forked from phoenix/litellm-mirror
* add langsmith_api_key to StandardCallbackDynamicParams * create a file for langsmith types * langsmith add key / team based logging * add key based logging for langsmith * fix langsmith key based logging * fix linting langsmith * remove NOQA violation * add unit test coverage for all helpers in test langsmith * test_langsmith_key_based_logging * docs langsmith key based logging * run langsmith tests in logging callback tests * fix logging testing * test_langsmith_key_based_logging * test_add_callback_via_key_litellm_pre_call_utils_langsmith * add debug statement langsmith key based logging * test_langsmith_key_based_logging
394 lines
12 KiB
Python
394 lines
12 KiB
Python
import io
|
|
import os
|
|
import sys
|
|
|
|
|
|
sys.path.insert(0, os.path.abspath("../.."))
|
|
|
|
import asyncio
|
|
import gzip
|
|
import json
|
|
import logging
|
|
import time
|
|
from unittest.mock import AsyncMock, patch, MagicMock
|
|
import pytest
|
|
from datetime import datetime, timezone
|
|
from litellm.integrations.langsmith import (
|
|
LangsmithLogger,
|
|
LangsmithQueueObject,
|
|
CredentialsKey,
|
|
BatchGroup,
|
|
)
|
|
|
|
import litellm
|
|
|
|
|
|
# Test get_credentials_from_env
|
|
@pytest.mark.asyncio
|
|
async def test_get_credentials_from_env():
|
|
# Test with direct parameters
|
|
logger = LangsmithLogger(
|
|
langsmith_api_key="test-key",
|
|
langsmith_project="test-project",
|
|
langsmith_base_url="http://test-url",
|
|
)
|
|
|
|
credentials = logger.get_credentials_from_env(
|
|
langsmith_api_key="custom-key",
|
|
langsmith_project="custom-project",
|
|
langsmith_base_url="http://custom-url",
|
|
)
|
|
|
|
assert credentials["LANGSMITH_API_KEY"] == "custom-key"
|
|
assert credentials["LANGSMITH_PROJECT"] == "custom-project"
|
|
assert credentials["LANGSMITH_BASE_URL"] == "http://custom-url"
|
|
|
|
# assert that the default api base is used if not provided
|
|
credentials = logger.get_credentials_from_env()
|
|
assert credentials["LANGSMITH_BASE_URL"] == "https://api.smith.langchain.com"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_group_batches_by_credentials():
|
|
|
|
logger = LangsmithLogger(langsmith_api_key="test-key")
|
|
|
|
# Create test queue objects
|
|
queue_obj1 = LangsmithQueueObject(
|
|
data={"test": "data1"},
|
|
credentials={
|
|
"LANGSMITH_API_KEY": "key1",
|
|
"LANGSMITH_PROJECT": "proj1",
|
|
"LANGSMITH_BASE_URL": "url1",
|
|
},
|
|
)
|
|
|
|
queue_obj2 = LangsmithQueueObject(
|
|
data={"test": "data2"},
|
|
credentials={
|
|
"LANGSMITH_API_KEY": "key1",
|
|
"LANGSMITH_PROJECT": "proj1",
|
|
"LANGSMITH_BASE_URL": "url1",
|
|
},
|
|
)
|
|
|
|
logger.log_queue = [queue_obj1, queue_obj2]
|
|
|
|
grouped = logger._group_batches_by_credentials()
|
|
|
|
# Check grouping
|
|
assert len(grouped) == 1 # Should have one group since credentials are same
|
|
key = list(grouped.keys())[0]
|
|
assert isinstance(key, CredentialsKey)
|
|
assert len(grouped[key].queue_objects) == 2
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_group_batches_by_credentials_multiple_credentials():
|
|
|
|
# Test with multiple different credentials
|
|
logger = LangsmithLogger(langsmith_api_key="test-key")
|
|
|
|
queue_obj1 = LangsmithQueueObject(
|
|
data={"test": "data1"},
|
|
credentials={
|
|
"LANGSMITH_API_KEY": "key1",
|
|
"LANGSMITH_PROJECT": "proj1",
|
|
"LANGSMITH_BASE_URL": "url1",
|
|
},
|
|
)
|
|
|
|
queue_obj2 = LangsmithQueueObject(
|
|
data={"test": "data2"},
|
|
credentials={
|
|
"LANGSMITH_API_KEY": "key2", # Different API key
|
|
"LANGSMITH_PROJECT": "proj1",
|
|
"LANGSMITH_BASE_URL": "url1",
|
|
},
|
|
)
|
|
|
|
queue_obj3 = LangsmithQueueObject(
|
|
data={"test": "data3"},
|
|
credentials={
|
|
