forked from phoenix/litellm-mirror
* fix(caching): convert arg to equivalent kwargs in llm caching handler prevent unexpected errors * fix(caching_handler.py): don't pass args to caching * fix(caching): remove all *args from caching.py * fix(caching): consistent function signatures + abc method * test(caching_unit_tests.py): add unit tests for llm caching ensures coverage for common caching scenarios across different implementations * refactor(litellm_logging.py): move to using cache key from hidden params instead of regenerating one * fix(router.py): drop redis password requirement * fix(proxy_server.py): fix faulty slack alerting check * fix(langfuse.py): avoid copying functions/thread lock objects in metadata fixes metadata copy error when parent otel span in metadata * test: update test
2435 lines
74 KiB
Python
2435 lines
74 KiB
Python
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
import uuid
|
|
|
|
from dotenv import load_dotenv
|
|
from test_rerank import assert_response_shape
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import asyncio
|
|
import hashlib
|
|
import random
|
|
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm import aembedding, completion, embedding
|
|
from litellm.caching.caching import Cache
|
|
|
|
from unittest.mock import AsyncMock, patch, MagicMock, call
|
|
import datetime
|
|
from datetime import timedelta
|
|
|
|
# litellm.set_verbose=True
|
|
|
|
messages = [{"role": "user", "content": "who is ishaan Github? "}]
|
|
# comment
|
|
|
|
import random
|
|
import string
|
|
|
|
|
|
def generate_random_word(length=4):
|
|
letters = string.ascii_lowercase
|
|
return "".join(random.choice(letters) for _ in range(length))
|
|
|
|
|
|
messages = [{"role": "user", "content": "who is ishaan 5222"}]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_dual_cache_async_batch_get_cache():
|
|
"""
|
|
Unit testing for Dual Cache async_batch_get_cache()
|
|
- 2 item query
|
|
- in_memory result has a partial hit (1/2)
|
|
- hit redis for the other -> expect to return None
|
|
- expect result = [in_memory_result, None]
|
|
"""
|
|
from litellm.caching.caching import DualCache, InMemoryCache, RedisCache
|
|
|
|
in_memory_cache = InMemoryCache()
|
|
redis_cache = RedisCache() # get credentials from environment
|
|
dual_cache = DualCache(in_memory_cache=in_memory_cache, redis_cache=redis_cache)
|
|
|
|
with patch.object(
|
|
dual_cache.redis_cache, "async_batch_get_cache", new=AsyncMock()
|
|
) as mock_redis_cache:
|
|
mock_redis_cache.return_value = {"test_value_2": None, "test_value": "hello"}
|
|
|
|
await dual_cache.async_batch_get_cache(keys=["test_value", "test_value_2"])
|
|
await dual_cache.async_batch_get_cache(keys=["test_value", "test_value_2"])
|
|
|
|
assert mock_redis_cache.call_count == 1
|
|
|
|
|
|
def test_dual_cache_batch_get_cache():
|
|
"""
|
|
Unit testing for Dual Cache batch_get_cache()
|
|
- 2 item query
|
|
- in_memory result has a partial hit (1/2)
|
|
- hit redis for the other -> expect to return None
|
|
- expect result = [in_memory_result, None]
|
|
"""
|
|
from litellm.caching.caching import DualCache, InMemoryCache, RedisCache
|
|
|
|
in_memory_cache = InMemoryCache()
|
|
redis_cache = RedisCache() # get credentials from environment
|
|
dual_cache = DualCache(in_memory_cache=in_memory_cache, redis_cache=redis_cache)
|
|
|
|
in_memory_cache.set_cache(key="test_value", value="hello world")
|
|
|
|
result = dual_cache.batch_get_cache(
|
|
keys=["test_value", "test_value_2"], parent_otel_span=None
|
|
)
|
|
|
|
assert result[0] == "hello world"
|
|
assert result[1] == None
|
|
|
|
|
|
# @pytest.mark.skip(reason="")
|
|
def test_caching_dynamic_args(): # test in memory cache
|
|
try:
|
|
litellm.set_verbose = True
|
|
_redis_host_env = os.environ.pop("REDIS_HOST")
|
|
_redis_port_env = os.environ.pop("REDIS_PORT")
|
|
_redis_password_env = os.environ.pop("REDIS_PASSWORD")
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=_redis_host_env,
|
|
port=_redis_port_env,
|
|
password=_redis_password_env,
|
|
)
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
litellm.cache = None # disable cache
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
if (
|
|
response2["choices"][0]["message"]["content"]
|
|
!= response1["choices"][0]["message"]["content"]
|
|
):
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
os.environ["REDIS_HOST"] = _redis_host_env
|
|
os.environ["REDIS_PORT"] = _redis_port_env
|
|
os.environ["REDIS_PASSWORD"] = _redis_password_env
|
|
except Exception as e:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_caching_v2(): # test in memory cache
|
|
try:
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache()
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
litellm.cache = None # disable cache
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
if (
|
|
response2["choices"][0]["message"]["content"]
|
|
!= response1["choices"][0]["message"]["content"]
|
|
):
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
except Exception as e:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_caching_v2()
|
|
|
|
|
|
def test_caching_with_ttl():
|
|
try:
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache()
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo", messages=messages, caching=True, ttl=0
|
|
)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
litellm.cache = None # disable cache
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
assert (
|
|
response2["choices"][0]["message"]["content"]
|
|
!= response1["choices"][0]["message"]["content"]
|
|
)
|
|
except Exception as e:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_caching_with_default_ttl():
|
|
try:
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache(ttl=0)
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
litellm.cache = None # disable cache
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
assert response2["id"] != response1["id"]
|
|
except Exception as e:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sync_flag",
|
|
[True, False],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_caching_with_cache_controls(sync_flag):
|
|
try:
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache()
|
|
message = [{"role": "user", "content": f"Hey, how's it going? {uuid.uuid4()}"}]
|
|
if sync_flag:
|
|
## TTL = 0
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo", messages=messages, cache={"ttl": 0}
|
|
)
|
|
response2 = completion(
|
|
model="gpt-3.5-turbo", messages=messages, cache={"s-maxage": 10}
|
|
)
|
|
|
|
assert response2["id"] != response1["id"]
|
|
else:
|
|
## TTL = 0
|
|
response1 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
cache={"ttl": 0},
|
|
mock_response="Hello world",
|
|
)
|
|
await asyncio.sleep(10)
|
|
response2 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
cache={"s-maxage": 10},
|
|
mock_response="Hello world",
|
|
)
|
|
|
|
assert response2["id"] != response1["id"]
|
|
|
|
message = [{"role": "user", "content": f"Hey, how's it going? {uuid.uuid4()}"}]
|
|
## TTL = 5
|
|
if sync_flag:
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
cache={"ttl": 5},
|
|
mock_response="Hello world",
|
|
)
|
|
response2 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
