litellm/tests/logging_callback_tests/test_otel_logging.py
Krish Dholakia 3beecfb0d4
LiteLLM Minor Fixes & Improvements (11/13/2024) (#6729)
* fix(utils.py): add logprobs support for together ai

Fixes

https://github.com/BerriAI/litellm/issues/6724

* feat(pass_through_endpoints/): add anthropic/ pass-through endpoint

adds new `anthropic/` pass-through endpoint + refactors docs

* feat(spend_management_endpoints.py): allow /global/spend/report to query team + customer id

enables seeing spend for a customer in a team

* Add integration with MLflow Tracing (#6147)

* Add MLflow logger

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* Streaming handling

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* lint

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* address comments and fix issues

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* address comments and fix issues

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* Move logger construction code

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* Add docs

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* async handlers

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* new picture

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* fix(mlflow.py): fix ruff linting errors

* ci(config.yml): add mlflow to ci testing

* fix: fix test

* test: fix test

* Litellm key update fix (#6710)

* fix(caching): convert arg to equivalent kwargs in llm caching handler

prevent unexpected errors

* fix(caching_handler.py): don't pass args to caching

* fix(caching): remove all *args from caching.py

* fix(caching): consistent function signatures + abc method

* test(caching_unit_tests.py): add unit tests for llm caching

ensures coverage for common caching scenarios across different implementations

* refactor(litellm_logging.py): move to using cache key from hidden params instead of regenerating one

* fix(router.py): drop redis password requirement

* fix(proxy_server.py): fix faulty slack alerting check

* fix(langfuse.py): avoid copying functions/thread lock objects in metadata

fixes metadata copy error when parent otel span in metadata

* test: update test

* fix(key_management_endpoints.py): fix /key/update with metadata update

* fix(key_management_endpoints.py): fix key_prepare_update helper

* fix(key_management_endpoints.py): reset value to none if set in key update

* fix: update test

'

* Litellm dev 11 11 2024 (#6693)

* fix(__init__.py): add 'watsonx_text' as mapped llm api route

Fixes https://github.com/BerriAI/litellm/issues/6663

* fix(opentelemetry.py): fix passing parallel tool calls to otel

Fixes https://github.com/BerriAI/litellm/issues/6677

* refactor(test_opentelemetry_unit_tests.py): create a base set of unit tests for all logging integrations - test for parallel tool call handling

reduces bugs in repo

* fix(__init__.py): update provider-model mapping to include all known provider-model mappings

Fixes https://github.com/BerriAI/litellm/issues/6669

* feat(anthropic): support passing document in llm api call

* docs(anthropic.md): add pdf anthropic call to docs + expose new 'supports_pdf_input' function

* fix(factory.py): fix linting error

* add clear doc string for GCS bucket logging

* Add docs to export logs to Laminar (#6674)

* Add docs to export logs to Laminar

* minor fix: newline at end of file

* place laminar after http and grpc

* (Feat) Add langsmith key based logging (#6682)

* add langsmith_api_key to StandardCallbackDynamicParams

* create a file for langsmith types

* langsmith add key / team based logging

* add key based logging for langsmith

* fix langsmith key based logging

* fix linting langsmith

* remove NOQA violation

* add unit test coverage for all helpers in test langsmith

* test_langsmith_key_based_logging

* docs langsmith key based logging

* run langsmith tests in logging callback tests

* fix logging testing

* test_langsmith_key_based_logging

* test_add_callback_via_key_litellm_pre_call_utils_langsmith

* add debug statement langsmith key based logging

* test_langsmith_key_based_logging

* (fix) OpenAI's optional messages[].name  does not work with Mistral API  (#6701)

* use helper for _transform_messages mistral

* add test_message_with_name to base LLMChat test

* fix linting

* add xAI on Admin UI (#6680)

* (docs) add benchmarks on 1K RPS  (#6704)

* docs litellm proxy benchmarks

* docs GCS bucket

* doc fix - reduce clutter on logging doc title

* (feat) add cost tracking stable diffusion 3 on Bedrock  (#6676)

* add cost tracking for sd3

* test_image_generation_bedrock

* fix get model info for image cost

* add cost_calculator for stability 1 models

* add unit testing for bedrock image cost calc

* test_cost_calculator_with_no_optional_params

* add test_cost_calculator_basic

* correctly allow size Optional

* fix cost_calculator

* sd3 unit tests cost calc

* fix raise correct error 404 when /key/info is called on non-existent key  (#6653)

* fix raise correct error on /key/info

* add not_found_error error

* fix key not found in DB error

* use 1 helper for checking token hash

* fix error code on key info

* fix test key gen prisma

* test_generate_and_call_key_info

* test fix test_call_with_valid_model_using_all_models

* fix key info tests

* bump: version 1.52.4 → 1.52.5

* add defaults used for GCS logging

* LiteLLM Minor Fixes & Improvements (11/12/2024)  (#6705)

