litellm/tests/router_unit_tests/test_router_helper_utils.py
Ishaan Jaff 4ebb7c8a7f
(docs + fix) Add docs on Moderations endpoint, Text Completion (#6947)
* fix _pass_through_moderation_endpoint_factory

* fix route_llm_request

* doc moderations api

* docs on /moderations

* add e2e tests for moderations api

* docs moderations api

* test_pass_through_moderation_endpoint_factory

* docs text completion
2024-11-27 16:30:48 -08:00

1061 lines
35 KiB
Python

import sys
import os
import traceback
from dotenv import load_dotenv
from fastapi import Request
from datetime import datetime
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from litellm import Router
import pytest
import litellm
from unittest.mock import patch, MagicMock, AsyncMock
@pytest.fixture
def model_list():
return [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"model_info": {
"access_groups": ["group1", "group2"],
},
},
{
"model_name": "gpt-4o",
"litellm_params": {
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
},
{
"model_name": "dall-e-3",
"litellm_params": {
"model": "dall-e-3",
"api_key": os.getenv("OPENAI_API_KEY"),
},
},
{
"model_name": "*",
"litellm_params": {
"model": "openai/*",
"api_key": os.getenv("OPENAI_API_KEY"),
},
},
{
"model_name": "claude-*",
"litellm_params": {
"model": "anthropic/*",
"api_key": os.getenv("ANTHROPIC_API_KEY"),
},
},
]
def test_validate_fallbacks(model_list):
router = Router(model_list=model_list, fallbacks=[{"gpt-4o": "gpt-3.5-turbo"}])
router.validate_fallbacks(fallback_param=[{"gpt-4o": "gpt-3.5-turbo"}])
def test_routing_strategy_init(model_list):
"""Test if all routing strategies are initialized correctly"""
from litellm.types.router import RoutingStrategy
router = Router(model_list=model_list)
for strategy in RoutingStrategy._member_names_:
router.routing_strategy_init(
routing_strategy=strategy, routing_strategy_args={}
)
def test_print_deployment(model_list):
"""Test if the api key is masked correctly"""
router = Router(model_list=model_list)
deployment = {
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
}
printed_deployment = router.print_deployment(deployment)
assert 10 * "*" in printed_deployment["litellm_params"]["api_key"]
def test_completion(model_list):
"""Test if the completion function is working correctly"""
router = Router(model_list=model_list)
response = router._completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="I'm fine, thank you!",
)
assert response["choices"][0]["message"]["content"] == "I'm fine, thank you!"
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.flaky(retries=6, delay=1)
@pytest.mark.asyncio
async def test_image_generation(model_list, sync_mode):
"""Test if the underlying '_image_generation' function is working correctly"""
from litellm.types.utils import ImageResponse
router = Router(model_list=model_list)
if sync_mode:
response = router._image_generation(
model="dall-e-3",
prompt="A cute baby sea otter",
)
else:
response = await router._aimage_generation(
model="dall-e-3",
prompt="A cute baby sea otter",
)
ImageResponse.model_validate(response)
@pytest.mark.asyncio
async def test_router_acompletion_util(model_list):
"""Test if the underlying '_acompletion' function is working correctly"""
router = Router(model_list=model_list)
response = await router._acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="I'm fine, thank you!",
)
assert response["choices"][0]["message"]["content"] == "I'm fine, thank you!"
@pytest.mark.asyncio
async def test_router_abatch_completion_one_model_multiple_requests_util(model_list):
"""Test if the 'abatch_completion_one_model_multiple_requests' function is working correctly"""
router = Router(model_list=model_list)
response = await router.abatch_completion_one_model_multiple_requests(
model="gpt-3.5-turbo",
messages=[
[{"role": "user", "content": "Hello, how are you?"}],
[{"role": "user", "content": "Hello, how are you?"}],
],
mock_response="I'm fine, thank you!",
)
print(response)
assert response[0]["choices"][0]["message"]["content"] == "I'm fine, thank you!"
assert response[1]["choices"][0]["message"]["content"] == "I'm fine, thank you!"
