees celsius.", }, ] if provider == "bedrock": translated_messages = _bedrock_converse_messages_pt( messages=messages, model="anthropic.claude-3-sonnet-20240229-v1:0", llm_provider="bedrock", ) else: translated_messages = anthropic_messages_pt( messages=messages, model="claude-3-sonnet-20240229-v1:0", llm_provider=provider, ) print(translated_messages) number_of_messages = len(translated_messages) # assert last 2 messages are not the same role assert ( translated_messages[number_of_messages - 1]["role"] != translated_messages[number_of_messages - 2]["role"] ) def test_vertex_only_image_user_message(): base64_image = "/9j/2wCEAAgGBgcGBQ" messages = [ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}, }, ], }, ] response = _gemini_convert_messages_with_history(messages=messages) expected_response = [ { "role": "user", "parts": [ { "inline_data": { "data": "/9j/2wCEAAgGBgcGBQ", "mime_type": "image/jpeg", } }, {"text": " "}, ], } ] assert len(response) == len(expected_response) for idx, content in enumerate(response): assert ( content == expected_response[idx] ), "Invalid gemini input. Got={}, Expected={}".format( content, expected_response[idx] ) def test_convert_url(): convert_url_to_base64("https://picsum.photos/id/237/200/300") def test_azure_tool_call_invoke_helper(): messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is the weather in Copenhagen?"}, {"role": "assistant", "function_call": {"name": "get_weather"}}, ] transformed_messages = litellm.AzureOpenAIConfig.transform_request( model="gpt-4o", messages=messages, optional_params={} ) assert transformed_messages["messages"] == [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is the weather in Copenhagen?"}, { "role": "assistant", "function_call": {"name": "get_weather", "arguments": ""}, }, ] @pytest.mark.parametrize( "messages, expected_messages, user_continue_message, assistant_continue_message", [ ( [ {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Hello! How can I assist you today?"}, {"role": "user", "content": "What is Databricks?"}, {"role": "user", "content": "What is Azure?"}, {"role": "assistant", "content": "I don't know anyything, do you?"}, ], [ {"role": "user", "content": "Hello!"}, { "role": "assistant", "content": "Hello! How can I assist you today?", }, {"role": "user", "content": "What is Databricks?"}, { "role": "assistant", "content": "Please continue.", }, {"role": "user", "content": "What is Azure?"}, { "role": "assistant", "content": "I don't know anyything, do you?", }, { "role": "user", "content": "Please continue.", }, ], None, None, ), ( [ {"role": "user", "content": "Hello!"}, ], [ {"role": "user", "content": "Hello!"}, ], None, None, ), ( [ {"role": "user", "content": "Hello!"}, {"role": "user", "content": "What is Databricks?"}, ], [ {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Please continue."}, {"role": "user", "content": "What is Databricks?"}, ], None, None, ), ( [ {"role": "user", "content": "Hello!"}, {"role": "user", "content": "What is Databricks?"}, {"role": "user", "content": "What is Azure?"}, ], [ {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Please continue."}, {"role": "user", "content": "What is Databricks?"}, { "role": "assistant", "content": "Please continue.", }, {"role": "user", "content": "What is Azure?"}, ], None, None, ), ( [ {"role": "user", "content": "Hello!"}, { "role": "assistant", "content": "Hello! How can I assist you today?", }, {"role": "user", "content": "What is Databricks?"}, {"role": "user", "content": "What is Azure?"}, {"role": "assistant", "content": "I don't know anyything, do you?"}, {"role": "assistant", "content": "I can't repeat sentences."}, ], [ {"role": "user", "content": "Hello!"}, { "role": "assistant", "content": "Hello! How can I assist you today?", }, {"role": "user", "content": "What is Databricks?"}, { "role": "assistant", "content": "Please continue", }, {"role": "user", "content": "What is Azure?"}, { "role": "assistant", "content": "I don't know anyything, do you?", }, { "role": "user", "content": "Ok", }, { "role": "assistant", "content": "I can't repeat sentences.", }, {"role": "user", "content": "Ok"}, ], { "role": "user", "content": "Ok", }, { "role": "assistant", "content": "Please continue", }, ), ], ) def test_ensure_alternating_roles( messages, expected_messages, user_continue_message, assistant_continue_message ): messages = get_completion_messages( messages=messages, assistant_continue_message=assistant_continue_message, user_continue_message=user_continue_message, ensure_alternating_roles=True, ) print(messages) assert messages == expected_messages def test_alternating_roles_e2e(): from litellm.llms.custom_httpx.http_handler import HTTPHandler import json litellm.set_verbose = True http_handler = HTTPHandler() with patch.object(http_handler, "post", new=MagicMock()) as mock_post: response = litellm.completion( **{ "model": "databricks/databricks-meta-llama-3-1-70b-instruct", "messages": [ {"role": "user", "content": "Hello!"}, { "role": "assistant", "content": "Hello! How can I assist you today?", }, {"role": "user", "content": "What is Databricks?"}, {"role": "user", "content": "What is Azure?"}, {"role": "assistant", "content": "I don't know anyything, do you?"}, {"role": "assistant", "content": "I can't repeat sentences."}, ], "user_continue_message": { "role": "user", "content": "Ok", }, "assistant_continue_message": { "role": "assistant", "content": "Please continue", }, "ensure_alternating_roles": True, }, client=http_handler, ) print(f"response: {response}") assert mock_post.call_args.kwargs["data"] == json.dumps( { "model": "databricks-meta-llama-3-1-70b-instruct", "messages": [ {"role": "user", "content": "Hello!"}, { "role": "assistant", "content": "Hello! How can I assist you today?", }, {"role": "user", "content": "What is Databricks?"}, { "role": "assistant", "content": "Please continue", }, {"role": "user", "content": "What is Azure?"}, { "role": "assistant", "content": "I don't know anyything, do you?", }, { "role": "user", "content": "Ok", }, { "role": "assistant", "content": "I can't repeat sentences.", }, { "role": "user", "content": "Ok", }, ], "stream": False, } ) def test_just_system_message(): from litellm.llms.prompt_templates.factory import _bedrock_converse_messages_pt with pytest.raises(litellm.BadRequestError) as e: _bedrock_converse_messages_pt( messages=[], model="anthropic.claude-3-sonnet-20240229-v1:0", llm_provider="bedrock", ) assert "bedrock requires at least one non-system message" in str(e.value)