cache={"s-maxage": 5},
|
|
mock_response="Hello world",
|
|
)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
assert response2["id"] == response1["id"]
|
|
else:
|
|
response1 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
cache={"ttl": 25},
|
|
mock_response="Hello world",
|
|
)
|
|
await asyncio.sleep(10)
|
|
response2 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
cache={"s-maxage": 25},
|
|
mock_response="Hello world",
|
|
)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
assert response2["id"] == response1["id"]
|
|
except Exception as e:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_caching_with_cache_controls()
|
|
|
|
|
|
def test_caching_with_models_v2():
|
|
messages = [
|
|
{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}
|
|
]
|
|
litellm.cache = Cache()
|
|
print("test2 for caching")
|
|
litellm.set_verbose = True
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
response3 = completion(model="azure/chatgpt-v-2", messages=messages, caching=True)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
if (
|
|
response3["choices"][0]["message"]["content"]
|
|
== response2["choices"][0]["message"]["content"]
|
|
):
|
|
# if models are different, it should not return cached response
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(f"Error occurred:")
|
|
if (
|
|
response1["choices"][0]["message"]["content"]
|
|
!= response2["choices"][0]["message"]["content"]
|
|
):
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
|
|
|
|
# test_caching_with_models_v2()
|
|
|
|
|
|
def c():
|
|
litellm.enable_caching_on_provider_specific_optional_params = True
|
|
messages = [
|
|
{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}
|
|
]
|
|
litellm.cache = Cache()
|
|
print("test2 for caching")
|
|
litellm.set_verbose = True
|
|
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
top_k=10,
|
|
caching=True,
|
|
mock_response="Hello: {}".format(uuid.uuid4()),
|
|
)
|
|
response2 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
top_k=10,
|
|
caching=True,
|
|
mock_response="Hello: {}".format(uuid.uuid4()),
|
|
)
|
|
response3 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
top_k=9,
|
|
caching=True,
|
|
mock_response="Hello: {}".format(uuid.uuid4()),
|
|
)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
if (
|
|
response3["choices"][0]["message"]["content"]
|
|
== response2["choices"][0]["message"]["content"]
|
|
):
|
|
# if models are different, it should not return cached response
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(f"Error occurred:")
|
|
if (
|
|
response1["choices"][0]["message"]["content"]
|
|
!= response2["choices"][0]["message"]["content"]
|
|
):
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
litellm.enable_caching_on_provider_specific_optional_params = False
|
|
|
|
|
|
embedding_large_text = (
|
|
"""
|
|
small text
|
|
"""
|
|
* 5
|
|
)
|
|
|
|
|
|
# # test_caching_with_models()
|
|
def test_embedding_caching():
|
|
import time
|
|
|
|
# litellm.set_verbose = True
|
|
|
|
litellm.cache = Cache()
|
|
text_to_embed = [embedding_large_text]
|
|
start_time = time.time()
|
|
embedding1 = embedding(
|
|
model="text-embedding-ada-002", input=text_to_embed, caching=True
|
|
)
|
|
end_time = time.time()
|
|
print(f"Embedding 1 response time: {end_time - start_time} seconds")
|
|
|
|
time.sleep(1)
|
|
start_time = time.time()
|
|
embedding2 = embedding(
|
|
model="text-embedding-ada-002", input=text_to_embed, caching=True
|
|
)
|
|
end_time = time.time()
|
|
# print(f"embedding2: {embedding2}")
|
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
|
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
|
if embedding2["data"][0]["embedding"] != embedding1["data"][0]["embedding"]:
|
|
print(f"embedding1: {embedding1}")
|
|
print(f"embedding2: {embedding2}")
|
|
pytest.fail("Error occurred: Embedding caching failed")
|
|
|
|
|
|
# test_embedding_caching()
|
|
|
|
|
|
def test_embedding_caching_azure():
|
|
print("Testing azure embedding caching")
|
|
import time
|
|
|
|
litellm.cache = Cache()
|
|
text_to_embed = [embedding_large_text]
|
|
|
|
api_key = os.environ["AZURE_API_KEY"]
|
|
api_base = os.environ["AZURE_API_BASE"]
|
|
api_version = os.environ["AZURE_API_VERSION"]
|
|
|
|
os.environ["AZURE_API_VERSION"] = ""
|
|
os.environ["AZURE_API_BASE"] = ""
|
|
os.environ["AZURE_API_KEY"] = ""
|
|
|
|
start_time = time.time()
|
|
print("AZURE CONFIGS")
|
|
print(api_version)
|
|
print(api_key)
|
|
print(api_base)
|
|
embedding1 = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm", "this is another item"],
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
caching=True,
|
|
)
|
|
end_time = time.time()
|
|
print(f"Embedding 1 response time: {end_time - start_time} seconds")
|
|
|
|
time.sleep(1)
|
|
start_time = time.time()
|
|
embedding2 = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm", "this is another item"],
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
caching=True,
|
|
)
|
|
end_time = time.time()
|
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
|
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
|
if embedding2["data"][0]["embedding"] != embedding1["data"][0]["embedding"]:
|
|
print(f"embedding1: {embedding1}")
|
|
print(f"embedding2: {embedding2}")
|
|
pytest.fail("Error occurred: Embedding caching failed")
|
|
|
|
os.environ["AZURE_API_VERSION"] = api_version
|
|
os.environ["AZURE_API_BASE"] = api_base
|
|
os.environ["AZURE_API_KEY"] = api_key
|
|
|
|
|
|
# test_embedding_caching_azure()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_embedding_caching_azure_individual_items():
|
|
"""
|
|
Tests caching for individual items in an embedding list
|
|
|
|
- Cache an item
|
|
- call aembedding(..) with the item + 1 unique item
|
|
- compare to a 2nd aembedding (...) with 2 unique items
|
|
```
|
|
embedding_1 = ["hey how's it going", "I'm doing well"]
|
|
embedding_val_1 = embedding(...)
|
|
|
|
embedding_2 = ["hey how's it going", "I'm fine"]
|
|
embedding_val_2 = embedding(...)
|
|
|
|
assert embedding_val_1[0]["id"] == embedding_val_2[0]["id"]
|
|
```
|
|
"""
|
|
litellm.cache = Cache()
|
|
common_msg = f"hey how's it going {uuid.uuid4()}"
|
|
common_msg_2 = f"hey how's it going {uuid.uuid4()}"
|
|
embedding_1 = [common_msg]
|
|
embedding_2 = [
|
|
common_msg,
|
|
f"I'm fine {uuid.uuid4()}",
|
|
]
|
|
|
|
embedding_val_1 = await aembedding(
|
|
model="azure/azure-embedding-model", input=embedding_1, caching=True
|
|
)
|
|
embedding_val_2 = await aembedding(
|
|
model="azure/azure-embedding-model", input=embedding_2, caching=True
|
|
)
|
|
print(f"embedding_val_2._hidden_params: {embedding_val_2._hidden_params}")
|
|
assert embedding_val_2._hidden_params["cache_hit"] == True
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_embedding_caching_azure_individual_items_reordered():
|
|
"""
|
|
Tests caching for individual items in an embedding list
|
|
|
|
- Cache an item
|
|
- call aembedding(..) with the item + 1 unique item
|
|
- compare to a 2nd aembedding (...) with 2 unique items
|
|
```
|
|
embedding_1 = ["hey how's it going", "I'm doing well"]
|
|
embedding_val_1 = embedding(...)
|
|
|
|
embedding_2 = ["hey how's it going", "I'm fine"]
|
|
embedding_val_2 = embedding(...)