@pytest.mark.asyncio
async def test_router_schedule_acompletion(model_list):
"""Test if the 'schedule_acompletion' function is working correctly"""
router = Router(model_list=model_list)
response = await router.schedule_acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="I'm fine, thank you!",
priority=1,
)
assert response["choices"][0]["message"]["content"] == "I'm fine, thank you!"
@pytest.mark.asyncio
async def test_router_arealtime(model_list):
"""Test if the '_arealtime' function is working correctly"""
import litellm
router = Router(model_list=model_list)
with patch.object(litellm, "_arealtime", AsyncMock()) as mock_arealtime:
mock_arealtime.return_value = "I'm fine, thank you!"
await router._arealtime(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
mock_arealtime.assert_awaited_once()
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_router_function_with_fallbacks(model_list, sync_mode):
"""Test if the router 'async_function_with_fallbacks' + 'function_with_fallbacks' are working correctly"""
router = Router(model_list=model_list)
data = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Hello, how are you?"}],
"mock_response": "I'm fine, thank you!",
"num_retries": 0,
}
if sync_mode:
response = router.function_with_fallbacks(
original_function=router._completion,
**data,
)
else:
response = await router.async_function_with_fallbacks(
original_function=router._acompletion,
**data,
)
assert response.choices[0].message.content == "I'm fine, thank you!"
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_router_function_with_retries(model_list, sync_mode):
"""Test if the router 'async_function_with_retries' + 'function_with_retries' are working correctly"""
router = Router(model_list=model_list)
data = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Hello, how are you?"}],
"mock_response": "I'm fine, thank you!",
"num_retries": 0,
}
if sync_mode:
response = router.function_with_retries(
original_function=router._completion,
**data,
)
else:
response = await router.async_function_with_retries(
original_function=router._acompletion,
**data,
)
assert response.choices[0].message.content == "I'm fine, thank you!"
@pytest.mark.asyncio
async def test_router_make_call(model_list):
"""Test if the router 'make_call' function is working correctly"""
## ACOMPLETION
router = Router(model_list=model_list)
response = await router.make_call(
original_function=router._acompletion,
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="I'm fine, thank you!",
)
assert response.choices[0].message.content == "I'm fine, thank you!"
## ATEXT_COMPLETION
response = await router.make_call(
original_function=router._atext_completion,
model="gpt-3.5-turbo",
prompt="Hello, how are you?",
mock_response="I'm fine, thank you!",
)
assert response.choices[0].text == "I'm fine, thank you!"
## AEMBEDDING
response = await router.make_call(
original_function=router._aembedding,
model="gpt-3.5-turbo",
input="Hello, how are you?",
mock_response=[0.1, 0.2, 0.3],
)
assert response.data[0].embedding == [0.1, 0.2, 0.3]
## AIMAGE_GENERATION
response = await router.make_call(
original_function=router._aimage_generation,
model="dall-e-3",
prompt="A cute baby sea otter",
mock_response="https://example.com/image.png",
)
assert response.data[0].url == "https://example.com/image.png"
def test_update_kwargs_with_deployment(model_list):
"""Test if the '_update_kwargs_with_deployment' function is working correctly"""
router = Router(model_list=model_list)
kwargs: dict = {"metadata": {}}
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
router._update_kwargs_with_deployment(
deployment=deployment,
kwargs=kwargs,
)
set_fields = ["deployment", "api_base", "model_info"]
assert all(field in kwargs["metadata"] for field in set_fields)
def test_update_kwargs_with_default_litellm_params(model_list):
"""Test if the '_update_kwargs_with_default_litellm_params' function is working correctly"""
router = Router(
model_list=model_list,
default_litellm_params={"api_key": "test", "metadata": {"key": "value"}},
)
kwargs: dict = {"metadata": {"key2": "value2"}}
router._update_kwargs_with_default_litellm_params(kwargs=kwargs)
assert kwargs["api_key"] == "test"
assert kwargs["metadata"]["key"] == "value"
assert kwargs["metadata"]["key2"] == "value2"
