litellm/litellm/llms/vllm.py
2023-09-06 19:26:19 -07:00

177 lines
5.5 KiB
Python

import os
import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
from .prompt_templates.factory import prompt_factory, custom_prompt
llm = None
class VLLMError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
# check if vllm is installed
def validate_environment(model: str, llm: any=None):
try:
from vllm import LLM, SamplingParams
if llm is None:
llm = LLM(model=model)
return llm, SamplingParams
except:
raise VLLMError(status_code=0, message="The vllm package is not installed in your environment. Run - `pip install vllm` before proceeding.")
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
custom_prompt_dict={},
optional_params=None,
litellm_params=None,
logger_fn=None,
):
try:
llm, SamplingParams = validate_environment(model=model)
except Exception as e:
raise VLLMError(status_code=0, message=str(e))
sampling_params = SamplingParams(**optional_params)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages
)
else:
prompt = prompt_factory(model=model, messages=messages)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": sampling_params},
)
outputs = llm.generate(prompt, sampling_params)
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True:
return iter(outputs)
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=outputs,
additional_args={"complete_input_dict": sampling_params},
)
print_verbose(f"raw model_response: {outputs}")
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = outputs[0].outputs[0].text
## CALCULATING USAGE
prompt_tokens = len(outputs[0].prompt_token_ids)
completion_tokens = len(outputs[0].outputs[0].token_ids)
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def batch_completions(
model: str,
messages: list,
optional_params=None,
custom_prompt_dict={}
):
"""
Example usage:
import litellm
import os
from litellm import batch_completion
responses = batch_completion(
model="vllm/facebook/opt-125m",
messages = [
[
{
"role": "user",
"content": "good morning? "
}
],
[
{
"role": "user",
"content": "what's the time? "
}
]
]
)
"""
global llm
try:
llm, SamplingParams = validate_environment(model=model, llm=llm)
except Exception as e:
if "data parallel group is already initialized" in e:
pass
else:
raise VLLMError(status_code=0, message=str(e))
sampling_params = SamplingParams(**optional_params)
prompts = []
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
for message in messages:
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=message
)
prompts.append(prompt)
else:
for message in messages:
prompt = prompt_factory(model=model, messages=message)
prompts.append(prompt)
outputs = llm.generate(prompts, sampling_params)
final_outputs = []
for output in outputs:
model_response = ModelResponse()
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = output.outputs[0].text
## CALCULATING USAGE
prompt_tokens = len(output.prompt_token_ids)
completion_tokens = len(output.outputs[0].token_ids)
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
final_outputs.append(model_response)
return final_outputs
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass