litellm/tests/pass_through_tests/test_vertex_ai.py
Krish Dholakia 3933fba41f
LiteLLM Minor Fixes & Improvements (09/19/2024) (#5793)
* fix(model_prices_and_context_window.json): add cost tracking for more vertex llama3.1 model

8b and 70b models

* fix(proxy/utils.py): handle data being none on pre-call hooks

* fix(proxy/): create views on initial proxy startup

fixes base case, where user starts proxy for first time

 Fixes https://github.com/BerriAI/litellm/issues/5756

* build(config.yml): fix vertex version for test

* feat(ui/): support enabling/disabling slack alerting

Allows admin to turn on/off slack alerting through ui

* feat(rerank/main.py): support langfuse logging

* fix(proxy/utils.py): fix linting errors

* fix(langfuse.py): log clean metadata

* test(tests): replace deprecated openai model
2024-09-20 08:19:52 -07:00

197 lines
5.9 KiB
Python

"""
Test Vertex AI Pass Through
1. use Credentials client side, Assert SpendLog was created
"""
import vertexai
from vertexai.preview.generative_models import GenerativeModel
import tempfile
import json
import os
import pytest
import asyncio
# Path to your service account JSON file
SERVICE_ACCOUNT_FILE = "path/to/your/service-account.json"
def load_vertex_ai_credentials():
# Define the path to the vertex_key.json file
print("loading vertex ai credentials")
filepath = os.path.dirname(os.path.abspath(__file__))
vertex_key_path = filepath + "/vertex_key.json"
# Read the existing content of the file or create an empty dictionary
try:
with open(vertex_key_path, "r") as file:
# Read the file content
print("Read vertexai file path")
content = file.read()
# If the file is empty or not valid JSON, create an empty dictionary
if not content or not content.strip():
service_account_key_data = {}
else:
# Attempt to load the existing JSON content
file.seek(0)
service_account_key_data = json.load(file)
except FileNotFoundError:
# If the file doesn't exist, create an empty dictionary
service_account_key_data = {}
# Update the service_account_key_data with environment variables
private_key_id = os.environ.get("VERTEX_AI_PRIVATE_KEY_ID", "")
private_key = os.environ.get("VERTEX_AI_PRIVATE_KEY", "")
private_key = private_key.replace("\\n", "\n")
service_account_key_data["private_key_id"] = private_key_id
service_account_key_data["private_key"] = private_key
# print(f"service_account_key_data: {service_account_key_data}")
# Create a temporary file
with tempfile.NamedTemporaryFile(mode="w+", delete=False) as temp_file:
# Write the updated content to the temporary files
json.dump(service_account_key_data, temp_file, indent=2)
# Export the temporary file as GOOGLE_APPLICATION_CREDENTIALS
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.abspath(temp_file.name)
async def call_spend_logs_endpoint():
"""
Call this
curl -X GET "http://0.0.0.0:4000/spend/logs" -H "Authorization: Bearer sk-1234"
"""
import datetime
import requests
todays_date = datetime.datetime.now().strftime("%Y-%m-%d")
url = f"http://0.0.0.0:4000/global/spend/logs?api_key=best-api-key-ever"
headers = {"Authorization": f"Bearer sk-1234"}
response = requests.get(url, headers=headers)
print("response from call_spend_logs_endpoint", response)
json_response = response.json()
# get spend for today
"""
json response looks like this
[{'date': '2024-08-30', 'spend': 0.00016600000000000002, 'api_key': 'best-api-key-ever'}]
"""
todays_date = datetime.datetime.now().strftime("%Y-%m-%d")
for spend_log in json_response:
if spend_log["date"] == todays_date:
return spend_log["spend"]
LITE_LLM_ENDPOINT = "http://localhost:4000"
@pytest.mark.asyncio()
async def test_basic_vertex_ai_pass_through_with_spendlog():
spend_before = await call_spend_logs_endpoint() or 0.0
load_vertex_ai_credentials()
vertexai.init(
project="adroit-crow-413218",
location="us-central1",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex-ai",
api_transport="rest",
)
model = GenerativeModel(model_name="gemini-1.0-pro")
response = model.generate_content("hi")
print("response", response)
await asyncio.sleep(20)
spend_after = await call_spend_logs_endpoint()
print("spend_after", spend_after)
assert (
spend_after > spend_before
), "Spend should be greater than before. spend_before: {}, spend_after: {}".format(
spend_before, spend_after
)
pass
@pytest.mark.asyncio()
async def test_basic_vertex_ai_pass_through_streaming_with_spendlog():
spend_before = await call_spend_logs_endpoint() or 0.0
print("spend_before", spend_before)
load_vertex_ai_credentials()
vertexai.init(
project="adroit-crow-413218",
location="us-central1",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex-ai",
api_transport="rest",
)
model = GenerativeModel(model_name="gemini-1.0-pro")
response = model.generate_content("hi", stream=True)
for chunk in response:
print("chunk", chunk)
print("response", response)
await asyncio.sleep(20)
spend_after = await call_spend_logs_endpoint()
print("spend_after", spend_after)
assert (
spend_after > spend_before
), "Spend should be greater than before. spend_before: {}, spend_after: {}".format(
spend_before, spend_after
)
pass
@pytest.mark.asyncio
async def test_vertex_ai_pass_through_endpoint_context_caching():
import vertexai
from vertexai.generative_models import Part
from vertexai.preview import caching
import datetime
load_vertex_ai_credentials()
vertexai.init(
project="adroit-crow-413218",
location="us-central1",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex-ai",
api_transport="rest",
)
system_instruction = """
You are an expert researcher. You always stick to the facts in the sources provided, and never make up new facts.
Now look at these research papers, and answer the following questions.
"""
contents = [
Part.from_uri(
"gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
mime_type="application/pdf",
),
Part.from_uri(
"gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
mime_type="application/pdf",
),
]
cached_content = caching.CachedContent.create(
model_name="gemini-1.5-pro-001",
system_instruction=system_instruction,
contents=contents,
ttl=datetime.timedelta(minutes=60),
# display_name="example-cache",
)
print(cached_content.name)