|
|
|
|
assert embedding_val_1[0]["id"] == embedding_val_2[0]["id"]
|
|
```
|
|
"""
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache()
|
|
common_msg = f"{uuid.uuid4()}"
|
|
common_msg_2 = f"hey how's it going {uuid.uuid4()}"
|
|
embedding_1 = [common_msg_2, common_msg]
|
|
embedding_2 = [
|
|
common_msg,
|
|
f"I'm fine {uuid.uuid4()}",
|
|
]
|
|
|
|
embedding_val_1 = await aembedding(
|
|
model="azure/azure-embedding-model", input=embedding_1, caching=True
|
|
)
|
|
print("embedding val 1", embedding_val_1)
|
|
embedding_val_2 = await aembedding(
|
|
model="azure/azure-embedding-model", input=embedding_2, caching=True
|
|
)
|
|
print("embedding val 2", embedding_val_2)
|
|
print(f"embedding_val_2._hidden_params: {embedding_val_2._hidden_params}")
|
|
assert embedding_val_2._hidden_params["cache_hit"] == True
|
|
|
|
assert embedding_val_2.data[0]["embedding"] == embedding_val_1.data[1]["embedding"]
|
|
assert embedding_val_2.data[0]["index"] != embedding_val_1.data[1]["index"]
|
|
assert embedding_val_2.data[0]["index"] == 0
|
|
assert embedding_val_1.data[1]["index"] == 1
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_embedding_caching_base_64():
|
|
""" """
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
)
|
|
import uuid
|
|
|
|
inputs = [
|
|
f"{uuid.uuid4()} hello this is ishaan",
|
|
f"{uuid.uuid4()} hello this is ishaan again",
|
|
]
|
|
|
|
embedding_val_1 = await aembedding(
|
|
model="azure/azure-embedding-model",
|
|
input=inputs,
|
|
caching=True,
|
|
encoding_format="base64",
|
|
)
|
|
await asyncio.sleep(5)
|
|
print("\n\nCALL2\n\n")
|
|
embedding_val_2 = await aembedding(
|
|
model="azure/azure-embedding-model",
|
|
input=inputs,
|
|
caching=True,
|
|
encoding_format="base64",
|
|
)
|
|
|
|
assert embedding_val_2._hidden_params["cache_hit"] == True
|
|
print(embedding_val_2)
|
|
print(embedding_val_1)
|
|
assert embedding_val_2.data[0]["embedding"] == embedding_val_1.data[0]["embedding"]
|
|
assert embedding_val_2.data[1]["embedding"] == embedding_val_1.data[1]["embedding"]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_embedding_caching_redis_ttl():
|
|
"""
|
|
Test default_in_redis_ttl is used for embedding caching
|
|
|
|
issue: https://github.com/BerriAI/litellm/issues/6010
|
|
"""
|
|
litellm.set_verbose = True
|
|
|
|
# Create a mock for the pipeline
|
|
mock_pipeline = AsyncMock()
|
|
mock_set = AsyncMock()
|
|
mock_pipeline.__aenter__.return_value.set = mock_set
|
|
# Patch the Redis class to return our mock
|
|
with patch("redis.asyncio.Redis.pipeline", return_value=mock_pipeline):
|
|
# Simulate the context manager behavior for the pipeline
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host="dummy_host",
|
|
password="dummy_password",
|
|
default_in_redis_ttl=2,
|
|
)
|
|
|
|
inputs = [
|
|
f"{uuid.uuid4()} hello this is ishaan",
|
|
f"{uuid.uuid4()} hello this is ishaan again",
|
|
]
|
|
|
|
# Call the embedding method
|
|
embedding_val_1 = await litellm.aembedding(
|
|
model="azure/azure-embedding-model",
|
|
input=inputs,
|
|
encoding_format="base64",
|
|
)
|
|
|
|
await asyncio.sleep(3) # Wait for TTL to expire
|
|
|
|
# Check if set was called on the pipeline
|
|
mock_set.assert_called()
|
|
|
|
# Check if the TTL was set correctly
|
|
for call in mock_set.call_args_list:
|
|
args, kwargs = call
|
|
print(f"redis pipeline set args: {args}")
|
|
print(f"redis pipeline set kwargs: {kwargs}")
|
|
assert kwargs.get("ex") == datetime.timedelta(
|
|
seconds=2
|
|
) # Check if TTL is set to 2.5 seconds
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_redis_cache_basic():
|
|
"""
|
|
Init redis client
|
|
- write to client
|
|
- read from client
|
|
"""
|
|
litellm.set_verbose = False
|
|
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding / reading from cache
|
|
messages = [
|
|
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
|
|
]
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
)
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
)
|
|
|
|
cache_key = litellm.cache.get_cache_key(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
)
|
|
print(f"cache_key: {cache_key}")
|
|
litellm.cache.add_cache(result=response1, cache_key=cache_key)
|
|
print(f"cache key pre async get: {cache_key}")
|
|
stored_val = await litellm.cache.async_get_cache(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
)
|
|
print(f"stored_val: {stored_val}")
|
|
assert stored_val["id"] == response1.id
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_redis_batch_cache_write():
|
|
"""
|
|
Init redis client
|
|
- write to client
|
|
- read from client
|
|
"""
|
|
litellm.set_verbose = True
|
|
import uuid
|
|
|
|
messages = [
|
|
{"role": "user", "content": f"write a one sentence poem about: {uuid.uuid4()}"},
|
|
]
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
redis_flush_size=2,
|
|
)
|
|
response1 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
)
|
|
|
|
response2 = await litellm.acompletion(
|
|
model="anthropic/claude-3-opus-20240229",
|
|
messages=messages,
|
|
mock_response="good morning from this test",
|
|
)
|
|
|
|
# we hit the flush size, this will now send to redis
|
|
await asyncio.sleep(2)
|
|
|
|
response4 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
)
|
|
|
|
assert response1.id == response4.id
|
|
|
|
|
|
def test_redis_cache_completion():
|
|
litellm.set_verbose = False
|
|
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding / reading from cache
|
|
messages = [
|
|
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
|
|
]
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
)
|
|
print("test2 for Redis Caching - non streaming")
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
caching=True,
|
|
max_tokens=20,
|
|
)
|
|
response2 = completion(
|
|
model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20
|
|
)
|
|
response3 = completion(
|
|
model="gpt-3.5-turbo", messages=messages, caching=True, temperature=0.5
|
|
)
|
|
response4 = completion(model="azure/chatgpt-v-2", messages=messages, caching=True)
|
|
|
|
print("\nresponse 1", response1)
|
|
print("\nresponse 2", response2)
|
|
print("\nresponse 3", response3)
|
|
print("\nresponse 4", response4)
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
|
|
"""
|
|
1 & 2 should be exactly the same
|
|
1 & 3 should be different, since input params are diff
|
|
1 & 4 should be diff, since models are diff
|
|
"""
|
|
if (
|
|
response1["choices"][0]["message"]["content"]
|
|
!= response2["choices"][0]["message"]["content"]
|
|
): # 1 and 2 should be the same
|
|
# 1&2 have the exact same input params. This MUST Be a CACHE HIT
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
if (
|
|
response1["choices"][0]["message"]["content"]
|
|
== response3["choices"][0]["message"]["content"]
|
|
):
|
|
# if input params like seed, max_tokens are diff it should NOT be a cache hit
|
|
print(f"response1: {response1}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(
|
|
f"Response 1 == response 3. Same model, diff params shoudl not cache Error occurred:"
|
|
)
|
|
if (
|
|
response1["choices"][0]["message"]["content"]
|
|
== response4["choices"][0]["message"]["content"]
|
|
):
|
|
# if models are different, it should not return cached response
|
|
print(f"response1: {response1}")
|
|
print(f"response4: {response4}")
|
|
pytest.fail(f"Error occurred:")
|
|
|
|
assert response1.id == response2.id
|
|
assert response1.created == response2.created
|
|
assert response1.choices[0].message.content == response2.choices[0].message.content
|
|
|
|
|
|
# test_redis_cache_completion()
|
|
|
|
|
|
def test_redis_cache_completion_stream():
|
|
try:
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
litellm.callbacks = []
|
|
litellm.set_verbose = True
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding / reading from cache
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
]
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
)
|
|
print("test for caching, streaming + completion")
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=0.2,
|
|
stream=True,
|
|
)
|
|
response_1_id = ""
|
|
for chunk in response1:
|
|
print(chunk)
|
|
response_1_id = chunk.id
|
|
time.sleep(0.5)
|
|
response2 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=0.2,
|
|
stream=True,
|
|
)
|
|
response_2_id = ""
|
|
for chunk in response2:
|
|
print(chunk)
|
|
response_2_id = chunk.id
|
|
assert (
|
|
response_1_id == response_2_id
|
|
), f"Response 1 != Response 2. Same params, Response 1{response_1_id} != Response 2{response_2_id}"
|
|
litellm.success_callback = []
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
print(e)
|
|
litellm.success_callback = []
|
|
raise e
|
|
"""
|
|
|
|
1 & 2 should be exactly the same
|
|
"""
|
|
|
|
|
|
# test_redis_cache_completion_stream()
|
|
|
|
|
|
@pytest.mark.skip(reason="Local test. Requires running redis cluster locally.")
|
|
@pytest.mark.asyncio
|
|
async def test_redis_cache_cluster_init_unit_test():
|
|
try:
|
|
from redis.asyncio import RedisCluster as AsyncRedisCluster
|
|
from redis.cluster import RedisCluster
|
|
|
|
from litellm.caching.caching import RedisCache
|
|
|
|
litellm.set_verbose = True
|
|
|
|
# List of startup nodes
|
|
startup_nodes = [
|
|
{"host": "127.0.0.1", "port": "7001"},
|
|
]
|
|
|
|
resp = RedisCache(startup_nodes=startup_nodes)
|
|
|
|
assert isinstance(resp.redis_client, RedisCluster)
|
|
assert isinstance(resp.init_async_client(), AsyncRedisCluster)
|
|
|
|
resp = litellm.Cache(type="redis", redis_startup_nodes=startup_nodes)
|
|
|
|
assert isinstance(resp.cache, RedisCache)
|
|
assert isinstance(resp.cache.redis_client, RedisCluster)
|
|
assert isinstance(resp.cache.init_async_client(), AsyncRedisCluster)
|
|
|
|
except Exception as e:
|
|
print(f"{str(e)}\n\n{traceback.format_exc()}")
|
|
raise e
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.skip(reason="Local test. Requires running redis cluster locally.")
