litellm/tests/local_testing/test_custom_callback_router.py
Krish Dholakia d57be47b0f
Litellm ruff linting enforcement (#5992)
* ci(config.yml): add a 'check_code_quality' step

Addresses https://github.com/BerriAI/litellm/issues/5991

* ci(config.yml): check why circle ci doesn't pick up this test

* ci(config.yml): fix to run 'check_code_quality' tests

* fix(__init__.py): fix unprotected import

* fix(__init__.py): don't remove unused imports

* build(ruff.toml): update ruff.toml to ignore unused imports

* fix: fix: ruff + pyright - fix linting + type-checking errors

* fix: fix linting errors

* fix(lago.py): fix module init error

* fix: fix linting errors

* ci(config.yml): cd into correct dir for checks

* fix(proxy_server.py): fix linting error

* fix(utils.py): fix bare except

causes ruff linting errors

* fix: ruff - fix remaining linting errors

* fix(clickhouse.py): use standard logging object

* fix(__init__.py): fix unprotected import

* fix: ruff - fix linting errors

* fix: fix linting errors

* ci(config.yml): cleanup code qa step (formatting handled in local_testing)

* fix(_health_endpoints.py): fix ruff linting errors

* ci(config.yml): just use ruff in check_code_quality pipeline for now

* build(custom_guardrail.py): include missing file

* style(embedding_handler.py): fix ruff check
2024-10-01 19:44:20 -04:00

712 lines
29 KiB
Python

### What this tests ####
## This test asserts the type of data passed into each method of the custom callback handler
import asyncio
import inspect
import os
import sys
import time
import traceback
from datetime import datetime
import pytest
sys.path.insert(0, os.path.abspath("../.."))
from typing import List, Literal, Optional
from unittest.mock import AsyncMock, MagicMock, patch
import litellm
from litellm import Cache, Router
from litellm.integrations.custom_logger import CustomLogger
# Test Scenarios (test across completion, streaming, embedding)
## 1: Pre-API-Call
## 2: Post-API-Call
## 3: On LiteLLM Call success
## 4: On LiteLLM Call failure
## fallbacks
## retries
# Test cases
## 1. Simple Azure OpenAI acompletion + streaming call
## 2. Simple Azure OpenAI aembedding call
## 3. Azure OpenAI acompletion + streaming call with retries
## 4. Azure OpenAI aembedding call with retries
## 5. Azure OpenAI acompletion + streaming call with fallbacks
## 6. Azure OpenAI aembedding call with fallbacks
# Test interfaces
## 1. router.completion() + router.embeddings()
## 2. proxy.completions + proxy.embeddings
litellm.num_retries = 0
class CompletionCustomHandler(
CustomLogger
): # https://docs.litellm.ai/docs/observability/custom_callback#callback-class
"""
The set of expected inputs to a custom handler for a
"""
# Class variables or attributes
def __init__(self):
self.errors = []
self.states: Optional[
List[
Literal[
"sync_pre_api_call",
"async_pre_api_call",
"post_api_call",
"sync_stream",
"async_stream",
"sync_success",
"async_success",
"sync_failure",
"async_failure",
]
]
] = []
def log_pre_api_call(self, model, messages, kwargs):
try:
print(f"received kwargs in pre-input: {kwargs}")
self.states.append("sync_pre_api_call")
## MODEL
assert isinstance(model, str)
## MESSAGES
assert isinstance(messages, list)
## KWARGS
assert isinstance(kwargs["model"], str)
assert isinstance(kwargs["messages"], list)
assert isinstance(kwargs["optional_params"], dict)
assert isinstance(kwargs["litellm_params"], dict)
assert isinstance(kwargs["start_time"], (datetime, type(None)))
assert isinstance(kwargs["stream"], bool)
assert isinstance(kwargs["user"], (str, type(None)))
### ROUTER-SPECIFIC KWARGS
assert isinstance(kwargs["litellm_params"]["metadata"], dict)
assert isinstance(kwargs["litellm_params"]["metadata"]["model_group"], str)
assert isinstance(kwargs["litellm_params"]["metadata"]["deployment"], str)
assert isinstance(kwargs["litellm_params"]["model_info"], dict)
assert isinstance(kwargs["litellm_params"]["model_info"]["id"], str)
assert isinstance(
kwargs["litellm_params"]["proxy_server_request"], (str, type(None))
)
assert isinstance(
kwargs["litellm_params"]["preset_cache_key"], (str, type(None))
)
assert isinstance(kwargs["litellm_params"]["stream_response"], dict)
except Exception as e:
print(f"Assertion Error: {traceback.format_exc()}")
self.errors.append(traceback.format_exc())
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
try:
self.states.append("post_api_call")
## START TIME
assert isinstance(start_time, datetime)