"LANGSMITH_API_KEY": "key1",
|
|
"LANGSMITH_PROJECT": "proj2", # Different project
|
|
"LANGSMITH_BASE_URL": "url1",
|
|
},
|
|
)
|
|
|
|
logger.log_queue = [queue_obj1, queue_obj2, queue_obj3]
|
|
|
|
grouped = logger._group_batches_by_credentials()
|
|
|
|
# Check grouping
|
|
assert len(grouped) == 3 # Should have three groups since credentials differ
|
|
for key, batch_group in grouped.items():
|
|
assert isinstance(key, CredentialsKey)
|
|
assert len(batch_group.queue_objects) == 1 # Each group should have one object
|
|
|
|
|
|
# Test make_dot_order
|
|
@pytest.mark.asyncio
|
|
async def test_make_dot_order():
|
|
logger = LangsmithLogger(langsmith_api_key="test-key")
|
|
run_id = "729cff0e-f30c-4336-8b79-45d6b61c64b4"
|
|
dot_order = logger.make_dot_order(run_id)
|
|
|
|
print("dot_order=", dot_order)
|
|
|
|
# Check format: YYYYMMDDTHHMMSSfffZ + run_id
|
|
# Check the timestamp portion (first 23 characters)
|
|
timestamp_part = dot_order[:-36] # 36 is length of run_id
|
|
assert len(timestamp_part) == 22
|
|
assert timestamp_part[8] == "T" # Check T separator
|
|
assert timestamp_part[-1] == "Z" # Check Z suffix
|
|
|
|
# Verify timestamp format
|
|
try:
|
|
# Parse the timestamp portion (removing the Z)
|
|
datetime.strptime(timestamp_part[:-1], "%Y%m%dT%H%M%S%f")
|
|
except ValueError:
|
|
pytest.fail("Timestamp portion is not in correct format")
|
|
|
|
# Verify run_id portion
|
|
assert dot_order[-36:] == run_id
|
|
|
|
|
|
# Test is_serializable
|
|
@pytest.mark.asyncio
|
|
async def test_is_serializable():
|
|
from litellm.integrations.langsmith import is_serializable
|
|
from pydantic import BaseModel
|
|
|
|
# Test basic types
|
|
assert is_serializable("string") is True
|
|
assert is_serializable(123) is True
|
|
assert is_serializable({"key": "value"}) is True
|
|
|
|
# Test non-serializable types
|
|
async def async_func():
|
|
pass
|
|
|
|
assert is_serializable(async_func) is False
|
|
|
|
class TestModel(BaseModel):
|
|
field: str
|
|
|
|
assert is_serializable(TestModel(field="test")) is False
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_send_batch():
|
|
logger = LangsmithLogger(langsmith_api_key="test-key")
|
|
|
|
# Mock the httpx client
|
|
mock_response = AsyncMock()
|
|
mock_response.status_code = 200
|
|
logger.async_httpx_client = AsyncMock()
|
|
logger.async_httpx_client.post.return_value = mock_response
|
|
|
|
# Add test data to queue
|
|
logger.log_queue = [
|
|
LangsmithQueueObject(
|
|
data={"test": "data"}, credentials=logger.default_credentials
|
|
)
|
|
]
|
|
|
|
await logger.async_send_batch()
|
|
|
|
# Verify the API call
|
|
logger.async_httpx_client.post.assert_called_once()
|
|
call_args = logger.async_httpx_client.post.call_args
|
|
assert "runs/batch" in call_args[1]["url"]
|
|
assert "x-api-key" in call_args[1]["headers"]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_langsmith_key_based_logging(mocker):
|
|
"""
|
|
In key based logging langsmith_api_key and langsmith_project are passed directly to litellm.acompletion
|
|
"""
|
|
try:
|
|
# Mock the httpx post request
|
|
mock_post = mocker.patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post"
|
|
)
|
|
mock_post.return_value.status_code = 200
|
|
mock_post.return_value.raise_for_status = lambda: None
|
|
litellm.set_verbose = True
|
|
|
|
litellm.callbacks = [LangsmithLogger()]
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Test message"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
mock_response="This is a mock response",
|
|
langsmith_api_key="fake_key_project2",
|
|
langsmith_project="fake_project2",
|
|
)
|
|
print("Waiting for logs to be flushed to Langsmith.....")
|
|
await asyncio.sleep(15)
|
|
|
|
print("done sleeping 15 seconds...")
