litellm/litellm/llms/azure_ai/chat/transformation.py
Krish Dholakia 2b9db05e08
feat(proxy_cli.py): add new 'log_config' cli param (#6352)
* feat(proxy_cli.py): add new 'log_config' cli param

Allows passing logging.conf to uvicorn on startup

* docs(cli.md): add logging conf to uvicorn cli docs

* fix(get_llm_provider_logic.py): fix default api base for litellm_proxy

Fixes https://github.com/BerriAI/litellm/issues/6332

* feat(openai_like/embedding): Add support for jina ai embeddings

Closes https://github.com/BerriAI/litellm/issues/6337

* docs(deploy.md): update entrypoint.sh filepath post-refactor

Fixes outdated docs

* feat(prometheus.py): emit time_to_first_token metric on prometheus

Closes https://github.com/BerriAI/litellm/issues/6334

* fix(prometheus.py): only emit time to first token metric if stream is True

enables more accurate ttft usage

* test: handle vertex api instability

* fix(get_llm_provider_logic.py): fix import

* fix(openai.py): fix deepinfra default api base

* fix(anthropic/transformation.py): remove anthropic beta header (#6361)
2024-10-21 21:25:58 -07:00

68 lines
2.5 KiB
Python

from typing import List, Optional, Tuple
import litellm
from litellm._logging import verbose_logger
from litellm.llms.OpenAI.openai import OpenAIConfig
from litellm.llms.prompt_templates.common_utils import convert_content_list_to_str
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ProviderField
class AzureAIStudioConfig(OpenAIConfig):
def get_required_params(self) -> List[ProviderField]:
"""For a given provider, return it's required fields with a description"""
return [
ProviderField(
field_name="api_key",
field_type="string",
field_description="Your Azure AI Studio API Key.",
field_value="zEJ...",
),
ProviderField(
field_name="api_base",
field_type="string",
field_description="Your Azure AI Studio API Base.",
field_value="https://Mistral-serverless.",
),
]
def _transform_messages(self, messages: List[AllMessageValues]) -> List:
for message in messages:
texts = convert_content_list_to_str(message=message)
if texts:
message["content"] = texts
return messages
def _is_azure_openai_model(self, model: str) -> bool:
try:
if "/" in model:
model = model.split("/", 1)[1]
if (
model in litellm.open_ai_chat_completion_models
or model in litellm.open_ai_text_completion_models
or model in litellm.open_ai_embedding_models
):
return True
except Exception:
return False
return False
def _get_openai_compatible_provider_info(
self,
model: str,
api_base: Optional[str],
api_key: Optional[str],
custom_llm_provider: str,
) -> Tuple[Optional[str], Optional[str], str]:
api_base = api_base or get_secret_str("AZURE_AI_API_BASE")
dynamic_api_key = api_key or get_secret_str("AZURE_AI_API_KEY")
if self._is_azure_openai_model(model=model):
verbose_logger.debug(
"Model={} is Azure OpenAI model. Setting custom_llm_provider='azure'.".format(
model
)
)
custom_llm_provider = "azure"
return api_base, dynamic_api_key, custom_llm_provider