|
|
async def test_redis_cache_cluster_init_with_env_vars_unit_test():
|
|
try:
|
|
import json
|
|
|
|
from redis.asyncio import RedisCluster as AsyncRedisCluster
|
|
from redis.cluster import RedisCluster
|
|
|
|
from litellm.caching.caching import RedisCache
|
|
|
|
litellm.set_verbose = True
|
|
|
|
# List of startup nodes
|
|
startup_nodes = [
|
|
{"host": "127.0.0.1", "port": "7001"},
|
|
{"host": "127.0.0.1", "port": "7003"},
|
|
{"host": "127.0.0.1", "port": "7004"},
|
|
{"host": "127.0.0.1", "port": "7005"},
|
|
{"host": "127.0.0.1", "port": "7006"},
|
|
{"host": "127.0.0.1", "port": "7007"},
|
|
]
|
|
|
|
# set startup nodes in environment variables
|
|
os.environ["REDIS_CLUSTER_NODES"] = json.dumps(startup_nodes)
|
|
print("REDIS_CLUSTER_NODES", os.environ["REDIS_CLUSTER_NODES"])
|
|
|
|
# unser REDIS_HOST, REDIS_PORT, REDIS_PASSWORD
|
|
os.environ.pop("REDIS_HOST", None)
|
|
os.environ.pop("REDIS_PORT", None)
|
|
os.environ.pop("REDIS_PASSWORD", None)
|
|
|
|
resp = RedisCache()
|
|
print("response from redis cache", resp)
|
|
assert isinstance(resp.redis_client, RedisCluster)
|
|
assert isinstance(resp.init_async_client(), AsyncRedisCluster)
|
|
|
|
resp = litellm.Cache(type="redis")
|
|
|
|
assert isinstance(resp.cache, RedisCache)
|
|
assert isinstance(resp.cache.redis_client, RedisCluster)
|
|
assert isinstance(resp.cache.init_async_client(), AsyncRedisCluster)
|
|
|
|
except Exception as e:
|
|
print(f"{str(e)}\n\n{traceback.format_exc()}")
|
|
raise e
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_redis_cache_acompletion_stream():
|
|
try:
|
|
litellm.set_verbose = True
|
|
random_word = generate_random_word()
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_word}",
|
|
}
|
|
]
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
)
|
|
print("test for caching, streaming + completion")
|
|
response_1_content = ""
|
|
response_2_content = ""
|
|
|
|
response1 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
)
|
|
async for chunk in response1:
|
|
response_1_content += chunk.choices[0].delta.content or ""
|
|
print(response_1_content)
|
|
|
|
await asyncio.sleep(0.5)
|
|
print("\n\n Response 1 content: ", response_1_content, "\n\n")
|
|
|
|
response2 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
)
|
|
async for chunk in response2:
|
|
response_2_content += chunk.choices[0].delta.content or ""
|
|
print(response_2_content)
|
|
|
|
print("\nresponse 1", response_1_content)
|
|
print("\nresponse 2", response_2_content)
|
|
assert (
|
|
response_1_content == response_2_content
|
|
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
print(f"{str(e)}\n\n{traceback.format_exc()}")
|
|
raise e
|
|
|
|
|
|
# test_redis_cache_acompletion_stream()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_redis_cache_atext_completion():
|
|
try:
|
|
litellm.set_verbose = True
|
|
prompt = f"write a one sentence poem about: {uuid.uuid4()}"
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
supported_call_types=["atext_completion"],
|
|
)
|
|
print("test for caching, atext_completion")
|
|
|
|
response1 = await litellm.atext_completion(
|
|
model="gpt-3.5-turbo-instruct", prompt=prompt, max_tokens=40, temperature=1
|
|
)
|
|
|
|
await asyncio.sleep(0.5)
|
|
print("\n\n Response 1 content: ", response1, "\n\n")
|
|
|
|
response2 = await litellm.atext_completion(
|
|
model="gpt-3.5-turbo-instruct", prompt=prompt, max_tokens=40, temperature=1
|
|
)
|
|
|
|
print(response2)
|
|
|
|
assert response1.id == response2.id
|
|
except Exception as e:
|
|
print(f"{str(e)}\n\n{traceback.format_exc()}")
|
|
raise e
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_redis_cache_acompletion_stream_bedrock():
|
|
import asyncio
|
|
|
|
try:
|
|
litellm.set_verbose = True
|
|
random_word = generate_random_word()
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_word}",
|
|
}
|
|
]
|
|
litellm.cache = Cache(type="redis")
|
|
print("test for caching, streaming + completion")
|
|
response_1_content = ""
|
|
response_2_content = ""
|
|
|
|
response1 = await litellm.acompletion(
|
|
model="bedrock/anthropic.claude-v2",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
)
|
|
async for chunk in response1:
|
|
print(chunk)
|
|
response_1_content += chunk.choices[0].delta.content or ""
|
|
print(response_1_content)
|
|
|
|
await asyncio.sleep(1)
|
|
print("\n\n Response 1 content: ", response_1_content, "\n\n")
|
|
|
|
response2 = await litellm.acompletion(
|
|
model="bedrock/anthropic.claude-v2",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
)
|
|
async for chunk in response2:
|
|
print(chunk)
|
|
response_2_content += chunk.choices[0].delta.content or ""
|
|
print(response_2_content)
|
|
|
|
print("\nfinal response 1", response_1_content)
|
|
print("\nfinal response 2", response_2_content)
|
|
assert (
|
|
response_1_content == response_2_content
|
|
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
|
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
print(e)
|
|
raise e
|
|
|
|
|
|
# @pytest.mark.skip(reason="AWS Suspended Account")
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_s3_cache_stream_azure(sync_mode):
|
|
try:
|
|
litellm.set_verbose = True
|
|
random_word = generate_random_word()
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_word}",
|
|
}
|
|
]
|
|
litellm.cache = Cache(
|
|
type="s3",
|
|
s3_bucket_name="litellm-proxy",
|
|
s3_region_name="us-west-2",
|
|
)
|
|
print("s3 Cache: test for caching, streaming + completion")
|
|
response_1_content = ""
|
|
response_2_content = ""
|
|
|
|
response_1_created = ""
|
|
response_2_created = ""
|
|
|
|
if sync_mode:
|
|
response1 = litellm.completion(
|
|
model="azure/chatgpt-v-2",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
)
|
|
for chunk in response1:
|
|
print(chunk)
|
|
response_1_created = chunk.created
|
|
response_1_content += chunk.choices[0].delta.content or ""
|
|
print(response_1_content)
|
|
else:
|
|
response1 = await litellm.acompletion(
|
|
model="azure/chatgpt-v-2",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
)
|
|
async for chunk in response1:
|
|
print(chunk)
|
|
response_1_created = chunk.created
|
|
response_1_content += chunk.choices[0].delta.content or ""
|
|
print(response_1_content)
|
|
|
|
if sync_mode:
|
|
time.sleep(0.5)
|
|
else:
|
|
await asyncio.sleep(0.5)
|
|
print("\n\n Response 1 content: ", response_1_content, "\n\n")
|
|
|
|
if sync_mode:
|
|
response2 = litellm.completion(
|
|
model="azure/chatgpt-v-2",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
)
|
|
for chunk in response2:
|
|
print(chunk)
|
|
response_2_content += chunk.choices[0].delta.content or ""
|
|
response_2_created = chunk.created