## END TIME
assert end_time == None
## RESPONSE OBJECT
assert response_obj == None
## KWARGS
assert isinstance(kwargs["model"], str)
assert isinstance(kwargs["messages"], list)
assert isinstance(kwargs["optional_params"], dict)
assert isinstance(kwargs["litellm_params"], dict)
assert isinstance(kwargs["start_time"], (datetime, type(None)))
assert isinstance(kwargs["stream"], bool)
assert isinstance(kwargs["user"], (str, type(None)))
assert isinstance(kwargs["input"], (list, dict, str))
assert isinstance(kwargs["api_key"], (str, type(None)))
assert (
isinstance(
kwargs["original_response"], (str, litellm.CustomStreamWrapper)
)
or inspect.iscoroutine(kwargs["original_response"])
or inspect.isasyncgen(kwargs["original_response"])
)
assert isinstance(kwargs["additional_args"], (dict, type(None)))
assert isinstance(kwargs["log_event_type"], str)
### ROUTER-SPECIFIC KWARGS
assert isinstance(kwargs["litellm_params"]["metadata"], dict)
assert isinstance(kwargs["litellm_params"]["metadata"]["model_group"], str)
assert isinstance(kwargs["litellm_params"]["metadata"]["deployment"], str)
assert isinstance(kwargs["litellm_params"]["model_info"], dict)
assert isinstance(kwargs["litellm_params"]["model_info"]["id"], str)
assert isinstance(
kwargs["litellm_params"]["proxy_server_request"], (str, type(None))
)
assert isinstance(
kwargs["litellm_params"]["preset_cache_key"], (str, type(None))
)
assert isinstance(kwargs["litellm_params"]["stream_response"], dict)
except Exception:
print(f"Assertion Error: {traceback.format_exc()}")
self.errors.append(traceback.format_exc())
async def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
try:
self.states.append("async_stream")
## START TIME
assert isinstance(start_time, datetime)
## END TIME
assert isinstance(end_time, datetime)
## RESPONSE OBJECT
assert isinstance(response_obj, litellm.ModelResponse)
## KWARGS
assert isinstance(kwargs["model"], str)
assert isinstance(kwargs["messages"], list) and isinstance(
kwargs["messages"][0], dict
)
assert isinstance(kwargs["optional_params"], dict)
assert isinstance(kwargs["litellm_params"], dict)
assert isinstance(kwargs["start_time"], (datetime, type(None)))
assert isinstance(kwargs["stream"], bool)
assert isinstance(kwargs["user"], (str, type(None)))
assert (
isinstance(kwargs["input"], list)
and isinstance(kwargs["input"][0], dict)
) or isinstance(kwargs["input"], (dict, str))
assert isinstance(kwargs["api_key"], (str, type(None)))
assert (
isinstance(
kwargs["original_response"], (str, litellm.CustomStreamWrapper)
)
or inspect.isasyncgen(kwargs["original_response"])
or inspect.iscoroutine(kwargs["original_response"])
)
assert isinstance(kwargs["additional_args"], (dict, type(None)))
assert isinstance(kwargs["log_event_type"], str)
except Exception:
print(f"Assertion Error: {traceback.format_exc()}")
self.errors.append(traceback.format_exc())
def log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
self.states.append("sync_success")
## START TIME
assert isinstance(start_time, datetime)
## END TIME
assert isinstance(end_time, datetime)
## RESPONSE OBJECT
assert isinstance(response_obj, litellm.ModelResponse)
## KWARGS
assert isinstance(kwargs["model"], str)
assert isinstance(kwargs["messages"], list) and isinstance(
kwargs["messages"][0], dict
)
assert isinstance(kwargs["optional_params"], dict)
assert isinstance(kwargs["litellm_params"], dict)
assert isinstance(kwargs["start_time"], (datetime, type(None)))
assert isinstance(kwargs["stream"], bool)
assert isinstance(kwargs["user"], (str, type(None)))
assert (
isinstance(kwargs["input"], list)
and isinstance(kwargs["input"][0], dict)
) or isinstance(kwargs["input"], (dict, str))
assert isinstance(kwargs["api_key"], (str, type(None)))
assert isinstance(
kwargs["original_response"], (str, litellm.CustomStreamWrapper)
)
assert isinstance(kwargs["additional_args"], (dict, type(None)))
assert isinstance(kwargs["log_event_type"], str)
assert kwargs["cache_hit"] is None or isinstance(kwargs["cache_hit"], bool)
except Exception:
print(f"Assertion Error: {traceback.format_exc()}")
self.errors.append(traceback.format_exc())
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
try:
self.states.append("sync_failure")
## START TIME
assert isinstance(start_time, datetime)
## END TIME
assert isinstance(end_time, datetime)
## RESPONSE OBJECT
assert response_obj == None
## KWARGS
assert isinstance(kwargs["model"], str)
