forked from phoenix/litellm-mirror
177 lines
5.5 KiB
Python
177 lines
5.5 KiB
Python
import os
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable
|
|
from litellm.utils import ModelResponse
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
llm = None
|
|
class VLLMError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
# check if vllm is installed
|
|
def validate_environment(model: str, llm: any=None):
|
|
try:
|
|
from vllm import LLM, SamplingParams
|
|
if llm is None:
|
|
llm = LLM(model=model)
|
|
return llm, SamplingParams
|
|
except:
|
|
raise VLLMError(status_code=0, message="The vllm package is not installed in your environment. Run - `pip install vllm` before proceeding.")
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
custom_prompt_dict={},
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
try:
|
|
llm, SamplingParams = validate_environment(model=model)
|
|
except Exception as e:
|
|
raise VLLMError(status_code=0, message=str(e))
|
|
sampling_params = SamplingParams(**optional_params)
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=messages
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": sampling_params},
|
|
)
|
|
|
|
outputs = llm.generate(prompt, sampling_params)
|
|
|
|
|
|
## COMPLETION CALL
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
return iter(outputs)
|
|
else:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=outputs,
|
|
additional_args={"complete_input_dict": sampling_params},
|
|
)
|
|
print_verbose(f"raw model_response: {outputs}")
|
|
## RESPONSE OBJECT
|
|
model_response["choices"][0]["message"]["content"] = outputs[0].outputs[0].text
|
|
|
|
## CALCULATING USAGE
|
|
prompt_tokens = len(outputs[0].prompt_token_ids)
|
|
completion_tokens = len(outputs[0].outputs[0].token_ids)
|
|
|
|
model_response["created"] = time.time()
|
|
model_response["model"] = model
|
|
model_response["usage"] = {
|
|
"prompt_tokens": prompt_tokens,
|
|
"completion_tokens": completion_tokens,
|
|
"total_tokens": prompt_tokens + completion_tokens,
|
|
}
|
|
return model_response
|
|
|
|
def batch_completions(
|
|
model: str,
|
|
messages: list,
|
|
optional_params=None,
|
|
custom_prompt_dict={}
|
|
):
|
|
"""
|
|
Example usage:
|
|
import litellm
|
|
import os
|
|
from litellm import batch_completion
|
|
|
|
|
|
responses = batch_completion(
|
|
model="vllm/facebook/opt-125m",
|
|
messages = [
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": "good morning? "
|
|
}
|
|
],
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": "what's the time? "
|
|
}
|
|
]
|
|
]
|
|
)
|
|
"""
|
|
global llm
|
|
try:
|
|
llm, SamplingParams = validate_environment(model=model, llm=llm)
|
|
except Exception as e:
|
|
if "data parallel group is already initialized" in e:
|
|
pass
|
|
else:
|
|
raise VLLMError(status_code=0, message=str(e))
|
|
sampling_params = SamplingParams(**optional_params)
|
|
prompts = []
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
for message in messages:
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=message
|
|
)
|
|
prompts.append(prompt)
|
|
else:
|
|
for message in messages:
|
|
prompt = prompt_factory(model=model, messages=message)
|
|
prompts.append(prompt)
|
|
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
|
|
final_outputs = []
|
|
for output in outputs:
|
|
model_response = ModelResponse()
|
|
## RESPONSE OBJECT
|
|
model_response["choices"][0]["message"]["content"] = output.outputs[0].text
|
|
|
|
## CALCULATING USAGE
|
|
prompt_tokens = len(output.prompt_token_ids)
|
|
completion_tokens = len(output.outputs[0].token_ids)
|
|
|
|
model_response["created"] = time.time()
|
|
model_response["model"] = model
|
|
model_response["usage"] = {
|
|
"prompt_tokens": prompt_tokens,
|
|
"completion_tokens": completion_tokens,
|
|
"total_tokens": prompt_tokens + completion_tokens,
|
|
}
|
|
final_outputs.append(model_response)
|
|
return final_outputs
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|