* fix(caching): convert arg to equivalent kwargs in llm caching handler

prevent unexpected errors

* fix(caching_handler.py): don't pass args to caching

* fix(caching): remove all *args from caching.py

* fix(caching): consistent function signatures + abc method

* test(caching_unit_tests.py): add unit tests for llm caching

ensures coverage for common caching scenarios across different implementations

* refactor(litellm_logging.py): move to using cache key from hidden params instead of regenerating one

* fix(router.py): drop redis password requirement

* fix(proxy_server.py): fix faulty slack alerting check

* fix(langfuse.py): avoid copying functions/thread lock objects in metadata

fixes metadata copy error when parent otel span in metadata

* test: update test

* bump: version 1.52.5 → 1.52.6

* (feat) helm hook to sync db schema  (#6715)

* v0 migration job

* fix job

* fix migrations job.yml

* handle standalone DB on helm hook

* fix argo cd annotations

* fix db migration helm hook

* fix migration job

* doc fix Using Http/2 with Hypercorn

* (fix proxy redis) Add redis sentinel support  (#6154)

* add sentinel_password support

* add doc for setting redis sentinel password

* fix redis sentinel - use sentinel password

* Fix: Update gpt-4o costs to that of gpt-4o-2024-08-06 (#6714)

Fixes #6713

* (fix) using Anthropic `response_format={"type": "json_object"}`  (#6721)

* add support for response_format=json anthropic

* add test_json_response_format to baseLLM ChatTest

* fix test_litellm_anthropic_prompt_caching_tools

* fix test_anthropic_function_call_with_no_schema

* test test_create_json_tool_call_for_response_format

* (feat) Add cost tracking for Azure Dall-e-3 Image Generation  + use base class to ensure basic image generation tests pass  (#6716)

* add BaseImageGenTest

* use 1 class for unit testing

* add debugging to BaseImageGenTest

* TestAzureOpenAIDalle3

* fix response_cost_calculator

* test_basic_image_generation

* fix img gen basic test

* fix _select_model_name_for_cost_calc

* fix test_aimage_generation_bedrock_with_optional_params

* fix undo changes cost tracking

* fix response_cost_calculator

* fix test_cost_azure_gpt_35

* fix remove dup test (#6718)

* (build) update db helm hook

* (build) helm db pre sync hook

* (build) helm db sync hook

* test: run test_team_logging firdst

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Dinmukhamed Mailibay <47117969+dinmukhamedm@users.noreply.github.com>
Co-authored-by: Kilian Lieret <kilian.lieret@posteo.de>

* test: update test

* test: skip anthropic overloaded error

* test: cleanup test

* test: update tests

* test: fix test

* test: handle gemini overloaded model error

* test: handle internal server error

* test: handle anthropic overloaded error

* test: handle claude instability

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Yuki Watanabe <31463517+B-Step62@users.noreply.github.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Dinmukhamed Mailibay <47117969+dinmukhamedm@users.noreply.github.com>
Co-authored-by: Kilian Lieret <kilian.lieret@posteo.de>
2024-11-15 11:18:31 +05:30