|
|
print(response_2_content)
|
|
else:
|
|
response2 = await litellm.acompletion(
|
|
model="azure/chatgpt-v-2",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
)
|
|
async for chunk in response2:
|
|
print(chunk)
|
|
response_2_content += chunk.choices[0].delta.content or ""
|
|
response_2_created = chunk.created
|
|
print(response_2_content)
|
|
|
|
print("\nresponse 1", response_1_content)
|
|
print("\nresponse 2", response_2_content)
|
|
|
|
assert (
|
|
response_1_content == response_2_content
|
|
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
|
|
|
# prioritizing getting a new deploy out - will look at this in the next deploy
|
|
# print("response 1 created", response_1_created)
|
|
# print("response 2 created", response_2_created)
|
|
|
|
# assert response_1_created == response_2_created
|
|
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
print(e)
|
|
raise e
|
|
|
|
|
|
# test_s3_cache_acompletion_stream_azure()
|
|
|
|
|
|
@pytest.mark.skip(reason="AWS Suspended Account")
|
|
@pytest.mark.asyncio
|
|
async def test_s3_cache_acompletion_azure():
|
|
import asyncio
|
|
import logging
|
|
import tracemalloc
|
|
|
|
tracemalloc.start()
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
try:
|
|
litellm.set_verbose = True
|
|
random_word = generate_random_word()
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_word}",
|
|
}
|
|
]
|
|
litellm.cache = Cache(
|
|
type="s3",
|
|
s3_bucket_name="litellm-my-test-bucket-2",
|
|
s3_region_name="us-east-1",
|
|
)
|
|
print("s3 Cache: test for caching, streaming + completion")
|
|
|
|
response1 = await litellm.acompletion(
|
|
model="azure/chatgpt-v-2",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
)
|
|
print(response1)
|
|
|
|
time.sleep(2)
|
|
|
|
response2 = await litellm.acompletion(
|
|
model="azure/chatgpt-v-2",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
)
|
|
|
|
print(response2)
|
|
|
|
assert response1.id == response2.id
|
|
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
print(e)
|
|
raise e
|
|
|
|
|
|
# test_redis_cache_acompletion_stream_bedrock()
|
|
# redis cache with custom keys
|
|
def custom_get_cache_key(*args, **kwargs):
|
|
# return key to use for your cache:
|
|
key = (
|
|
kwargs.get("model", "")
|
|
+ str(kwargs.get("messages", ""))
|
|
+ str(kwargs.get("temperature", ""))
|
|
+ str(kwargs.get("logit_bias", ""))
|
|
)
|
|
return key
|
|
|
|
|
|
def test_custom_redis_cache_with_key():
|
|
messages = [{"role": "user", "content": "write a one line story"}]
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
)
|
|
litellm.cache.get_cache_key = custom_get_cache_key
|
|
|
|
local_cache = {}
|
|
|
|
def set_cache(key, value):
|
|
local_cache[key] = value
|
|
|
|
def get_cache(key):
|
|
if key in local_cache:
|
|
return local_cache[key]
|
|
|
|
litellm.cache.cache.set_cache = set_cache
|
|
litellm.cache.cache.get_cache = get_cache
|
|
|
|
# patch this redis cache get and set call
|
|
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
temperature=1,
|
|
caching=True,
|
|
num_retries=3,
|
|
)
|
|
response2 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
temperature=1,
|
|
caching=True,
|
|
num_retries=3,
|
|
)
|
|
response3 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
temperature=1,
|
|
caching=False,
|
|
num_retries=3,
|
|
)
|
|
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
|
|
if (
|
|
response3["choices"][0]["message"]["content"]
|
|
== response2["choices"][0]["message"]["content"]
|
|
):
|
|
pytest.fail(f"Error occurred:")
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
|
|
|
|
# test_custom_redis_cache_with_key()
|
|
|
|
|
|
def test_cache_override():
|
|
# test if we can override the cache, when `caching=False` but litellm.cache = Cache() is set
|
|
# in this case it should not return cached responses
|
|
litellm.cache = Cache()
|
|
print("Testing cache override")
|
|
litellm.set_verbose = True
|
|
|
|
# test embedding
|
|
response1 = embedding(
|
|
model="text-embedding-ada-002", input=["hello who are you"], caching=False
|
|
)
|
|
|
|
start_time = time.time()
|
|
|
|
response2 = embedding(
|
|
model="text-embedding-ada-002", input=["hello who are you"], caching=False
|
|
)
|
|
|
|
end_time = time.time()
|
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
|
|
|
assert (
|
|
end_time - start_time > 0.05
|
|
) # ensure 2nd response comes in over 0.05s. This should not be cached.
|
|
|
|
|
|
# test_cache_override()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_cache_control_overrides():
|
|
# we use the cache controls to ensure there is no cache hit on this test
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
)
|
|
print("Testing cache override")
|
|
litellm.set_verbose = True
|
|
import uuid
|
|
|
|
unique_num = str(uuid.uuid4())
|
|
|
|
start_time = time.time()
|
|
|
|
response1 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "hello who are you" + unique_num,
|
|
}
|
|
],
|
|
caching=True,
|
|
)
|
|
|
|
print(response1)
|
|
|
|
await asyncio.sleep(2)
|
|
|
|
response2 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "hello who are you" + unique_num,
|
|
}
|
|
],
|
|
caching=True,
|
|
cache={"no-cache": True},
|
|
)
|
|
|
|
print(response2)
|
|
|
|
assert response1.id != response2.id
|
|
|
|
|
|
def test_sync_cache_control_overrides():
|
|
# we use the cache controls to ensure there is no cache hit on this test
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
)
|
|
print("Testing cache override")
|
|
litellm.set_verbose = True
|
|
import uuid
|
|
|
|
unique_num = str(uuid.uuid4())
|
|
|
|
start_time = time.time()
|
|
|
|
response1 = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "hello who are you" + unique_num,
|
|
}
|
|
],
|
|
caching=True,
|
|
)
|
|
|
|
print(response1)
|
|
|
|
time.sleep(2)
|
|
|
|
response2 = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "hello who are you" + unique_num,
|
|
}
|
|
],
|
|
caching=True,
|
|
cache={"no-cache": True},
|
|
)
|
|
|
|
print(response2)
|
|
|
|
assert response1.id != response2.id
|
|
|
|
|
|
def test_custom_redis_cache_params():
|
|
# test if we can init redis with **kwargs
|
|
try:
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
db=0,
|
|
)
|
|
|
|
print(litellm.cache.cache.redis_client)
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {str(e)}")
|
|
|
|
|
|
def test_get_cache_key():
|
|
from litellm.caching.caching import Cache
|
|
|
|
try:
|
|
print("Testing get_cache_key")
|
|
cache_instance = Cache()
|
|
cache_key = cache_instance.get_cache_key(
|
|
**{
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{"role": "user", "content": "write a one sentence poem about: 7510"}
|
|
],
|
|
"max_tokens": 40,