assert isinstance(kwargs["messages"], list) and isinstance(
kwargs["messages"][0], dict
)
assert isinstance(kwargs["optional_params"], dict)
assert isinstance(kwargs["litellm_params"], dict)
assert isinstance(kwargs["start_time"], (datetime, type(None)))
assert isinstance(kwargs["stream"], bool)
assert isinstance(kwargs["user"], (str, type(None)))
assert (
isinstance(kwargs["input"], list)
and isinstance(kwargs["input"][0], dict)
) or isinstance(kwargs["input"], (dict, str))
assert isinstance(kwargs["api_key"], (str, type(None)))
assert (
isinstance(
kwargs["original_response"], (str, litellm.CustomStreamWrapper)
)
or kwargs["original_response"] == None
)
assert isinstance(kwargs["additional_args"], (dict, type(None)))
assert isinstance(kwargs["log_event_type"], str)
except Exception:
print(f"Assertion Error: {traceback.format_exc()}")
self.errors.append(traceback.format_exc())
async def async_log_pre_api_call(self, model, messages, kwargs):
try:
"""
No-op.
Not implemented yet.
"""
pass
except Exception as e:
print(f"Assertion Error: {traceback.format_exc()}")
self.errors.append(traceback.format_exc())
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
self.states.append("async_success")
print("in async success, kwargs: ", kwargs)
## START TIME
assert isinstance(start_time, datetime)
## END TIME
assert isinstance(end_time, datetime)
## RESPONSE OBJECT
assert isinstance(
response_obj, (litellm.ModelResponse, litellm.EmbeddingResponse)
)
## KWARGS
assert isinstance(kwargs["model"], str)
# checking we use base_model for azure cost calculation
base_model = litellm.utils._get_base_model_from_metadata(
model_call_details=kwargs
)
if (
kwargs["model"] == "chatgpt-v-2"
and base_model is not None
and kwargs["stream"] != True
):
# when base_model is set for azure, we should use pricing for the base_model
# this checks response_cost == litellm.cost_per_token(model=base_model)
assert isinstance(kwargs["response_cost"], float)
response_cost = kwargs["response_cost"]
print(
f"response_cost: {response_cost}, for model: {kwargs['model']} and base_model: {base_model}"
)
prompt_tokens = response_obj.usage.prompt_tokens
completion_tokens = response_obj.usage.completion_tokens
# ensure the pricing is based on the base_model here
prompt_price, completion_price = litellm.cost_per_token(
model=base_model,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
)
expected_price = prompt_price + completion_price
print(f"expected price: {expected_price}")
assert (
response_cost == expected_price
), f"response_cost: {response_cost} != expected_price: {expected_price}. For model: {kwargs['model']} and base_model: {base_model}. should have used base_model for price"
assert isinstance(kwargs["messages"], list)
assert isinstance(kwargs["optional_params"], dict)
assert isinstance(kwargs["litellm_params"], dict)
assert isinstance(kwargs["start_time"], (datetime, type(None)))
assert isinstance(kwargs["stream"], bool)
assert isinstance(kwargs["user"], (str, type(None)))
assert isinstance(kwargs["input"], (list, dict, str))
assert isinstance(kwargs["api_key"], (str, type(None)))
assert (
isinstance(
kwargs["original_response"], (str, litellm.CustomStreamWrapper)
)
or inspect.isasyncgen(kwargs["original_response"])
or inspect.iscoroutine(kwargs["original_response"])
)
assert isinstance(kwargs["additional_args"], (dict, type(None)))
assert isinstance(kwargs["log_event_type"], str)
assert kwargs["cache_hit"] is None or isinstance(kwargs["cache_hit"], bool)
### ROUTER-SPECIFIC KWARGS
assert isinstance(kwargs["litellm_params"]["metadata"], dict)
assert isinstance(kwargs["litellm_params"]["metadata"]["model_group"], str)
assert isinstance(kwargs["litellm_params"]["metadata"]["deployment"], str)
assert isinstance(kwargs["litellm_params"]["model_info"], dict)
assert isinstance(kwargs["litellm_params"]["model_info"]["id"], str)
assert isinstance(
kwargs["litellm_params"]["proxy_server_request"], (str, type(None))
)
assert isinstance(
kwargs["litellm_params"]["preset_cache_key"], (str, type(None))
)
assert isinstance(kwargs["litellm_params"]["stream_response"], dict)
except Exception:
print(f"Assertion Error: {traceback.format_exc()}")
self.errors.append(traceback.format_exc())
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
try:
print(f"received original response: {kwargs['original_response']}")
self.states.append("async_failure")
## START TIME
assert isinstance(start_time, datetime)