281 lines
8.3 KiB
Python

import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
from pydantic.main import Model
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system-path
import pytest
import litellm
from litellm.integrations.opentelemetry import OpenTelemetry, OpenTelemetryConfig, Span
import asyncio
import logging
from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter
from litellm._logging import verbose_logger
verbose_logger.setLevel(logging.DEBUG)
EXPECTED_SPAN_NAMES = ["litellm_request", "raw_gen_ai_request"]
exporter = InMemorySpanExporter()
@pytest.mark.asyncio
@pytest.mark.parametrize("streaming", [True, False])
async def test_async_otel_callback(streaming):
litellm.set_verbose = True
litellm.callbacks = [OpenTelemetry(config=OpenTelemetryConfig(exporter=exporter))]
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
temperature=0.1,
user="OTEL_USER",
stream=streaming,
)
if streaming is True:
async for chunk in response:
print("chunk", chunk)
await asyncio.sleep(4)
spans = exporter.get_finished_spans()
print("spans", spans)
assert len(spans) == 2
_span_names = [span.name for span in spans]
print("recorded span names", _span_names)
assert set(_span_names) == set(EXPECTED_SPAN_NAMES)
# print the value of a span
for span in spans:
print("span name", span.name)
print("span attributes", span.attributes)
if span.name == "litellm_request":
validate_litellm_request(span)
# Additional specific checks
assert span._attributes["gen_ai.request.model"] == "gpt-3.5-turbo"
assert span._attributes["gen_ai.system"] == "openai"
assert span._attributes["gen_ai.request.temperature"] == 0.1
assert span._attributes["llm.is_streaming"] == str(streaming)
assert span._attributes["llm.user"] == "OTEL_USER"
elif span.name == "raw_gen_ai_request":
if streaming is True:
validate_raw_gen_ai_request_openai_streaming(span)
else:
validate_raw_gen_ai_request_openai_non_streaming(span)
# clear in memory exporter
exporter.clear()
def validate_litellm_request(span):
expected_attributes = [
"gen_ai.request.model",
"gen_ai.system",
"gen_ai.request.temperature",
"llm.is_streaming",
"llm.user",
"gen_ai.response.id",
"gen_ai.response.model",
"llm.usage.total_tokens",
"gen_ai.usage.completion_tokens",
"gen_ai.usage.prompt_tokens",
]
# get the str of all the span attributes
print("span attributes", span._attributes)
for attr in expected_attributes:
value = span._attributes[attr]
print("value", value)
assert value is not None, f"Attribute {attr} has None value"
def validate_raw_gen_ai_request_openai_non_streaming(span):
expected_attributes = [
"llm.openai.messages",
"llm.openai.temperature",
"llm.openai.user",
"llm.openai.extra_body",
"llm.openai.id",
"llm.openai.choices",
"llm.openai.created",
"llm.openai.model",
"llm.openai.object",
"llm.openai.service_tier",
"llm.openai.system_fingerprint",
"llm.openai.usage",
]
print("span attributes", span._attributes)
for attr in span._attributes:
print(attr)
for attr in expected_attributes:
assert span._attributes[attr] is not None, f"Attribute {attr} has None"
def validate_raw_gen_ai_request_openai_streaming(span):
expected_attributes = [
"llm.openai.messages",
"llm.openai.temperature",
"llm.openai.user",
"llm.openai.extra_body",
"llm.openai.model",
]
print("span attributes", span._attributes)
for attr in span._attributes:
print(attr)
for attr in expected_attributes:
assert span._attributes[attr] is not None, f"Attribute {attr} has None"
@pytest.mark.parametrize(
"model",
["anthropic/claude-3-opus-20240229"],
)
@pytest.mark.flaky(retries=6, delay=2)
def test_completion_claude_3_function_call_with_otel(model):
litellm.set_verbose = True
litellm.callbacks = [OpenTelemetry(config=OpenTelemetryConfig(exporter=exporter))]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
]
try:
# test without max tokens
response = litellm.completion(
model=model,
messages=messages,
tools=tools,
tool_choice={
"type": "function",
"function": {"name": "get_current_weather"},
},
drop_params=True,
)
print("response from LiteLLM", response)
except litellm.InternalServerError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
finally:
# clear in memory exporter
exporter.clear()
@pytest.mark.asyncio
@pytest.mark.parametrize("streaming", [True, False])
@pytest.mark.parametrize("global_redact", [True, False])
async def test_awesome_otel_with_message_logging_off(streaming, global_redact):
"""
No content should be logged when message logging is off
tests when litellm.turn_off_message_logging is set to True
tests when OpenTelemetry(message_logging=False) is set
"""
litellm.set_verbose = True
litellm.callbacks = [OpenTelemetry(config=OpenTelemetryConfig(exporter=exporter))]
if global_redact is False:
otel_logger = OpenTelemetry(
message_logging=False, config=OpenTelemetryConfig(exporter="console")
)
else:
# use global redaction
litellm.turn_off_message_logging = True
otel_logger = OpenTelemetry(config=OpenTelemetryConfig(exporter="console"))
litellm.callbacks = [otel_logger]
litellm.success_callback = []
litellm.failure_callback = []
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
mock_response="hi",
stream=streaming,
)
print("response", response)
if streaming is True:
async for chunk in response:
print("chunk", chunk)
await asyncio.sleep(1)
spans = exporter.get_finished_spans()
print("spans", spans)
assert len(spans) == 1
_span = spans[0]
print("span attributes", _span.attributes)
validate_redacted_message_span_attributes(_span)
# clear in memory exporter
exporter.clear()
if global_redact is True:
litellm.turn_off_message_logging = False
def validate_redacted_message_span_attributes(span):
expected_attributes = [
"gen_ai.request.model",
"gen_ai.system",
"llm.is_streaming",
"gen_ai.response.id",
"gen_ai.response.model",
"llm.usage.total_tokens",
"gen_ai.usage.completion_tokens",
"gen_ai.usage.prompt_tokens",
"metadata.user_api_key_hash",
"metadata.requester_ip_address",
"metadata.user_api_key_team_alias",
"metadata.requester_metadata",
"metadata.user_api_key_team_id",
"metadata.spend_logs_metadata",
"metadata.user_api_key_alias",
"metadata.user_api_key_user_id",
"metadata.user_api_key_org_id",
]
_all_attributes = set([name for name in span.attributes.keys()])
print("all_attributes", _all_attributes)
assert _all_attributes == set(expected_attributes)
pass