|
|
"temperature": 0.2,
|
|
"stream": True,
|
|
"litellm_call_id": "ffe75e7e-8a07-431f-9a74-71a5b9f35f0b",
|
|
"litellm_logging_obj": {},
|
|
}
|
|
)
|
|
cache_key_2 = cache_instance.get_cache_key(
|
|
**{
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{"role": "user", "content": "write a one sentence poem about: 7510"}
|
|
],
|
|
"max_tokens": 40,
|
|
"temperature": 0.2,
|
|
"stream": True,
|
|
"litellm_call_id": "ffe75e7e-8a07-431f-9a74-71a5b9f35f0b",
|
|
"litellm_logging_obj": {},
|
|
}
|
|
)
|
|
cache_key_str = "model: gpt-3.5-turbomessages: [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}]max_tokens: 40temperature: 0.2stream: True"
|
|
hash_object = hashlib.sha256(cache_key_str.encode())
|
|
# Hexadecimal representation of the hash
|
|
hash_hex = hash_object.hexdigest()
|
|
assert cache_key == hash_hex
|
|
assert (
|
|
cache_key_2 == hash_hex
|
|
), f"{cache_key} != {cache_key_2}. The same kwargs should have the same cache key across runs"
|
|
|
|
embedding_cache_key = cache_instance.get_cache_key(
|
|
**{
|
|
"model": "azure/azure-embedding-model",
|
|
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
|
|
"api_key": "",
|
|
"api_version": "2023-07-01-preview",
|
|
"timeout": None,
|
|
"max_retries": 0,
|
|
"input": ["hi who is ishaan"],
|
|
"caching": True,
|
|
"client": "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
|
|
}
|
|
)
|
|
|
|
print(embedding_cache_key)
|
|
|
|
embedding_cache_key_str = (
|
|
"model: azure/azure-embedding-modelinput: ['hi who is ishaan']"
|
|
)
|
|
hash_object = hashlib.sha256(embedding_cache_key_str.encode())
|
|
# Hexadecimal representation of the hash
|
|
hash_hex = hash_object.hexdigest()
|
|
assert (
|
|
embedding_cache_key == hash_hex
|
|
), f"{embedding_cache_key} != 'model: azure/azure-embedding-modelinput: ['hi who is ishaan']'. The same kwargs should have the same cache key across runs"
|
|
|
|
# Proxy - embedding cache, test if embedding key, gets model_group and not model
|
|
embedding_cache_key_2 = cache_instance.get_cache_key(
|
|
**{
|
|
"model": "azure/azure-embedding-model",
|
|
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
|
|
"api_key": "",
|
|
"api_version": "2023-07-01-preview",
|
|
"timeout": None,
|
|
"max_retries": 0,
|
|
"input": ["hi who is ishaan"],
|
|
"caching": True,
|
|
"client": "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
|
|
"proxy_server_request": {
|
|
"url": "http://0.0.0.0:8000/embeddings",
|
|
"method": "POST",
|
|
"headers": {
|
|
"host": "0.0.0.0:8000",
|
|
"user-agent": "curl/7.88.1",
|
|
"accept": "*/*",
|
|
"content-type": "application/json",
|
|
"content-length": "80",
|
|
},
|
|
"body": {
|
|
"model": "azure-embedding-model",
|
|
"input": ["hi who is ishaan"],
|
|
},
|
|
},
|
|
"user": None,
|
|
"metadata": {
|
|
"user_api_key": None,
|
|
"headers": {
|
|
"host": "0.0.0.0:8000",
|
|
"user-agent": "curl/7.88.1",
|
|
"accept": "*/*",
|
|
"content-type": "application/json",
|
|
"content-length": "80",
|
|
},
|
|
"model_group": "EMBEDDING_MODEL_GROUP",
|
|
"deployment": "azure/azure-embedding-model-ModelID-azure/azure-embedding-modelhttps://openai-gpt-4-test-v-1.openai.azure.com/2023-07-01-preview",
|
|
},
|
|
"model_info": {
|
|
"mode": "embedding",
|
|
"base_model": "text-embedding-ada-002",
|
|
"id": "20b2b515-f151-4dd5-a74f-2231e2f54e29",
|
|
},
|
|
"litellm_call_id": "2642e009-b3cd-443d-b5dd-bb7d56123b0e",
|
|
"litellm_logging_obj": "<litellm.utils.Logging object at 0x12f1bddb0>",
|
|
}
|
|
)
|
|
|
|
print(embedding_cache_key_2)
|
|
embedding_cache_key_str_2 = (
|
|
"model: EMBEDDING_MODEL_GROUPinput: ['hi who is ishaan']"
|
|
)
|
|
hash_object = hashlib.sha256(embedding_cache_key_str_2.encode())
|
|
# Hexadecimal representation of the hash
|
|
hash_hex = hash_object.hexdigest()
|
|
assert embedding_cache_key_2 == hash_hex
|
|
print("passed!")
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
pytest.fail(f"Error occurred:", e)
|
|
|
|
|
|
# test_get_cache_key()
|
|
|
|
|
|
def test_cache_context_managers():
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache(type="redis")
|
|
|
|
# cache is on, disable it
|
|
litellm.disable_cache()
|
|
assert litellm.cache == None
|
|
assert "cache" not in litellm.success_callback
|
|
assert "cache" not in litellm._async_success_callback
|
|
|
|
# disable a cache that is off
|
|
litellm.disable_cache()
|
|
assert litellm.cache == None
|
|
assert "cache" not in litellm.success_callback
|
|
assert "cache" not in litellm._async_success_callback
|
|
|
|
litellm.enable_cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
)
|
|
|
|
assert litellm.cache != None
|
|
assert litellm.cache.type == "redis"
|
|
|
|
print("VARS of litellm.cache", vars(litellm.cache))
|
|
|
|
|
|
# test_cache_context_managers()
|
|
|
|
|
|
@pytest.mark.skip(reason="beta test - new redis semantic cache")
|
|
def test_redis_semantic_cache_completion():
|
|
litellm.set_verbose = True
|
|
import logging
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding /reading from cache
|
|
|
|
print("testing semantic caching")
|
|
litellm.cache = Cache(
|
|
type="redis-semantic",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
similarity_threshold=0.8,
|
|
redis_semantic_cache_embedding_model="text-embedding-ada-002",
|
|
)
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
max_tokens=20,
|
|
)
|
|
print(f"response1: {response1}")
|
|
|
|
random_number = random.randint(1, 100000)
|
|
|
|
response2 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
max_tokens=20,
|
|
)
|
|
print(f"response2: {response1}")
|
|
assert response1.id == response2.id
|
|
|
|
|
|
# test_redis_cache_completion()
|
|
|
|
|
|
@pytest.mark.skip(reason="beta test - new redis semantic cache")
|
|
@pytest.mark.asyncio
|
|
async def test_redis_semantic_cache_acompletion():
|
|
litellm.set_verbose = True
|
|
import logging
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding / reading from cache
|
|
|
|
print("testing semantic caching")
|
|
litellm.cache = Cache(
|
|
type="redis-semantic",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
similarity_threshold=0.8,
|
|
redis_semantic_cache_use_async=True,
|
|
)
|
|
response1 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
max_tokens=5,
|
|
)
|
|
print(f"response1: {response1}")
|
|
|
|
random_number = random.randint(1, 100000)
|
|
response2 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
max_tokens=5,
|
|
)
|
|
print(f"response2: {response2}")
|
|
assert response1.id == response2.id
|
|
|
|
|
|
def test_caching_redis_simple(caplog, capsys):
|
|
"""
|
|
Relevant issue - https://github.com/BerriAI/litellm/issues/4511
|
|
"""
|
|
litellm.set_verbose = True ## REQUIRED FOR TEST.