|
|
|
|
# Verify the post request was made with correct parameters
|
|
mock_post.assert_called_once()
|
|
call_args = mock_post.call_args
|
|
|
|
print("call_args", call_args)
|
|
|
|
# Check URL contains /runs/batch
|
|
assert "/runs/batch" in call_args[1]["url"]
|
|
|
|
# Check headers contain the correct API key
|
|
assert call_args[1]["headers"]["x-api-key"] == "fake_key_project2"
|
|
|
|
# Verify the request body contains the expected data
|
|
request_body = call_args[1]["json"]
|
|
assert "post" in request_body
|
|
assert len(request_body["post"]) == 1 # Should contain one run
|
|
|
|
# EXPECTED BODY
|
|
expected_body = {
|
|
"post": [
|
|
{
|
|
"name": "LLMRun",
|
|
"run_type": "llm",
|
|
"inputs": {
|
|
"id": "chatcmpl-82699ee4-7932-4fc0-9585-76abc8caeafa",
|
|
"call_type": "acompletion",
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [{"role": "user", "content": "Test message"}],
|
|
"model_parameters": {
|
|
"temperature": 0.2,
|
|
"max_tokens": 10,
|
|
"extra_body": {},
|
|
},
|
|
},
|
|
"outputs": {
|
|
"id": "chatcmpl-82699ee4-7932-4fc0-9585-76abc8caeafa",
|
|
"model": "gpt-3.5-turbo",
|
|
"choices": [
|
|
{
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
"message": {
|
|
"content": "This is a mock response",
|
|
"role": "assistant",
|
|
"tool_calls": None,
|
|
"function_call": None,
|
|
},
|
|
}
|
|
],
|
|
"usage": {
|
|
"completion_tokens": 20,
|
|
"prompt_tokens": 10,
|
|
"total_tokens": 30,
|
|
},
|
|
},
|
|
"session_name": "fake_project2",
|
|
}
|
|
]
|
|
}
|
|
|
|
# Print both bodies for debugging
|
|
actual_body = call_args[1]["json"]
|
|
print("\nExpected body:")
|
|
print(json.dumps(expected_body, indent=2))
|
|
print("\nActual body:")
|
|
print(json.dumps(actual_body, indent=2))
|
|
|
|
assert len(actual_body["post"]) == 1
|
|
|
|
# Assert only the critical parts we care about
|
|
assert actual_body["post"][0]["name"] == expected_body["post"][0]["name"]
|
|
assert (
|
|
actual_body["post"][0]["run_type"] == expected_body["post"][0]["run_type"]
|
|
)
|
|
assert (
|
|
actual_body["post"][0]["inputs"]["messages"]
|
|
== expected_body["post"][0]["inputs"]["messages"]
|
|
)
|
|
assert (
|
|
actual_body["post"][0]["inputs"]["model_parameters"]
|
|
== expected_body["post"][0]["inputs"]["model_parameters"]
|
|
)
|
|
assert (
|
|
actual_body["post"][0]["outputs"]["choices"]
|
|
== expected_body["post"][0]["outputs"]["choices"]
|
|
)
|
|
assert (
|
|
actual_body["post"][0]["outputs"]["usage"]["completion_tokens"]
|
|
== expected_body["post"][0]["outputs"]["usage"]["completion_tokens"]
|
|
)
|
|
assert (
|
|
actual_body["post"][0]["outputs"]["usage"]["prompt_tokens"]
|
|
== expected_body["post"][0]["outputs"]["usage"]["prompt_tokens"]
|
|
)
|
|
assert (
|
|
actual_body["post"][0]["outputs"]["usage"]["total_tokens"]
|
|
== expected_body["post"][0]["outputs"]["usage"]["total_tokens"]
|
|
)
|
|
assert (
|
|
actual_body["post"][0]["session_name"]
|
|
== expected_body["post"][0]["session_name"]
|
|
)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_langsmith_queue_logging():
|
|
try:
|
|
# Initialize LangsmithLogger
|
|
test_langsmith_logger = LangsmithLogger()
|
|
|
|
litellm.callbacks = [test_langsmith_logger]
|
|
test_langsmith_logger.batch_size = 6
|
|
litellm.set_verbose = True
|
|
|
|
# Make multiple calls to ensure we don't hit the batch size
|
|
for _ in range(5):
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Test message"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
mock_response="This is a mock response",
|
|
)
|
|
|
|
await asyncio.sleep(3)
|
|
|
|
# Check that logs are in the queue
|
|
assert len(test_langsmith_logger.log_queue) == 5
|
|
|
|
# Now make calls to exceed the batch size
|
|
for _ in range(3):
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Test message"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
mock_response="This is a mock response",
|
|
)
|
|
|
|
# Wait a short time for any asynchronous operations to complete
|
|
await asyncio.sleep(1)
|
|
|
|
print(
|
|
"Length of langsmith log queue: {}".format(
|
|
len(test_langsmith_logger.log_queue)
|
|
)
|
|
)
|
|
# Check that the queue was flushed after exceeding batch size
|
|
assert len(test_langsmith_logger.log_queue) < 5
|
|
|
|
# Clean up
|
|
for cb in litellm.callbacks:
|
|
if isinstance(cb, LangsmithLogger):
|
|
await cb.async_httpx_client.client.aclose()
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|