## END TIME
assert isinstance(end_time, datetime)
## RESPONSE OBJECT
assert response_obj == None
## KWARGS
assert isinstance(kwargs["model"], str)
assert isinstance(kwargs["messages"], list)
assert isinstance(kwargs["optional_params"], dict)
assert isinstance(kwargs["litellm_params"], dict)
assert isinstance(kwargs["start_time"], (datetime, type(None)))
assert isinstance(kwargs["stream"], bool)
assert isinstance(kwargs["user"], (str, type(None)))
assert isinstance(kwargs["input"], (list, str, dict))
assert isinstance(kwargs["api_key"], (str, type(None)))
assert (
isinstance(
kwargs["original_response"], (str, litellm.CustomStreamWrapper)
)
or inspect.isasyncgen(kwargs["original_response"])
or inspect.iscoroutine(kwargs["original_response"])
or kwargs["original_response"] == None
)
assert isinstance(kwargs["additional_args"], (dict, type(None)))
assert isinstance(kwargs["log_event_type"], str)
except Exception:
print(f"Assertion Error: {traceback.format_exc()}")
self.errors.append(traceback.format_exc())
# Simple Azure OpenAI call
## COMPLETION
@pytest.mark.flaky(retries=5, delay=1)
@pytest.mark.asyncio
async def test_async_chat_azure():
try:
customHandler_completion_azure_router = CompletionCustomHandler()
customHandler_streaming_azure_router = CompletionCustomHandler()
customHandler_failure = CompletionCustomHandler()
litellm.callbacks = [customHandler_completion_azure_router]
litellm.set_verbose = True
model_list = [
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"model_info": {"base_model": "azure/gpt-4-1106-preview"},
"tpm": 240000,
"rpm": 1800,
},
]
router = Router(model_list=model_list, num_retries=0) # type: ignore
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}],
)
await asyncio.sleep(2)
assert len(customHandler_completion_azure_router.errors) == 0
assert (
len(customHandler_completion_azure_router.states) == 3
) # pre, post, success
# streaming
litellm.callbacks = [customHandler_streaming_azure_router]
router2 = Router(model_list=model_list, num_retries=0) # type: ignore
response = await router2.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}],
stream=True,
)
async for chunk in response:
print(f"async azure router chunk: {chunk}")
continue
await asyncio.sleep(1)
print(f"customHandler.states: {customHandler_streaming_azure_router.states}")
assert len(customHandler_streaming_azure_router.errors) == 0
assert (
len(customHandler_streaming_azure_router.states) >= 4
) # pre, post, stream (multiple times), success
# failure
model_list = [
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "my-bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
]
litellm.callbacks = [customHandler_failure]
router3 = Router(model_list=model_list, num_retries=0) # type: ignore
try:
response = await router3.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}],
)
print(f"response in router3 acompletion: {response}")
except Exception:
pass
await asyncio.sleep(1)
print(f"customHandler.states: {customHandler_failure.states}")
assert len(customHandler_failure.errors) == 0
assert len(customHandler_failure.states) == 3 # pre, post, failure
assert "async_failure" in customHandler_failure.states
except Exception as e:
print(f"Assertion Error: {traceback.format_exc()}")
pytest.fail(f"An exception occurred - {str(e)}")
# asyncio.run(test_async_chat_azure())
## EMBEDDING
@pytest.mark.asyncio
async def test_async_embedding_azure():
try:
customHandler = CompletionCustomHandler()
customHandler_failure = CompletionCustomHandler()
litellm.callbacks = [customHandler]
model_list = [
{
"model_name": "azure-embedding-model", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/azure-embedding-model",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
]
router = Router(model_list=model_list) # type: ignore
response = await router.aembedding(
model="azure-embedding-model", input=["hello from litellm!"]
)
await asyncio.sleep(2)
assert len(customHandler.errors) == 0
assert len(customHandler.states) == 3 # pre, post, success
# failure
model_list = [
{
"model_name": "azure-embedding-model", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/azure-embedding-model",
"api_key": "my-bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
]
litellm.callbacks = [customHandler_failure]
router3 = Router(model_list=model_list, num_retries=0) # type: ignore
try:
response = await router3.aembedding(
model="azure-embedding-model", input=["hello from litellm!"]
)
print(f"response in router3 aembedding: {response}")
