litellm/tests/proxy_unit_tests/test_proxy_server_spend.py
Krish Dholakia 27e18358ab
fix(pattern_match_deployments.py): default to user input if unable to… (#6632)
* fix(pattern_match_deployments.py): default to user input if unable to map based on wildcards

* test: fix test

* test: reset test name

* test: update conftest to reload proxy server module between tests

* ci(config.yml): move langfuse out of local_testing

reduce ci/cd time

* ci(config.yml): cleanup langfuse ci/cd tests

* fix: update test to not use global proxy_server app module

* ci: move caching to a separate test pipeline

speed up ci pipeline

* test: update conftest to check if proxy_server attr exists before reloading

* build(conftest.py): don't block on inability to reload proxy_server

* ci(config.yml): update caching unit test filter to work on 'cache' keyword as well

* fix(encrypt_decrypt_utils.py): use function to get salt key

* test: mark flaky test

* test: handle anthropic overloaded errors

* refactor: create separate ci/cd pipeline for proxy unit tests

make ci/cd faster

* ci(config.yml): add litellm_proxy_unit_testing to build_and_test jobs

* ci(config.yml): generate prisma binaries for proxy unit tests

* test: readd vertex_key.json

* ci(config.yml): remove `-s` from proxy_unit_test cmd

speed up test

* ci: remove any 'debug' logging flag

speed up ci pipeline

* test: fix test

* test(test_braintrust.py): rerun

* test: add delay for braintrust test
2024-11-08 00:55:57 +05:30

82 lines
2.4 KiB
Python

# import openai, json, time, asyncio
# client = openai.AsyncOpenAI(
# api_key="sk-1234",
# base_url="http://0.0.0.0:8000"
# )
# super_fake_messages = [
# {
# "role": "user",
# "content": f"What's the weather like in San Francisco, Tokyo, and Paris? {time.time()}"
# },
# {
# "content": None,
# "role": "assistant",
# "tool_calls": [
# {
# "id": "1",
# "function": {
# "arguments": "{\"location\": \"San Francisco\", \"unit\": \"celsius\"}",
# "name": "get_current_weather"
# },
# "type": "function"
# },
# {
# "id": "2",
# "function": {
# "arguments": "{\"location\": \"Tokyo\", \"unit\": \"celsius\"}",
# "name": "get_current_weather"
# },
# "type": "function"
# },
# {
# "id": "3",
# "function": {
# "arguments": "{\"location\": \"Paris\", \"unit\": \"celsius\"}",
# "name": "get_current_weather"
# },
# "type": "function"
# }
# ]
# },
# {
# "tool_call_id": "1",
# "role": "tool",
# "name": "get_current_weather",
# "content": "{\"location\": \"San Francisco\", \"temperature\": \"90\", \"unit\": \"celsius\"}"
# },
# {
# "tool_call_id": "2",
# "role": "tool",
# "name": "get_current_weather",
# "content": "{\"location\": \"Tokyo\", \"temperature\": \"30\", \"unit\": \"celsius\"}"
# },
# {
# "tool_call_id": "3",
# "role": "tool",
# "name": "get_current_weather",
# "content": "{\"location\": \"Paris\", \"temperature\": \"50\", \"unit\": \"celsius\"}"
# }
# ]
# async def chat_completions():
# super_fake_response = await client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=super_fake_messages,
# seed=1337,
# stream=False
# ) # get a new response from the model where it can see the function response
# await asyncio.sleep(1)
# return super_fake_response
# async def loadtest_fn(n = 1):
# global num_task_cancelled_errors, exception_counts, chat_completions
# start = time.time()
# tasks = [chat_completions() for _ in range(n)]
# chat_completions = await asyncio.gather(*tasks)
# successful_completions = [c for c in chat_completions if c is not None]
# print(n, time.time() - start, len(successful_completions))
# # print(json.dumps(super_fake_response.model_dump(), indent=4))
# asyncio.run(loadtest_fn())