forked from phoenix/litellm-mirror
* fix(factory.py): ensure tool call converts image url Fixes https://github.com/BerriAI/litellm/issues/6953 * fix(transformation.py): support mp4 + pdf url's for vertex ai Fixes https://github.com/BerriAI/litellm/issues/6936 * fix(http_handler.py): mask gemini api key in error logs Fixes https://github.com/BerriAI/litellm/issues/6963 * docs(prometheus.md): update prometheus FAQs * feat(auth_checks.py): ensure specific model access > wildcard model access if wildcard model is in access group, but specific model is not - deny access * fix(auth_checks.py): handle auth checks for team based model access groups handles scenario where model access group used for wildcard models * fix(internal_user_endpoints.py): support adding guardrails on `/user/update` Fixes https://github.com/BerriAI/litellm/issues/6942 * fix(key_management_endpoints.py): fix prepare_metadata_fields helper * fix: fix tests * build(requirements.txt): bump openai dep version fixes proxies argument * test: fix tests * fix(http_handler.py): fix error message masking * fix(bedrock_guardrails.py): pass in prepped data * test: fix test * test: fix nvidia nim test * fix(http_handler.py): return original response headers * fix: revert maskedhttpstatuserror * test: update tests * test: cleanup test * fix(key_management_endpoints.py): fix metadata field update logic * fix(key_management_endpoints.py): maintain initial order of guardrails in key update * fix(key_management_endpoints.py): handle prepare metadata * fix: fix linting errors * fix: fix linting errors * fix: fix linting errors * fix: fix key management errors * fix(key_management_endpoints.py): update metadata * test: update test * refactor: add more debug statements * test: skip flaky test * test: fix test * fix: fix test * fix: fix update metadata logic * fix: fix test * ci(config.yml): change db url for e2e ui testing
350 lines
11 KiB
Python
350 lines
11 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
from datetime import datetime
|
|
from unittest.mock import AsyncMock
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import httpx
|
|
import pytest
|
|
from respx import MockRouter
|
|
from unittest.mock import patch, MagicMock, AsyncMock
|
|
|
|
import litellm
|
|
from litellm import Choices, Message, ModelResponse
|
|
|
|
# Adds the parent directory to the system path
|
|
|
|
|
|
def return_mocked_response(model: str):
|
|
if model == "bedrock/mistral.mistral-large-2407-v1:0":
|
|
return {
|
|
"metrics": {"latencyMs": 316},
|
|
"output": {
|
|
"message": {
|
|
"content": [{"text": "Hello! How are you doing today? How can"}],
|
|
"role": "assistant",
|
|
}
|
|
},
|
|
"stopReason": "max_tokens",
|
|
"usage": {"inputTokens": 5, "outputTokens": 10, "totalTokens": 15},
|
|
}
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"bedrock/mistral.mistral-large-2407-v1:0",
|
|
],
|
|
)
|
|
@pytest.mark.asyncio()
|
|
async def test_bedrock_max_completion_tokens(model: str):
|
|
"""
|
|
Tests that:
|
|
- max_completion_tokens is passed as max_tokens to bedrock models
|
|
"""
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
|
|
|
litellm.set_verbose = True
|
|
|
|
client = AsyncHTTPHandler()
|
|
|
|
mock_response = return_mocked_response(model)
|
|
_model = model.split("/")[1]
|
|
print("\n\nmock_response: ", mock_response)
|
|
|
|
with patch.object(client, "post") as mock_client:
|
|
try:
|
|
response = await litellm.acompletion(
|
|
model=model,
|
|
max_completion_tokens=10,
|
|
messages=[{"role": "user", "content": "Hello!"}],
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
mock_client.assert_called_once()
|
|
request_body = json.loads(mock_client.call_args.kwargs["data"])
|
|
|
|
print("request_body: ", request_body)
|
|
|
|
assert request_body == {
|
|
"messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
|
|
"additionalModelRequestFields": {},
|
|
"system": [],
|
|
"inferenceConfig": {"maxTokens": 10},
|
|
}
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229"],
|
|
)
|
|