except Exception:
pass
await asyncio.sleep(1)
print(f"customHandler.states: {customHandler_failure.states}")
assert len(customHandler_failure.errors) == 0
assert len(customHandler_failure.states) == 3 # pre, post, failure
assert "async_failure" in customHandler_failure.states
except Exception as e:
print(f"Assertion Error: {traceback.format_exc()}")
pytest.fail(f"An exception occurred - {str(e)}")
# asyncio.run(test_async_embedding_azure())
# Azure OpenAI call w/ Fallbacks
## COMPLETION
@pytest.mark.asyncio
async def test_async_chat_azure_with_fallbacks():
try:
customHandler_fallbacks = CompletionCustomHandler()
litellm.callbacks = [customHandler_fallbacks]
litellm.set_verbose = True
# with fallbacks
model_list = [
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "my-bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "gpt-3.5-turbo-16k",
"litellm_params": {
"model": "gpt-3.5-turbo-16k",
},
"tpm": 240000,
"rpm": 1800,
},
]
router = Router(
model_list=model_list,
fallbacks=[{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}],
retry_policy=litellm.router.RetryPolicy(
AuthenticationErrorRetries=0,
),
) # type: ignore
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}],
)
await asyncio.sleep(2)
print(f"customHandler_fallbacks.states: {customHandler_fallbacks.states}")
assert len(customHandler_fallbacks.errors) == 0
assert (
len(customHandler_fallbacks.states) == 6
) # pre, post, failure, pre, post, success
litellm.callbacks = []
except Exception as e:
print(f"Assertion Error: {traceback.format_exc()}")
pytest.fail(f"An exception occurred - {str(e)}")
# asyncio.run(test_async_chat_azure_with_fallbacks())
# CACHING
## Test Azure - completion, embedding
@pytest.mark.asyncio
@pytest.mark.flaky(retries=3, delay=1)
async def test_async_completion_azure_caching():
customHandler_caching = CompletionCustomHandler()
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
litellm.callbacks = [customHandler_caching]
unique_time = time.time()
model_list = [
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "gpt-3.5-turbo-16k",
"litellm_params": {
"model": "gpt-3.5-turbo-16k",
},
"tpm": 240000,
"rpm": 1800,
},
]
router = Router(model_list=model_list) # type: ignore
response1 = await router.acompletion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": f"Hi 👋 - i'm async azure {unique_time}"}
],
caching=True,
)
await asyncio.sleep(1)
print(f"customHandler_caching.states pre-cache hit: {customHandler_caching.states}")
response2 = await router.acompletion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": f"Hi 👋 - i'm async azure {unique_time}"}
],
caching=True,
)
await asyncio.sleep(1) # success callbacks are done in parallel
print(
f"customHandler_caching.states post-cache hit: {customHandler_caching.states}"
)
assert len(customHandler_caching.errors) == 0
assert len(customHandler_caching.states) == 4 # pre, post, success, success
@pytest.mark.asyncio
async def test_rate_limit_error_callback():
"""
Assert a callback is hit, if a model group starts hitting rate limit errors
Relevant issue: https://github.com/BerriAI/litellm/issues/4096
"""
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
customHandler = CompletionCustomHandler()
litellm.callbacks = [customHandler]
litellm.success_callback = []
router = Router(
model_list=[
{
"model_name": "my-test-gpt",
"litellm_params": {
"model": "gpt-3.5-turbo",
"mock_response": "litellm.RateLimitError",
},
}
],
allowed_fails=2,
num_retries=0,
)
litellm_logging_obj = LiteLLMLogging(
model="my-test-gpt",
messages=[{"role": "user", "content": "hi"}],
stream=False,
call_type="acompletion",
litellm_call_id="1234",
start_time=datetime.now(),
function_id="1234",
)
try:
_ = await router.acompletion(
model="my-test-gpt",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)
except Exception:
pass
with patch.object(
customHandler, "log_model_group_rate_limit_error", new=AsyncMock()
) as mock_client:
print(
f"customHandler.log_model_group_rate_limit_error: {customHandler.log_model_group_rate_limit_error}"
)
try:
_ = await router.acompletion(
model="my-test-gpt",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
litellm_logging_obj=litellm_logging_obj,
)
except (litellm.RateLimitError, ValueError):
pass
await asyncio.sleep(3)
mock_client.assert_called_once()
assert "original_model_group" in mock_client.call_args.kwargs
assert mock_client.call_args.kwargs["original_model_group"] == "my-test-gpt"