def test_get_async_openai_model_client(model_list):
"""Test if the '_get_async_openai_model_client' function is working correctly"""
router = Router(model_list=model_list)
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
model_client = router._get_async_openai_model_client(
deployment=deployment, kwargs={}
)
assert model_client is not None
def test_get_timeout(model_list):
"""Test if the '_get_timeout' function is working correctly"""
router = Router(model_list=model_list)
timeout = router._get_timeout(kwargs={}, data={"timeout": 100})
assert timeout == 100
@pytest.mark.parametrize(
"fallback_kwarg, expected_error",
[
("mock_testing_fallbacks", litellm.InternalServerError),
("mock_testing_context_fallbacks", litellm.ContextWindowExceededError),
("mock_testing_content_policy_fallbacks", litellm.ContentPolicyViolationError),
],
)
def test_handle_mock_testing_fallbacks(model_list, fallback_kwarg, expected_error):
"""Test if the '_handle_mock_testing_fallbacks' function is working correctly"""
router = Router(model_list=model_list)
with pytest.raises(expected_error):
data = {
fallback_kwarg: True,
}
router._handle_mock_testing_fallbacks(
kwargs=data,
)
def test_handle_mock_testing_rate_limit_error(model_list):
"""Test if the '_handle_mock_testing_rate_limit_error' function is working correctly"""
router = Router(model_list=model_list)
with pytest.raises(litellm.RateLimitError):
data = {
"mock_testing_rate_limit_error": True,
}
router._handle_mock_testing_rate_limit_error(
kwargs=data,
)
def test_get_fallback_model_group_from_fallbacks(model_list):
"""Test if the '_get_fallback_model_group_from_fallbacks' function is working correctly"""
router = Router(model_list=model_list)
fallback_model_group_name = router._get_fallback_model_group_from_fallbacks(
model_group="gpt-4o",
fallbacks=[{"gpt-4o": "gpt-3.5-turbo"}],
)
assert fallback_model_group_name == "gpt-3.5-turbo"
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_deployment_callback_on_success(model_list, sync_mode):
"""Test if the '_deployment_callback_on_success' function is working correctly"""
import time
router = Router(model_list=model_list)
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
},
"model_info": {"id": 100},
},
}
response = litellm.ModelResponse(
model="gpt-3.5-turbo",
usage={"total_tokens": 100},
)
if sync_mode:
tpm_key = router.sync_deployment_callback_on_success(
kwargs=kwargs,
completion_response=response,
start_time=time.time(),
end_time=time.time(),
)
else:
tpm_key = await router.deployment_callback_on_success(
kwargs=kwargs,
completion_response=response,
start_time=time.time(),
end_time=time.time(),
)
assert tpm_key is not None
@pytest.mark.asyncio
async def test_deployment_callback_on_failure(model_list):
"""Test if the '_deployment_callback_on_failure' function is working correctly"""
import time
router = Router(model_list=model_list)
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
},
"model_info": {"id": 100},
},
}
result = router.deployment_callback_on_failure(
kwargs=kwargs,
completion_response=None,
start_time=time.time(),
end_time=time.time(),
)
assert isinstance(result, bool)
assert result is False
model_response = router.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how are you?"}],
mock_response="I'm fine, thank you!",
)
result = await router.async_deployment_callback_on_failure(
kwargs=kwargs,
completion_response=model_response,
start_time=time.time(),
end_time=time.time(),
)
def test_log_retry(model_list):
"""Test if the '_log_retry' function is working correctly"""
import time
router = Router(model_list=model_list)
new_kwargs = router.log_retry(
kwargs={"metadata": {}},
e=Exception(),
)
assert "metadata" in new_kwargs
assert "previous_models" in new_kwargs["metadata"]
def test_update_usage(model_list):
"""Test if the '_update_usage' function is working correctly"""
router = Router(model_list=model_list)
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
deployment_id = deployment["model_info"]["id"]
request_count = router._update_usage(
deployment_id=deployment_id, parent_otel_span=None
)
assert request_count == 1
request_count = router._update_usage(
deployment_id=deployment_id, parent_otel_span=None
)
assert request_count == 2
@pytest.mark.parametrize(
