forked from phoenix/litellm-mirror
* use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * fix test_embedding_caching_azure_individual_items_reordered
206 lines
6.1 KiB
Python
206 lines
6.1 KiB
Python
#### What this tests ####
|
|
# This tests the router's ability to pick deployment with lowest cost
|
|
|
|
import sys, os, asyncio, time, random
|
|
from datetime import datetime
|
|
import traceback
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os, copy
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
from litellm import Router
|
|
from litellm.router_strategy.lowest_cost import LowestCostLoggingHandler
|
|
from litellm.caching.caching import DualCache
|
|
|
|
### UNIT TESTS FOR cost ROUTING ###
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_available_deployments():
|
|
test_cache = DualCache()
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "gpt-4"},
|
|
"model_info": {"id": "openai-gpt-4"},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "groq/llama3-8b-8192"},
|
|
"model_info": {"id": "groq-llama"},
|
|
},
|
|
]
|
|
lowest_cost_logger = LowestCostLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
selected_model = await lowest_cost_logger.async_get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)
|
|
print("selected model: ", selected_model)
|
|
|
|
assert selected_model["model_info"]["id"] == "groq-llama"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_available_deployments_custom_price():
|
|
from litellm._logging import verbose_router_logger
|
|
import logging
|
|
|
|
verbose_router_logger.setLevel(logging.DEBUG)
|
|
test_cache = DualCache()
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {
|
|
"model": "azure/chatgpt-v-2",
|
|
"input_cost_per_token": 0.00003,
|
|
"output_cost_per_token": 0.00003,
|
|
},
|
|
"model_info": {"id": "chatgpt-v-experimental"},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {
|
|
"model": "azure/chatgpt-v-1",
|
|
"input_cost_per_token": 0.000000001,
|
|
"output_cost_per_token": 0.00000001,
|
|
},
|
|
"model_info": {"id": "chatgpt-v-1"},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {
|
|
"model": "azure/chatgpt-v-5",
|
|
"input_cost_per_token": 10,
|
|
"output_cost_per_token": 12,
|
|
},
|
|
"model_info": {"id": "chatgpt-v-5"},
|
|
},
|
|
]
|
|
lowest_cost_logger = LowestCostLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
selected_model = await lowest_cost_logger.async_get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)
|
|
print("selected model: ", selected_model)
|
|
|
|
assert selected_model["model_info"]["id"] == "chatgpt-v-1"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_lowest_cost_routing():
|
|
"""
|
|
Test if router, returns model with the lowest cost
|
|
"""
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-4",
|
|
"litellm_params": {"model": "gpt-4"},
|
|
"model_info": {"id": "openai-gpt-4"},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "gpt-3.5-turbo"},
|
|
"model_info": {"id": "gpt-3.5-turbo"},
|
|
},
|
|
]
|
|
|
|
# init router
|
|
router = Router(model_list=model_list, routing_strategy="cost-based-routing")
|
|
response = await router.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
print(response)
|
|
print(
|
|
response._hidden_params["model_id"]
|
|
) # expect groq-llama, since groq/llama has lowest cost
|
|
assert "gpt-3.5-turbo" == response._hidden_params["model_id"]
|
|
|
|
|
|
async def _deploy(lowest_cost_logger, deployment_id, tokens_used, duration):
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "gpt-4",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": tokens_used}}
|
|
time.sleep(duration)
|
|
end_time = time.time()
|
|
await lowest_cost_logger.async_log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ans_rpm", [1, 5]
|
|
) # 1 should produce nothing, 10 should select first
|
|
@pytest.mark.asyncio
|
|
async def test_get_available_endpoints_tpm_rpm_check_async(ans_rpm):
|
|
"""
|
|
Pass in list of 2 valid models
|
|
|
|
Update cache with 1 model clearly being at tpm/rpm limit
|
|
|
|
assert that only the valid model is returned
|
|
"""
|
|
from litellm._logging import verbose_router_logger
|
|
import logging
|
|
|
|
verbose_router_logger.setLevel(logging.DEBUG)
|
|
test_cache = DualCache()
|
|
ans = "1234"
|
|
non_ans_rpm = 3
|
|
assert ans_rpm != non_ans_rpm, "invalid test"
|
|
if ans_rpm < non_ans_rpm:
|
|
ans = None
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "gpt-4"},
|
|
"model_info": {"id": "1234", "rpm": ans_rpm},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "groq/llama3-8b-8192"},
|
|
"model_info": {"id": "5678", "rpm": non_ans_rpm},
|
|
},
|
|
]
|
|
lowest_cost_logger = LowestCostLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
d1 = [(lowest_cost_logger, "1234", 50, 0.01)] * non_ans_rpm
|
|
d2 = [(lowest_cost_logger, "5678", 50, 0.01)] * non_ans_rpm
|
|
|
|
await asyncio.gather(*[_deploy(*t) for t in [*d1, *d2]])
|
|
|
|
asyncio.sleep(3)
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
d_ans = await lowest_cost_logger.async_get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)
|
|
assert (d_ans and d_ans["model_info"]["id"]) == ans
|
|
|
|
print("selected deployment:", d_ans)
|