litellm/cookbook/proxy-server/main.py
2023-08-11 16:45:45 -07:00

165 lines
No EOL
5.1 KiB
Python

from flask import Flask, request, jsonify, abort
from flask_cors import CORS
import traceback
import litellm
from litellm import completion
import os, dotenv
dotenv.load_dotenv()
######### LOGGING ###################
# log your data to slack, supabase
litellm.success_callback=["slack", "supabase"] # set .env SLACK_API_TOKEN, SLACK_API_SECRET, SLACK_API_CHANNEL, SUPABASE
######### ERROR MONITORING ##########
# log errors to slack, sentry, supabase
litellm.failure_callback=["slack", "sentry", "supabase"] # .env SENTRY_API_URL
app = Flask(__name__)
CORS(app)
@app.route('/')
def index():
return 'received!', 200
@app.route('/chat/completions', methods=["POST"])
def api_completion():
data = request.json
try:
# pass in data to completion function, unpack data
response = completion(**data)
except Exception as e:
# call handle_error function
return handle_error(data)
return response, 200
@app.route('/get_models', methods=["POST"])
def get_models():
try:
return litellm.model_list
except Exception as e:
traceback.print_exc()
response = {"error": str(e)}
return response, 200
if __name__ == "__main__":
from waitress import serve
serve(app, host="0.0.0.0", port=5000, threads=500)
############### Advanced ##########################
################ ERROR HANDLING #####################
# implement model fallbacks, cooldowns, and retries
# if a model fails assume it was rate limited and let it cooldown for 60s
def handle_error(data):
import time
# retry completion() request with fallback models
response = None
start_time = time.time()
rate_limited_models = set()
model_expiration_times = {}
fallback_strategy=['gpt-3.5-turbo', 'command-nightly', 'claude-2']
while response == None and time.time() - start_time < 45: # retry for 45s
for model in fallback_strategy:
try:
if model in rate_limited_models: # check if model is currently cooling down
if model_expiration_times.get(model) and time.time() >= model_expiration_times[model]:
rate_limited_models.remove(model) # check if it's been 60s of cool down and remove model
else:
continue # skip model
print(f"calling model {model}")
response = completion(**data)
if response != None:
return response
except Exception as e:
rate_limited_models.add(model)
model_expiration_times[model] = time.time() + 60 # cool down this selected model
pass
return response
########### Pricing is tracked in Supabase ############
############ Caching ###################################
# make a new endpoint with caching
# This Cache is built using ChromaDB
# it has two functions add_cache() and get_cache()
@app.route('/chat/completions', methods=["POST"])
def api_completion_with_cache():
data = request.json
try:
cache_response = get_cache(data['messages'])
if cache_response!=None:
return cache_response
# pass in data to completion function, unpack data
response = completion(**data)
# add to cache
except Exception as e:
# call handle_error function
return handle_error(data)
return response, 200
import uuid
cache_collection = None
# Add a response to the cache
def add_cache(messages, model_response):
global cache_collection
if cache_collection is None:
make_collection()
user_question = message_to_user_question(messages)
# Add the user question and model response to the cache
cache_collection.add(
documents=[user_question],
metadatas=[{"model_response": str(model_response)}],
ids=[str(uuid.uuid4())]
)
return
# Retrieve a response from the cache if similarity is above the threshold
def get_cache(messages, similarity_threshold):
try:
global cache_collection
if cache_collection is None:
make_collection()
user_question = message_to_user_question(messages)
# Query the cache for the user question
results = cache_collection.query(
query_texts=[user_question],
n_results=1
)
if len(results['distances'][0]) == 0:
return None # Cache is empty
distance = results['distances'][0][0]
sim = (1 - distance)
if sim >= similarity_threshold:
return results['metadatas'][0][0]["model_response"] # Return cached response
else:
return None # No cache hit
except Exception as e:
print("Error in get cache", e)
raise e
# Initialize the cache collection
def make_collection():
import chromadb
global cache_collection
client = chromadb.Client()
cache_collection = client.create_collection("llm_responses")
# HELPER: Extract user's question from messages
def message_to_user_question(messages):
user_question = ""
for message in messages:
if message['role'] == 'user':
user_question += message["content"]
return user_question