"finish_reason, expected_fallback", [("content_filter", True), ("stop", False)]
)
@pytest.mark.parametrize("fallback_type", ["model-specific", "default"])
def test_should_raise_content_policy_error(
model_list, finish_reason, expected_fallback, fallback_type
):
"""Test if the '_should_raise_content_policy_error' function is working correctly"""
router = Router(
model_list=model_list,
default_fallbacks=["gpt-4o"] if fallback_type == "default" else None,
)
assert (
router._should_raise_content_policy_error(
model="gpt-3.5-turbo",
response=litellm.ModelResponse(
model="gpt-3.5-turbo",
choices=[
{
"finish_reason": finish_reason,
"message": {"content": "I'm fine, thank you!"},
}
],
usage={"total_tokens": 100},
),
kwargs={
"content_policy_fallbacks": (
[{"gpt-3.5-turbo": "gpt-4o"}]
if fallback_type == "model-specific"
else None
)
},
)
is expected_fallback
)
def test_get_healthy_deployments(model_list):
"""Test if the '_get_healthy_deployments' function is working correctly"""
router = Router(model_list=model_list)
deployments = router._get_healthy_deployments(
model="gpt-3.5-turbo", parent_otel_span=None
)
assert len(deployments) > 0
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_routing_strategy_pre_call_checks(model_list, sync_mode):
"""Test if the '_routing_strategy_pre_call_checks' function is working correctly"""
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.litellm_logging import Logging
callback = CustomLogger()
litellm.callbacks = [callback]
router = Router(model_list=model_list)
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
litellm_logging_obj = Logging(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
stream=False,
call_type="acompletion",
litellm_call_id="1234",
start_time=datetime.now(),
function_id="1234",
)
if sync_mode:
router.routing_strategy_pre_call_checks(deployment)
else:
## NO EXCEPTION
await router.async_routing_strategy_pre_call_checks(
deployment, litellm_logging_obj
)
## WITH EXCEPTION - rate limit error
with patch.object(
callback,
"async_pre_call_check",
AsyncMock(
side_effect=litellm.RateLimitError(
message="Rate limit error",
llm_provider="openai",
model="gpt-3.5-turbo",
)
),
):
try:
await router.async_routing_strategy_pre_call_checks(
deployment, litellm_logging_obj
)
pytest.fail("Exception was not raised")
except Exception as e:
assert isinstance(e, litellm.RateLimitError)
## WITH EXCEPTION - generic error
with patch.object(
callback, "async_pre_call_check", AsyncMock(side_effect=Exception("Error"))
):
try:
await router.async_routing_strategy_pre_call_checks(
deployment, litellm_logging_obj
)
pytest.fail("Exception was not raised")
except Exception as e:
assert isinstance(e, Exception)
@pytest.mark.parametrize(
"set_supported_environments, supported_environments, is_supported",
[(True, ["staging"], True), (False, None, True), (True, ["development"], False)],
)
def test_create_deployment(
model_list, set_supported_environments, supported_environments, is_supported
):
"""Test if the '_create_deployment' function is working correctly"""
router = Router(model_list=model_list)
if set_supported_environments:
os.environ["LITELLM_ENVIRONMENT"] = "staging"
deployment = router._create_deployment(
deployment_info={},
_model_name="gpt-3.5-turbo",
_litellm_params={
"model": "gpt-3.5-turbo",
"api_key": "test",
"custom_llm_provider": "openai",
},
_model_info={
"id": 100,
"supported_environments": supported_environments,
},
)
if is_supported:
assert deployment is not None
else:
assert deployment is None
@pytest.mark.parametrize(
"set_supported_environments, supported_environments, is_supported",
[(True, ["staging"], True), (False, None, True), (True, ["development"], False)],
)
def test_deployment_is_active_for_environment(
model_list, set_supported_environments, supported_environments, is_supported
):
"""Test if the '_deployment_is_active_for_environment' function is working correctly"""
router = Router(model_list=model_list)
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
if set_supported_environments:
os.environ["LITELLM_ENVIRONMENT"] = "staging"
deployment["model_info"]["supported_environments"] = supported_environments
if is_supported:
assert (
router.deployment_is_active_for_environment(deployment=deployment) is True
)
else:
assert (
