forked from phoenix/litellm-mirror
* move cooldown logic to it's own helper * add new track deployment metrics folder * increment success, fails for deployment in current minute * fix cooldown logic * fix test_aaarouter_dynamic_cooldown_message_retry_time * fix test_single_deployment_no_cooldowns_test_prod_mock_completion_calls * clean up get from deployment test * fix _async_get_healthy_deployments * add mock InternalServerError * test deployment failing 25% requests * add test_high_traffic_cooldowns_one_bad_deployment * fix vertex load test * add test for rate limit error models in cool down * change default cooldown time * fix cooldown message time * fix cooldown on 429 error * fix doc string for _should_cooldown_deployment * fix sync cooldown logic router
149 lines
5 KiB
Python
149 lines
5 KiB
Python
import sys
|
|
import os
|
|
|
|
sys.path.insert(0, os.path.abspath("../.."))
|
|
|
|
import asyncio
|
|
import litellm
|
|
import pytest
|
|
import time
|
|
import json
|
|
import tempfile
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
def load_vertex_ai_credentials():
|
|
# Define the path to the vertex_key.json file
|
|
print("loading vertex ai credentials")
|
|
filepath = os.path.dirname(os.path.abspath(__file__))
|
|
vertex_key_path = filepath + "/vertex_key.json"
|
|
|
|
# Read the existing content of the file or create an empty dictionary
|
|
try:
|
|
with open(vertex_key_path, "r") as file:
|
|
# Read the file content
|
|
print("Read vertexai file path")
|
|
content = file.read()
|
|
|
|
# If the file is empty or not valid JSON, create an empty dictionary
|
|
if not content or not content.strip():
|
|
service_account_key_data = {}
|
|
else:
|
|
# Attempt to load the existing JSON content
|
|
file.seek(0)
|
|
service_account_key_data = json.load(file)
|
|
except FileNotFoundError:
|
|
# If the file doesn't exist, create an empty dictionary
|
|
service_account_key_data = {}
|
|
|
|
# Update the service_account_key_data with environment variables
|
|
private_key_id = os.environ.get("VERTEX_AI_PRIVATE_KEY_ID", "")
|
|
private_key = os.environ.get("VERTEX_AI_PRIVATE_KEY", "")
|
|
private_key = private_key.replace("\\n", "\n")
|
|
service_account_key_data["private_key_id"] = private_key_id
|
|
service_account_key_data["private_key"] = private_key
|
|
|
|
# Create a temporary file
|
|
with tempfile.NamedTemporaryFile(mode="w+", delete=False) as temp_file:
|
|
# Write the updated content to the temporary files
|
|
json.dump(service_account_key_data, temp_file, indent=2)
|
|
|
|
# Export the temporary file as GOOGLE_APPLICATION_CREDENTIALS
|
|
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.abspath(temp_file.name)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_vertex_load():
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
percentage_diffs = []
|
|
|
|
for run in range(3):
|
|
print(f"\nRun {run + 1}:")
|
|
|
|
# Test with text-only message
|
|
start_time_text = await make_async_calls(message_type="text")
|
|
print("Done with text-only message test")
|
|
|
|
# Test with text + image message
|
|
start_time_image = await make_async_calls(message_type="image")
|
|
print("Done with text + image message test")
|
|
|
|
# Compare times and calculate percentage difference
|
|
print(f"Time with text-only message: {start_time_text}")
|
|
print(f"Time with text + image message: {start_time_image}")
|
|
|
|
percentage_diff = (
|
|
(start_time_image - start_time_text) / start_time_text * 100
|
|
)
|
|
percentage_diffs.append(percentage_diff)
|
|
print(f"Performance difference: {percentage_diff:.2f}%")
|
|
|
|
print("percentage_diffs", percentage_diffs)
|
|
# Calculate average percentage difference
|
|
avg_percentage_diff = sum(percentage_diffs) / len(percentage_diffs)
|
|
print(f"\nAverage performance difference: {avg_percentage_diff:.2f}%")
|
|
|
|
# Assert that the average difference is not more than 20%
|
|
assert (
|
|
avg_percentage_diff < 25
|
|
), f"Average performance difference of {avg_percentage_diff:.2f}% exceeds 20% threshold"
|
|
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {e}")
|
|
|
|
|
|
async def make_async_calls(message_type="text"):
|
|
total_tasks = 3
|
|
batch_size = 1
|
|
total_time = 0
|
|
|
|
for batch in range(3):
|
|
tasks = [create_async_task(message_type) for _ in range(batch_size)]
|
|
|
|
start_time = asyncio.get_event_loop().time()
|
|
responses = await asyncio.gather(*tasks)
|
|
|
|
for idx, response in enumerate(responses):
|
|
print(f"Response from Task {batch * batch_size + idx + 1}: {response}")
|
|
|
|
await asyncio.sleep(1)
|
|
|
|
batch_time = asyncio.get_event_loop().time() - start_time
|
|
total_time += batch_time
|
|
|
|
return total_time
|
|
|
|
|
|
def create_async_task(message_type):
|
|
base_url = "https://exampleopenaiendpoint-production.up.railway.app/v1/projects/adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision-001"
|
|
|
|
if message_type == "text":
|
|
messages = [{"role": "user", "content": "hi"}]
|
|
else:
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What is in this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
|
|
},
|
|
},
|
|
],
|
|
}
|
|
]
|
|
|
|
completion_args = {
|
|
"model": "vertex_ai/gemini",
|
|
"messages": messages,
|
|
"max_tokens": 5,
|
|
"temperature": 0.7,
|
|
"timeout": 10,
|
|
"api_base": base_url,
|
|
}
|
|
return asyncio.create_task(litellm.acompletion(**completion_args))
|