|
|
litellm.cache = Cache(
|
|
type="redis", url=os.getenv("REDIS_SSL_URL")
|
|
) # passing `supported_call_types = ["completion"]` has no effect
|
|
|
|
s = time.time()
|
|
|
|
uuid_str = str(uuid.uuid4())
|
|
x = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": f"Hello, how are you? Wink {uuid_str}"}],
|
|
stream=True,
|
|
)
|
|
for m in x:
|
|
print(m)
|
|
print(time.time() - s)
|
|
|
|
s2 = time.time()
|
|
x = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": f"Hello, how are you? Wink {uuid_str}"}],
|
|
stream=True,
|
|
)
|
|
for m in x:
|
|
print(m)
|
|
print(time.time() - s2)
|
|
|
|
redis_async_caching_error = False
|
|
redis_service_logging_error = False
|
|
captured = capsys.readouterr()
|
|
captured_logs = [rec.message for rec in caplog.records]
|
|
|
|
print(f"captured_logs: {captured_logs}")
|
|
for item in captured_logs:
|
|
if (
|
|
"Error connecting to Async Redis client" in item
|
|
or "Set ASYNC Redis Cache" in item
|
|
):
|
|
redis_async_caching_error = True
|
|
|
|
if "ServiceLogging.async_service_success_hook" in item:
|
|
redis_service_logging_error = True
|
|
|
|
assert redis_async_caching_error is False
|
|
assert redis_service_logging_error is False
|
|
assert "async success_callback: reaches cache for logging" not in captured.out
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_qdrant_semantic_cache_acompletion():
|
|
litellm.set_verbose = True
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding /reading from cache
|
|
|
|
print("Testing Qdrant Semantic Caching with acompletion")
|
|
|
|
litellm.cache = Cache(
|
|
type="qdrant-semantic",
|
|
_host_type="cloud",
|
|
qdrant_api_base=os.getenv("QDRANT_URL"),
|
|
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
|
|
qdrant_collection_name="test_collection",
|
|
similarity_threshold=0.8,
|
|
qdrant_quantization_config="binary",
|
|
)
|
|
|
|
response1 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
mock_response="hello",
|
|
max_tokens=20,
|
|
)
|
|
print(f"Response1: {response1}")
|
|
|
|
random_number = random.randint(1, 100000)
|
|
|
|
response2 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
max_tokens=20,
|
|
)
|
|
print(f"Response2: {response2}")
|
|
assert response1.id == response2.id
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_qdrant_semantic_cache_acompletion_stream():
|
|
try:
|
|
random_word = generate_random_word()
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": f"write a joke about: {random_word}",
|
|
}
|
|
]
|
|
litellm.cache = Cache(
|
|
type="qdrant-semantic",
|
|
qdrant_api_base=os.getenv("QDRANT_URL"),
|
|
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
|
|
qdrant_collection_name="test_collection",
|
|
similarity_threshold=0.8,
|
|
qdrant_quantization_config="binary",
|
|
)
|
|
print("Test Qdrant Semantic Caching with streaming + acompletion")
|
|
response_1_content = ""
|
|
response_2_content = ""
|
|
|
|
response1 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
mock_response="hi",
|
|
)
|
|
async for chunk in response1:
|
|
response_1_id = chunk.id
|
|
response_1_content += chunk.choices[0].delta.content or ""
|
|
|
|
time.sleep(2)
|
|
|
|
response2 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
max_tokens=40,
|
|
temperature=1,
|
|
stream=True,
|
|
)
|
|
async for chunk in response2:
|
|
response_2_id = chunk.id
|
|
response_2_content += chunk.choices[0].delta.content or ""
|
|
|
|
print("\nResponse 1", response_1_content, "\nResponse 1 id", response_1_id)
|
|
print("\nResponse 2", response_2_content, "\nResponse 2 id", response_2_id)
|
|
assert (
|
|
response_1_content == response_2_content
|
|
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
|
assert (
|
|
response_1_id == response_2_id
|
|
), f"Response 1 id != Response 2 id, Response 1 id: {response_1_id} != Response 2 id: {response_2_id}"
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
print(f"{str(e)}\n\n{traceback.format_exc()}")
|
|
raise e
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_cache_default_off_acompletion():
|
|
litellm.set_verbose = True
|
|
import logging
|
|
|
|
from litellm._logging import verbose_logger
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
|
|
from litellm.caching.caching import CacheMode
|
|
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding /reading from cache
|
|
litellm.cache = Cache(
|
|
type="local",
|
|
mode=CacheMode.default_off,
|
|
)
|
|
|
|
### No Cache hits when it's default off
|
|
|
|
response1 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
mock_response="hello",
|
|
max_tokens=20,
|
|
)
|
|
print(f"Response1: {response1}")
|
|
|
|
response2 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
max_tokens=20,
|
|
)
|
|
print(f"Response2: {response2}")
|
|
assert response1.id != response2.id
|
|
|
|
## Cache hits when it's default off and then opt in
|
|
|
|
response3 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
mock_response="hello",
|
|
cache={"use-cache": True},
|
|
metadata={"key": "value"},
|
|
max_tokens=20,
|
|
)
|
|
print(f"Response3: {response3}")
|
|
|
|
await asyncio.sleep(2)
|
|
|
|
response4 = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
],
|
|
cache={"use-cache": True},
|
|
metadata={"key": "value"},
|
|
max_tokens=20,
|
|
)
|
|
print(f"Response4: {response4}")
|
|
assert response3.id == response4.id
|
|
|
|
|
|
@pytest.mark.skip(reason="local test. Requires sentinel setup.")
|
|
@pytest.mark.asyncio
|
|
async def test_redis_sentinel_caching():
|
|
"""
|
|
Init redis client
|
|
- write to client
|
|
- read from client
|
|
"""
|
|
litellm.set_verbose = False
|
|
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding / reading from cache
|
|
messages = [
|
|
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
|
|
]
|
|
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
# host=os.environ["REDIS_HOST"],
|
|
# port=os.environ["REDIS_PORT"],
|
|
# password=os.environ["REDIS_PASSWORD"],
|
|
service_name="mymaster",
|
|
sentinel_nodes=[("localhost", 26379)],
|
|
)
|
|
response1 = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
)
|
|
|
|
cache_key = litellm.cache.get_cache_key(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
)
|
|
print(f"cache_key: {cache_key}")
|
|
litellm.cache.add_cache(result=response1, cache_key=cache_key)
|
|
print(f"cache key pre async get: {cache_key}")
|
|
stored_val = litellm.cache.get_cache(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
)
|
|
|
|
print(f"stored_val: {stored_val}")
|
|
assert stored_val["id"] == response1.id
|
|
|
|
stored_val_2 = await litellm.cache.async_get_cache(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
)
|
|
|
|
print(f"stored_val: {stored_val}")
|
|
assert stored_val_2["id"] == response1.id
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_redis_proxy_batch_redis_get_cache():
|
|
"""
|
|
Tests batch_redis_get.py
|
|
|
|
- make 1st call -> expect miss
|
|
- make 2nd call -> expect hit
|
|
"""
|
|
|
|
from litellm.caching.caching import Cache, DualCache
|
|
from litellm.proxy._types import UserAPIKeyAuth
|
|
from litellm.proxy.hooks.batch_redis_get import _PROXY_BatchRedisRequests
|
|
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.getenv("REDIS_HOST"),
|
|
port=os.getenv("REDIS_PORT"),
|
|
password=os.getenv("REDIS_PASSWORD"),
|
|
namespace="test_namespace",
|
|
)
|
|
|
|
batch_redis_get_obj = (
|
|
_PROXY_BatchRedisRequests()
|
|
) # overrides the .async_get_cache method
|
|
|
|
user_api_key_cache = DualCache()
|
|
|
|
import uuid
|
|
|
|
batch_redis_get_obj.in_memory_cache = user_api_key_cache.in_memory_cache
|
|
|
|
messages = [{"role": "user", "content": "hi {}".format(uuid.uuid4())}]
|
|
# 1st call -> expect miss
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
mock_response="hello",
|
|
)
|
|
|
|
assert response is not None
|
|
assert "cache_key" not in response._hidden_params
|
|
print(response._hidden_params)
|
|
|
|
await asyncio.sleep(1)
|
|
|
|
# 2nd call -> expect hit
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
mock_response="hello",
|
|
)
|
|
|
|
print(response._hidden_params)
|
|
assert "cache_key" in response._hidden_params
|
|
|
|
|
|
def test_logging_turn_off_message_logging_streaming():
|
|
litellm.turn_off_message_logging = True
|
|
mock_obj = Cache(type="local")
