litellm/tests/otel_tests/test_prometheus.py
Ishaan Jaff 603299e3c8
(feat) prometheus have well defined latency buckets (#6211)
* fix prometheus have well defined latency buckets

* use a well define latency bucket

* use types file for prometheus logging

* add test for LATENCY_BUCKETS
2024-10-14 17:16:01 +05:30

231 lines
9.1 KiB
Python

"""
Unit tests for prometheus metrics
"""
import pytest
import aiohttp
import asyncio
import uuid
import os
import sys
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
async def make_bad_chat_completion_request(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return status, response_text
async def make_good_chat_completion_request(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-openai-endpoint",
"messages": [{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
"tags": ["teamB"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return status, response_text
async def make_chat_completion_request_with_fallback(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
"fallbacks": ["fake-openai-endpoint"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
# make a request with a failed fallback
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
"fallbacks": ["unknown-model"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return
@pytest.mark.asyncio
async def test_proxy_failure_metrics():
"""
- Make 1 bad chat completion call to "fake-azure-endpoint"
- GET /metrics
- assert the failure metric for the requested model is incremented by 1
- Assert the Exception class and status code are correct
"""
async with aiohttp.ClientSession() as session:
# Make a bad chat completion call
status, response_text = await make_bad_chat_completion_request(
session, "sk-1234"
)
# Check if the request failed as expected
assert status == 429, f"Expected status 429, but got {status}"
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
# Check if the failure metric is present and correct
expected_metric = 'litellm_proxy_failed_requests_metric_total{api_key_alias="None",end_user="None",exception_class="RateLimitError",exception_status="429",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None",user="default_user_id"} 1.0'
assert (
expected_metric in metrics
), "Expected failure metric not found in /metrics"
expected_llm_deployment_failure = 'litellm_deployment_failure_responses_total{api_base="https://exampleopenaiendpoint-production.up.railway.app",api_provider="openai",exception_class="RateLimitError",exception_status="429",litellm_model_name="429",model_id="7499d31f98cd518cf54486d5a00deda6894239ce16d13543398dc8abf870b15f",requested_model="fake-azure-endpoint"} 1.0'
assert expected_llm_deployment_failure
assert (
'litellm_proxy_total_requests_metric_total{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None",user="default_user_id"} 1.0'
in metrics
)
assert (
'litellm_deployment_failure_responses_total{api_base="https://exampleopenaiendpoint-production.up.railway.app",api_key_alias="None",api_provider="openai",exception_class="RateLimitError",exception_status="429",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",litellm_model_name="429",model_id="7499d31f98cd518cf54486d5a00deda6894239ce16d13543398dc8abf870b15f",requested_model="fake-azure-endpoint",team="None",team_alias="None"}'
in metrics
)
@pytest.mark.asyncio
async def test_proxy_success_metrics():
"""
Make 1 good /chat/completions call to "openai/gpt-3.5-turbo"
GET /metrics
Assert the success metric is incremented by 1
"""
async with aiohttp.ClientSession() as session:
# Make a good chat completion call
status, response_text = await make_good_chat_completion_request(
session, "sk-1234"
)
# Check if the request succeeded as expected
assert status == 200, f"Expected status 200, but got {status}"
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
# Check if the success metric is present and correct
assert (
'litellm_request_total_latency_metric_bucket{api_key_alias="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",team="None",team_alias="None"}'
in metrics
)
assert (
'litellm_llm_api_latency_metric_bucket{api_key_alias="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",team="None",team_alias="None"}'
in metrics
)
# assert (
# 'litellm_deployment_latency_per_output_token_count{api_base="https://exampleopenaiendpoint-production.up.railway.app/",api_key_alias="None",api_provider="openai",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",litellm_model_name="fake",model_id="team-b-model",team="None",team_alias="None"}'
# in metrics
# )
verify_latency_metrics(metrics)
def verify_latency_metrics(metrics: str):
"""
Assert that LATENCY_BUCKETS distribution is used for
- litellm_request_total_latency_metric_bucket
- litellm_llm_api_latency_metric_bucket
"""
from litellm.types.integrations.prometheus import LATENCY_BUCKETS
import re
metric_names = [
"litellm_request_total_latency_metric_bucket",
"litellm_llm_api_latency_metric_bucket",
]
for metric_name in metric_names:
# Extract all 'le' values for the current metric
pattern = rf'{metric_name}{{.*?le="(.*?)".*?}}'
le_values = re.findall(pattern, metrics)
# Convert to set for easier comparison
actual_buckets = set(le_values)
print("actual_buckets", actual_buckets)
expected_buckets = []
for bucket in LATENCY_BUCKETS:
expected_buckets.append(str(bucket))
# replace inf with +Inf
expected_buckets = [
bucket.replace("inf", "+Inf") for bucket in expected_buckets
]
print("expected_buckets", expected_buckets)
expected_buckets = set(expected_buckets)
# Verify all expected buckets are present
assert (
actual_buckets == expected_buckets
), f"Mismatch in {metric_name} buckets. Expected: {expected_buckets}, Got: {actual_buckets}"
@pytest.mark.asyncio
async def test_proxy_fallback_metrics():
"""
Make 1 request with a client side fallback - check metrics
"""
async with aiohttp.ClientSession() as session:
# Make a good chat completion call
await make_chat_completion_request_with_fallback(session, "sk-1234")
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
# Check if successful fallback metric is incremented
assert (
'litellm_deployment_successful_fallbacks_total{api_key_alias="None",exception_class="RateLimitError",exception_status="429",fallback_model="fake-openai-endpoint",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0'
in metrics
)
# Check if failed fallback metric is incremented
assert (
'litellm_deployment_failed_fallbacks_total{api_key_alias="None",exception_class="RateLimitError",exception_status="429",fallback_model="unknown-model",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0'
in metrics
)