litellm/litellm/litellm_core_utils/token_counter.py

83 lines
3.1 KiB
Python

# What is this?
## Helper utilities for token counting
from typing import Optional
import litellm
from litellm import verbose_logger
def get_modified_max_tokens(
model: str,
base_model: str,
messages: Optional[list],
user_max_tokens: Optional[int],
buffer_perc: Optional[float],
buffer_num: Optional[float],
) -> Optional[int]:
"""
Params:
Returns the user's max output tokens, adjusted for:
- the size of input - for models where input + output can't exceed X
- model max output tokens - for models where there is a separate output token limit
"""
try:
if user_max_tokens is None:
return None
## MODEL INFO
_model_info = litellm.get_model_info(model=model)
max_output_tokens = litellm.get_max_tokens(
model=base_model
) # assume min context window is 4k tokens
## UNKNOWN MAX OUTPUT TOKENS - return user defined amount
if max_output_tokens is None:
return user_max_tokens
input_tokens = litellm.token_counter(model=base_model, messages=messages)
# token buffer
if buffer_perc is None:
buffer_perc = 0.1
if buffer_num is None:
buffer_num = 10
token_buffer = max(
buffer_perc * input_tokens, buffer_num
) # give at least a 10 token buffer. token counting can be imprecise.
input_tokens += int(token_buffer)
verbose_logger.debug(
f"max_output_tokens: {max_output_tokens}, user_max_tokens: {user_max_tokens}"
)
## CASE 1: model input + output can't exceed X - happens when max input = max output, e.g. gpt-3.5-turbo
if _model_info["max_input_tokens"] == max_output_tokens:
verbose_logger.debug(
f"input_tokens: {input_tokens}, max_output_tokens: {max_output_tokens}"
)
if input_tokens > max_output_tokens:
pass # allow call to fail normally - don't set max_tokens to negative.
elif (
user_max_tokens + input_tokens > max_output_tokens
): # we can still modify to keep it positive but below the limit
verbose_logger.debug(
f"MODIFYING MAX TOKENS - user_max_tokens={user_max_tokens}, input_tokens={input_tokens}, max_output_tokens={max_output_tokens}"
)
user_max_tokens = int(max_output_tokens - input_tokens)
## CASE 2: user_max_tokens> model max output tokens
elif user_max_tokens > max_output_tokens:
user_max_tokens = max_output_tokens
verbose_logger.debug(
f"litellm.litellm_core_utils.token_counter.py::get_modified_max_tokens() - user_max_tokens: {user_max_tokens}"
)
return user_max_tokens
except Exception as e:
verbose_logger.error(
"litellm.litellm_core_utils.token_counter.py::get_modified_max_tokens() - Error while checking max token limit: {}\nmodel={}, base_model={}".format(
str(e), model, base_model
)
)
return user_max_tokens