@pytest.mark.asyncio()
|
|
async def test_anthropic_api_max_completion_tokens(model: str):
|
|
"""
|
|
Tests that:
|
|
- max_completion_tokens is passed as max_tokens to anthropic models
|
|
"""
|
|
litellm.set_verbose = True
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
mock_response = {
|
|
"content": [{"text": "Hi! My name is Claude.", "type": "text"}],
|
|
"id": "msg_013Zva2CMHLNnXjNJJKqJ2EF",
|
|
"model": "claude-3-5-sonnet-20240620",
|
|
"role": "assistant",
|
|
"stop_reason": "end_turn",
|
|
"stop_sequence": None,
|
|
"type": "message",
|
|
"usage": {"input_tokens": 2095, "output_tokens": 503},
|
|
}
|
|
|
|
client = HTTPHandler()
|
|
|
|
print("\n\nmock_response: ", mock_response)
|
|
|
|
with patch.object(client, "post") as mock_client:
|
|
try:
|
|
response = await litellm.acompletion(
|
|
model=model,
|
|
max_completion_tokens=10,
|
|
messages=[{"role": "user", "content": "Hello!"}],
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
mock_client.assert_called_once()
|
|
request_body = mock_client.call_args.kwargs["json"]
|
|
|
|
print("request_body: ", request_body)
|
|
|
|
assert request_body == {
|
|
"messages": [
|
|
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}
|
|
],
|
|
"max_tokens": 10,
|
|
"model": model.split("/")[-1],
|
|
}
|
|
|
|
|
|
def test_all_model_configs():
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.vertex_ai_partner_models.ai21.transformation import (
|
|
VertexAIAi21Config,
|
|
)
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.vertex_ai_partner_models.llama3.transformation import (
|
|
VertexAILlama3Config,
|
|
)
|
|
|
|
assert (
|
|
"max_completion_tokens" in VertexAILlama3Config().get_supported_openai_params()
|
|
)
|
|
assert VertexAILlama3Config().map_openai_params(
|
|
{"max_completion_tokens": 10}, {}, "llama3", drop_params=False
|
|
) == {"max_tokens": 10}
|
|
|
|
assert "max_completion_tokens" in VertexAIAi21Config().get_supported_openai_params()
|
|
assert VertexAIAi21Config().map_openai_params(
|
|
{"max_completion_tokens": 10}, {}, "llama3", drop_params=False
|
|
) == {"max_tokens": 10}
|
|
|
|
from litellm.llms.fireworks_ai.chat.fireworks_ai_transformation import (
|
|
FireworksAIConfig,
|
|
)
|
|
|
|
assert "max_completion_tokens" in FireworksAIConfig().get_supported_openai_params()
|
|
assert FireworksAIConfig().map_openai_params(
|
|
{"max_completion_tokens": 10}, {}, "llama3"
|
|
) == {"max_tokens": 10}
|
|
|
|
from litellm.llms.huggingface_restapi import HuggingfaceConfig
|
|
|
|
assert "max_completion_tokens" in HuggingfaceConfig().get_supported_openai_params()
|
|
assert HuggingfaceConfig().map_openai_params({"max_completion_tokens": 10}, {}) == {
|
|
"max_new_tokens": 10
|
|
}
|
|
|
|
from litellm.llms.nvidia_nim.chat import NvidiaNimConfig
|
|
|
|
assert "max_completion_tokens" in NvidiaNimConfig().get_supported_openai_params(
|
|
model="llama3"
|
|
)
|
|
assert NvidiaNimConfig().map_openai_params(
|
|
model="llama3",
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"max_tokens": 10}
|
|
|
|
from litellm.llms.ollama_chat import OllamaChatConfig
|
|
|
|
assert "max_completion_tokens" in OllamaChatConfig().get_supported_openai_params()
|
|
assert OllamaChatConfig().map_openai_params(
|
|
model="llama3",
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"num_predict": 10}
|
|
|
|
from litellm.llms.predibase import PredibaseConfig
|
|
|
|
assert "max_completion_tokens" in PredibaseConfig().get_supported_openai_params()
|
|
assert PredibaseConfig().map_openai_params(
|
|
{"max_completion_tokens": 10},
|
|
{},
|
|
) == {"max_new_tokens": 10}
|
|
|
|
from litellm.llms.text_completion_codestral import MistralTextCompletionConfig
|
|
|
|
assert (
|
|
"max_completion_tokens"
|
|
in MistralTextCompletionConfig().get_supported_openai_params()
|
|
)
|
|
assert MistralTextCompletionConfig().map_openai_params(
|
|
{"max_completion_tokens": 10},
|
|
{},
|
|
) == {"max_tokens": 10}
|
|
|
|
from litellm.llms.volcengine import VolcEngineConfig
|
|
|
|