router.deployment_is_active_for_environment(deployment=deployment) is False
)
def test_set_model_list(model_list):
"""Test if the '_set_model_list' function is working correctly"""
router = Router(model_list=model_list)
router.set_model_list(model_list=model_list)
assert len(router.model_list) == len(model_list)
def test_add_deployment(model_list):
"""Test if the '_add_deployment' function is working correctly"""
router = Router(model_list=model_list)
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
deployment["model_info"]["id"] = 100
## Test 1: call user facing function
router.add_deployment(deployment=deployment)
## Test 2: call internal function
router._add_deployment(deployment=deployment)
assert len(router.model_list) == len(model_list) + 1
def test_upsert_deployment(model_list):
"""Test if the 'upsert_deployment' function is working correctly"""
router = Router(model_list=model_list)
print("model list", len(router.model_list))
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
deployment.litellm_params.model = "gpt-4o"
router.upsert_deployment(deployment=deployment)
assert len(router.model_list) == len(model_list)
def test_delete_deployment(model_list):
"""Test if the 'delete_deployment' function is working correctly"""
router = Router(model_list=model_list)
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
router.delete_deployment(id=deployment["model_info"]["id"])
assert len(router.model_list) == len(model_list) - 1
def test_get_model_info(model_list):
"""Test if the 'get_model_info' function is working correctly"""
router = Router(model_list=model_list)
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
model_info = router.get_model_info(id=deployment["model_info"]["id"])
assert model_info is not None
def test_get_model_group(model_list):
"""Test if the 'get_model_group' function is working correctly"""
router = Router(model_list=model_list)
deployment = router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
)
model_group = router.get_model_group(id=deployment["model_info"]["id"])
assert model_group is not None
assert model_group[0]["model_name"] == "gpt-3.5-turbo"
@pytest.mark.parametrize("user_facing_model_group_name", ["gpt-3.5-turbo", "gpt-4o"])
def test_set_model_group_info(model_list, user_facing_model_group_name):
"""Test if the 'set_model_group_info' function is working correctly"""
router = Router(model_list=model_list)
resp = router._set_model_group_info(
model_group="gpt-3.5-turbo",
user_facing_model_group_name=user_facing_model_group_name,
)
assert resp is not None
assert resp.model_group == user_facing_model_group_name
@pytest.mark.asyncio
async def test_set_response_headers(model_list):
"""Test if the 'set_response_headers' function is working correctly"""
router = Router(model_list=model_list)
resp = await router.set_response_headers(response=None, model_group=None)
assert resp is None
def test_get_all_deployments(model_list):
"""Test if the 'get_all_deployments' function is working correctly"""
router = Router(model_list=model_list)
deployments = router._get_all_deployments(
model_name="gpt-3.5-turbo", model_alias="gpt-3.5-turbo"
)
assert len(deployments) > 0
def test_get_model_access_groups(model_list):
"""Test if the 'get_model_access_groups' function is working correctly"""
router = Router(model_list=model_list)
access_groups = router.get_model_access_groups()
assert len(access_groups) == 2
def test_update_settings(model_list):
"""Test if the 'update_settings' function is working correctly"""
router = Router(model_list=model_list)
pre_update_allowed_fails = router.allowed_fails
router.update_settings(**{"allowed_fails": 20})
assert router.allowed_fails != pre_update_allowed_fails
assert router.allowed_fails == 20
def test_common_checks_available_deployment(model_list):
"""Test if the 'common_checks_available_deployment' function is working correctly"""
router = Router(model_list=model_list)
_, available_deployments = router._common_checks_available_deployment(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
input="hi",
specific_deployment=False,
)
assert len(available_deployments) > 0
def test_filter_cooldown_deployments(model_list):
"""Test if the 'filter_cooldown_deployments' function is working correctly"""
router = Router(model_list=model_list)
deployments = router._filter_cooldown_deployments(
healthy_deployments=router._get_all_deployments(model_name="gpt-3.5-turbo"), # type: ignore
cooldown_deployments=[],
)
assert len(deployments) == len(
router._get_all_deployments(model_name="gpt-3.5-turbo")
)
def test_track_deployment_metrics(model_list):
"""Test if the 'track_deployment_metrics' function is working correctly"""
from litellm.types.utils import ModelResponse
router = Router(model_list=model_list)
router._track_deployment_metrics(
deployment=router.get_deployment_by_model_group_name(
model_group_name="gpt-3.5-turbo"
),
response=ModelResponse(
model="gpt-3.5-turbo",
usage={"total_tokens": 100},
),
parent_otel_span=None,
)
@pytest.mark.parametrize(
"exception_type, exception_name, num_retries",
[
(litellm.exceptions.BadRequestError, "BadRequestError", 3),
(litellm.exceptions.AuthenticationError, "AuthenticationError", 4),
(litellm.exceptions.RateLimitError, "RateLimitError", 6),
(
litellm.exceptions.ContentPolicyViolationError,
"ContentPolicyViolationError",
7,
),
],
)
def test_get_num_retries_from_retry_policy(
model_list, exception_type, exception_name, num_retries
):
"""Test if the 'get_num_retries_from_retry_policy' function is working correctly"""
from litellm.router import RetryPolicy
data = {exception_name + "Retries": num_retries}
print("data", data)
router = Router(
model_list=model_list,
retry_policy=RetryPolicy(**data),
)
print("exception_type", exception_type)
calc_num_retries = router.get_num_retries_from_retry_policy(
exception=exception_type(
message="test", llm_provider="openai", model="gpt-3.5-turbo"
)
)
assert calc_num_retries == num_retries
@pytest.mark.parametrize(
"exception_type, exception_name, allowed_fails",
[
(litellm.exceptions.BadRequestError, "BadRequestError", 3),
(litellm.exceptions.AuthenticationError, "AuthenticationError", 4),
(litellm.exceptions.RateLimitError, "RateLimitError", 6),
(
litellm.exceptions.ContentPolicyViolationError,
"ContentPolicyViolationError",
7,
),
],
)
def test_get_allowed_fails_from_policy(
model_list, exception_type, exception_name, allowed_fails
):
"""Test if the 'get_allowed_fails_from_policy' function is working correctly"""
from litellm.types.router import AllowedFailsPolicy
data = {exception_name + "AllowedFails": allowed_fails}
router = Router(
model_list=model_list, allowed_fails_policy=AllowedFailsPolicy(**data)
)
calc_allowed_fails = router.get_allowed_fails_from_policy(
exception=exception_type(
message="test", llm_provider="openai", model="gpt-3.5-turbo"
)
)
assert calc_allowed_fails == allowed_fails
def test_initialize_alerting(model_list):
"""Test if the 'initialize_alerting' function is working correctly"""
from litellm.types.router import AlertingConfig
from litellm.integrations.SlackAlerting.slack_alerting import SlackAlerting
router = Router(
model_list=model_list, alerting_config=AlertingConfig(webhook_url="test")
)
router._initialize_alerting()
callback_added = False
for callback in litellm.callbacks:
if isinstance(callback, SlackAlerting):
callback_added = True
assert callback_added is True
def test_flush_cache(model_list):
"""Test if the 'flush_cache' function is working correctly"""
router = Router(model_list=model_list)
router.cache.set_cache("test", "test")
assert router.cache.get_cache("test") == "test"
router.flush_cache()
assert router.cache.get_cache("test") is None
def test_initialize_assistants_endpoint(model_list):
"""Test if the 'initialize_assistants_endpoint' function is working correctly"""
router = Router(model_list=model_list)
router.initialize_assistants_endpoint()
assert router.acreate_assistants is not None
assert router.adelete_assistant is not None
assert router.aget_assistants is not None
assert router.acreate_thread is not None
assert router.aget_thread is not None
assert router.arun_thread is not None
assert router.aget_messages is not None
assert router.a_add_message is not None
def test_pass_through_assistants_endpoint_factory(model_list):
"""Test if the 'pass_through_assistants_endpoint_factory' function is working correctly"""
router = Router(model_list=model_list)
router._pass_through_assistants_endpoint_factory(
original_function=litellm.acreate_assistants,
custom_llm_provider="openai",
client=None,
**{},
)
def test_factory_function(model_list):