assert "max_completion_tokens" in VolcEngineConfig().get_supported_openai_params(
|
|
model="llama3"
|
|
)
|
|
assert VolcEngineConfig().map_openai_params(
|
|
model="llama3",
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"max_tokens": 10}
|
|
|
|
from litellm.llms.AI21.chat import AI21ChatConfig
|
|
|
|
assert "max_completion_tokens" in AI21ChatConfig().get_supported_openai_params(
|
|
"jamba-1.5-mini@001"
|
|
)
|
|
assert AI21ChatConfig().map_openai_params(
|
|
model="jamba-1.5-mini@001",
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"max_tokens": 10}
|
|
|
|
from litellm.llms.AzureOpenAI.chat.gpt_transformation import AzureOpenAIConfig
|
|
|
|
assert "max_completion_tokens" in AzureOpenAIConfig().get_supported_openai_params()
|
|
assert AzureOpenAIConfig().map_openai_params(
|
|
model="gpt-3.5-turbo",
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
api_version="2022-12-01",
|
|
drop_params=False,
|
|
) == {"max_completion_tokens": 10}
|
|
|
|
from litellm.llms.bedrock.chat.converse_transformation import AmazonConverseConfig
|
|
|
|
assert (
|
|
"max_completion_tokens"
|
|
in AmazonConverseConfig().get_supported_openai_params(
|
|
model="anthropic.claude-3-sonnet-20240229-v1:0"
|
|
)
|
|
)
|
|
assert AmazonConverseConfig().map_openai_params(
|
|
model="anthropic.claude-3-sonnet-20240229-v1:0",
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
drop_params=False,
|
|
) == {"maxTokens": 10}
|
|
|
|
from litellm.llms.text_completion_codestral import MistralTextCompletionConfig
|
|
|
|
assert (
|
|
"max_completion_tokens"
|
|
in MistralTextCompletionConfig().get_supported_openai_params()
|
|
)
|
|
assert MistralTextCompletionConfig().map_openai_params(
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"max_tokens": 10}
|
|
|
|
from litellm.llms.bedrock.common_utils import (
|
|
AmazonAnthropicClaude3Config,
|
|
AmazonAnthropicConfig,
|
|
)
|
|
|
|
assert (
|
|
"max_completion_tokens"
|
|
in AmazonAnthropicClaude3Config().get_supported_openai_params()
|
|
)
|
|
|
|
assert AmazonAnthropicClaude3Config().map_openai_params(
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"max_tokens": 10}
|
|
|
|
assert (
|
|
"max_completion_tokens" in AmazonAnthropicConfig().get_supported_openai_params()
|
|
)
|
|
|
|
assert AmazonAnthropicConfig().map_openai_params(
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"max_tokens_to_sample": 10}
|
|
|
|
from litellm.llms.databricks.chat import DatabricksConfig
|
|
|
|
assert "max_completion_tokens" in DatabricksConfig().get_supported_openai_params()
|
|
|
|
assert DatabricksConfig().map_openai_params(
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"max_tokens": 10}
|
|
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.vertex_ai_partner_models.anthropic.transformation import (
|
|
VertexAIAnthropicConfig,
|
|
)
|
|
|
|
assert (
|
|
"max_completion_tokens"
|
|
in VertexAIAnthropicConfig().get_supported_openai_params()
|
|
)
|
|
|
|
assert VertexAIAnthropicConfig().map_openai_params(
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"max_tokens": 10}
|
|
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
|
VertexAIConfig,
|
|
GoogleAIStudioGeminiConfig,
|
|
VertexGeminiConfig,
|
|
)
|
|
|
|
assert "max_completion_tokens" in VertexAIConfig().get_supported_openai_params()
|
|
|
|
assert VertexAIConfig().map_openai_params(
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
) == {"max_output_tokens": 10}
|
|
|
|
assert (
|
|
"max_completion_tokens"
|
|
in GoogleAIStudioGeminiConfig().get_supported_openai_params()
|
|
)
|
|
|
|
assert GoogleAIStudioGeminiConfig().map_openai_params(
|
|
model="gemini-1.0-pro",
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
drop_params=False,
|
|
) == {"max_output_tokens": 10}
|
|
|
|
assert "max_completion_tokens" in VertexGeminiConfig().get_supported_openai_params()
|
|
|
|
assert VertexGeminiConfig().map_openai_params(
|
|
model="gemini-1.0-pro",
|
|
non_default_params={"max_completion_tokens": 10},
|
|
optional_params={},
|
|
drop_params=False,
|
|
) == {"max_output_tokens": 10}
|