"""Test if the 'factory_function' function is working correctly"""
router = Router(model_list=model_list)
router.factory_function(litellm.acreate_assistants)
def test_get_model_from_alias(model_list):
"""Test if the 'get_model_from_alias' function is working correctly"""
router = Router(
model_list=model_list,
model_group_alias={"gpt-4o": "gpt-3.5-turbo"},
)
model = router._get_model_from_alias(model="gpt-4o")
assert model == "gpt-3.5-turbo"
def test_get_deployment_by_litellm_model(model_list):
"""Test if the 'get_deployment_by_litellm_model' function is working correctly"""
router = Router(model_list=model_list)
deployment = router._get_deployment_by_litellm_model(model="gpt-3.5-turbo")
assert deployment is not None
def test_get_pattern(model_list):
router = Router(model_list=model_list)
pattern = router.pattern_router.get_pattern(model="claude-3")
assert pattern is not None
def test_deployments_by_pattern(model_list):
router = Router(model_list=model_list)
deployments = router.pattern_router.get_deployments_by_pattern(model="claude-3")
assert deployments is not None
def test_replace_model_in_jsonl(model_list):
router = Router(model_list=model_list)
deployments = router.pattern_router.get_deployments_by_pattern(model="claude-3")
assert deployments is not None
# def test_pattern_match_deployments(model_list):
# from litellm.router_utils.pattern_match_deployments import PatternMatchRouter
# import re
# patter_router = PatternMatchRouter()
# request = "fo::hi::static::hello"
# model_name = "fo::*:static::*"
# model_name_regex = patter_router._pattern_to_regex(model_name)
# # Match against the request
# match = re.match(model_name_regex, request)
# print(f"match: {match}")
# print(f"match.end: {match.end()}")
# if match is None:
# raise ValueError("Match not found")
# updated_model = patter_router.set_deployment_model_name(
# matched_pattern=match, litellm_deployment_litellm_model="openai/*"
# )
# assert updated_model == "openai/fo::hi:static::hello"
@pytest.mark.parametrize(
"user_request_model, model_name, litellm_model, expected_model",
[
("llmengine/foo", "llmengine/*", "openai/foo", "openai/foo"),
("llmengine/foo", "llmengine/*", "openai/*", "openai/foo"),
(
"fo::hi::static::hello",
"fo::*::static::*",
"openai/fo::*:static::*",
"openai/fo::hi:static::hello",
),
(
"fo::hi::static::hello",
"fo::*::static::*",
"openai/gpt-3.5-turbo",
"openai/gpt-3.5-turbo",
),
(
"bedrock/meta.llama3-70b",
"*meta.llama3*",
"bedrock/meta.llama3-*",
"bedrock/meta.llama3-70b",
),
(
"meta.llama3-70b",
"*meta.llama3*",
"bedrock/meta.llama3-*",
"meta.llama3-70b",
),
],
)
def test_pattern_match_deployment_set_model_name(
user_request_model, model_name, litellm_model, expected_model
):
from re import Match
from litellm.router_utils.pattern_match_deployments import PatternMatchRouter
pattern_router = PatternMatchRouter()
import re
# Convert model_name into a proper regex
model_name_regex = pattern_router._pattern_to_regex(model_name)
# Match against the request
match = re.match(model_name_regex, user_request_model)
if match is None:
raise ValueError("Match not found")
# Call the set_deployment_model_name function
updated_model = pattern_router.set_deployment_model_name(match, litellm_model)
print(updated_model) # Expected output: "openai/fo::hi:static::hello"
assert updated_model == expected_model
updated_models = pattern_router._return_pattern_matched_deployments(
match,
deployments=[
{
"model_name": model_name,
"litellm_params": {"model": litellm_model},
}
],
)
for model in updated_models:
assert model["litellm_params"]["model"] == expected_model
@pytest.mark.asyncio
async def test_pass_through_moderation_endpoint_factory(model_list):
router = Router(model_list=model_list)
response = await router._pass_through_moderation_endpoint_factory(
original_function=litellm.amoderation,
input="this is valid good text",
model=None,
)
assert response is not None
@pytest.mark.parametrize(
"has_default_fallbacks, expected_result",
[(True, True), (False, False)],
)
def test_has_default_fallbacks(model_list, has_default_fallbacks, expected_result):
router = Router(
model_list=model_list,
default_fallbacks=(
["my-default-fallback-model"] if has_default_fallbacks else None
),
)
assert router._has_default_fallbacks() is expected_result