|
|
litellm.cache = mock_obj
|
|
|
|
with patch.object(mock_obj, "add_cache", new=MagicMock()) as mock_client:
|
|
print(f"mock_obj.add_cache: {mock_obj.add_cache}")
|
|
|
|
resp = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
mock_response="hello",
|
|
stream=True,
|
|
)
|
|
|
|
for chunk in resp:
|
|
continue
|
|
|
|
time.sleep(1)
|
|
|
|
mock_client.assert_called_once()
|
|
|
|
assert mock_client.call_args.args[0].choices[0].message.content == "hello"
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"top_n_1, top_n_2, expect_cache_hit",
|
|
[
|
|
(3, 3, True),
|
|
(3, None, False),
|
|
],
|
|
)
|
|
async def test_basic_rerank_caching(sync_mode, top_n_1, top_n_2, expect_cache_hit):
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache(type="local")
|
|
|
|
if sync_mode is True:
|
|
for idx in range(2):
|
|
if idx == 0:
|
|
top_n = top_n_1
|
|
else:
|
|
top_n = top_n_2
|
|
response = litellm.rerank(
|
|
model="cohere/rerank-english-v3.0",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=top_n,
|
|
)
|
|
else:
|
|
for idx in range(2):
|
|
if idx == 0:
|
|
top_n = top_n_1
|
|
else:
|
|
top_n = top_n_2
|
|
response = await litellm.arerank(
|
|
model="cohere/rerank-english-v3.0",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=top_n,
|
|
)
|
|
|
|
await asyncio.sleep(1)
|
|
|
|
if expect_cache_hit is True:
|
|
assert "cache_key" in response._hidden_params
|
|
else:
|
|
assert "cache_key" not in response._hidden_params
|
|
|
|
print("re rank response: ", response)
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
|
|
assert_response_shape(response, custom_llm_provider="cohere")
|
|
|
|
|
|
def test_basic_caching_import():
|
|
from litellm.caching import Cache
|
|
|
|
assert Cache is not None
|
|
print("Cache imported successfully")
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio()
|
|
async def test_caching_kwargs_input(sync_mode):
|
|
from litellm import acompletion
|
|
from litellm.caching.caching_handler import LLMCachingHandler
|
|
from litellm.types.utils import (
|
|
Choices,
|
|
EmbeddingResponse,
|
|
Message,
|
|
ModelResponse,
|
|
Usage,
|
|
CompletionTokensDetails,
|
|
PromptTokensDetails,
|
|
)
|
|
from datetime import datetime
|
|
|
|
llm_caching_handler = LLMCachingHandler(
|
|
original_function=acompletion, request_kwargs={}, start_time=datetime.now()
|
|
)
|
|
|
|
input = {
|
|
"result": ModelResponse(
|
|
id="chatcmpl-AJ119H5XsDnYiZPp5axJ5d7niwqeR",
|
|
choices=[
|
|
Choices(
|
|
finish_reason="stop",
|
|
index=0,
|
|
message=Message(
|
|
content="Hello! I'm just a computer program, so I don't have feelings, but I'm here to assist you. How can I help you today?",
|
|
role="assistant",
|
|
tool_calls=None,
|
|
function_call=None,
|
|
),
|
|
)
|
|
],
|
|
created=1729095507,
|
|
model="gpt-3.5-turbo-0125",
|
|
object="chat.completion",
|
|
system_fingerprint=None,
|
|
usage=Usage(
|
|
completion_tokens=31,
|
|
prompt_tokens=16,
|
|
total_tokens=47,
|
|
completion_tokens_details=CompletionTokensDetails(
|
|
audio_tokens=None, reasoning_tokens=0
|
|
),
|
|
prompt_tokens_details=PromptTokensDetails(
|
|
audio_tokens=None, cached_tokens=0
|
|
),
|
|
),
|
|
service_tier=None,
|
|
),
|
|
"kwargs": {
|
|
"messages": [{"role": "user", "content": "42HHey, how's it going?"}],
|
|
"caching": True,
|
|
"litellm_call_id": "fae2aa4f-9f75-4f11-8c9c-63ab8d9fae26",
|
|
"preset_cache_key": "2f69f5640d5e0f25315d0e132f1278bb643554d14565d2c61d61564b10ade90f",
|
|
},
|
|
"args": ("gpt-3.5-turbo",),
|
|
}
|
|
if sync_mode is True:
|
|
llm_caching_handler.sync_set_cache(**input)
|
|
else:
|
|
input["original_function"] = acompletion
|
|
await llm_caching_handler.async_set_cache(**input)
|
|
|
|
|
|
@pytest.mark.skip(reason="audio caching not supported yet")
|
|
@pytest.mark.parametrize("stream", [False]) # True,
|
|
@pytest.mark.asyncio()
|
|
async def test_audio_caching(stream):
|
|
litellm.cache = Cache(type="local")
|
|
|
|
## CALL 1 - no cache hit
|
|
completion = await litellm.acompletion(
|
|
model="gpt-4o-audio-preview",
|
|
modalities=["text", "audio"],
|
|
audio={"voice": "alloy", "format": "pcm16"},
|
|
messages=[{"role": "user", "content": "response in 1 word - yes or no"}],
|
|
stream=stream,
|
|
)
|
|
|
|
assert "cache_hit" not in completion._hidden_params
|
|
|
|
## CALL 2 - cache hit
|
|
completion = await litellm.acompletion(
|
|
model="gpt-4o-audio-preview",
|
|
modalities=["text", "audio"],
|
|
audio={"voice": "alloy", "format": "pcm16"},
|
|
messages=[{"role": "user", "content": "response in 1 word - yes or no"}],
|
|
stream=stream,
|
|
)
|
|
|
|
assert "cache_hit" in completion._hidden_params
|
|
|
|
|
|
def test_redis_caching_default_ttl():
|
|
"""
|
|
Ensure that the default redis cache TTL is 60s
|
|
"""
|
|
from litellm.caching.redis_cache import RedisCache
|
|
|
|
litellm.default_redis_ttl = 120
|
|
|
|
cache_obj = RedisCache()
|
|
assert cache_obj.default_ttl == 120
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
async def test_redis_caching_llm_caching_ttl(sync_mode):
|
|
"""
|
|
Ensure default redis cache ttl is used for a sample redis cache object
|
|
"""
|
|
from litellm.caching.redis_cache import RedisCache
|
|
|
|
litellm.default_redis_ttl = 120
|
|
cache_obj = RedisCache()
|
|
assert cache_obj.default_ttl == 120
|
|
|
|
if sync_mode is False:
|
|
# Create an AsyncMock for the Redis client
|
|
mock_redis_instance = AsyncMock()
|
|
|
|
# Make sure the mock can be used as an async context manager
|
|
mock_redis_instance.__aenter__.return_value = mock_redis_instance
|
|
mock_redis_instance.__aexit__.return_value = None
|
|
|
|
## Set cache
|
|
if sync_mode is True:
|
|
with patch.object(cache_obj.redis_client, "set") as mock_set:
|
|
cache_obj.set_cache(key="test", value="test")
|
|
mock_set.assert_called_once_with(name="test", value="test", ex=120)
|
|
else:
|
|
|
|
# Patch self.init_async_client to return our mock Redis client
|
|
with patch.object(
|
|
cache_obj, "init_async_client", return_value=mock_redis_instance
|
|
):
|
|
# Call async_set_cache
|
|
await cache_obj.async_set_cache(key="test", value="test_value")
|
|
|
|
# Verify that the set method was called on the mock Redis instance
|
|
mock_redis_instance.set.assert_called_once_with(
|
|
name="test", value='"test_value"', ex=120
|
|
)
|
|
|
|
## Increment cache
|
|
if sync_mode is True:
|
|
with patch.object(cache_obj.redis_client, "ttl") as mock_incr:
|
|
cache_obj.increment_cache(key="test", value=1)
|
|
mock_incr.assert_called_once_with("test")
|
|
else:
|
|
# Patch self.init_async_client to return our mock Redis client
|
|
with patch.object(
|
|
cache_obj, "init_async_client", return_value=mock_redis_instance
|
|
):
|
|
# Call async_set_cache
|
|
await cache_obj.async_increment(key="test", value="test_value")
|
|
|
|
# Verify that the set method was called on the mock Redis instance
|
|
mock_redis_instance.ttl.assert_called_once_with("test")
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_redis_caching_ttl_pipeline():
|
|
"""
|
|
Ensure that a default ttl is set for all redis functions
|
|
"""
|
|
|
|
from litellm.caching.redis_cache import RedisCache
|
|
|
|
litellm.default_redis_ttl = 120
|
|
expected_timedelta = timedelta(seconds=120)
|
|
cache_obj = RedisCache()
|
|
|
|
## TEST 1 - async_set_cache_pipeline
|
|
# Patch self.init_async_client to return our mock Redis client
|
|
# Call async_set_cache
|
|
mock_pipe_instance = AsyncMock()
|
|
with patch.object(mock_pipe_instance, "set", return_value=None) as mock_set:
|
|
await cache_obj._pipeline_helper(
|
|
pipe=mock_pipe_instance,
|
|
cache_list=[("test_key1", "test_value1"), ("test_key2", "test_value2")],
|
|
ttl=None,
|
|
)
|
|
|
|
# Verify that the set method was called on the mock Redis instance
|
|
mock_set.assert_has_calls(
|
|
[
|
|
call.set("test_key1", '"test_value1"', ex=expected_timedelta),
|
|
call.set("test_key2", '"test_value2"', ex=expected_timedelta),
|
|
]
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_redis_caching_ttl_sadd():
|
|
"""
|
|
Ensure that a default ttl is set for all redis functions
|
|
"""
|
|
from litellm.caching.redis_cache import RedisCache
|
|
|
|
litellm.default_redis_ttl = 120
|
|
expected_timedelta = timedelta(seconds=120)
|
|
cache_obj = RedisCache()
|
|
redis_client = AsyncMock()
|
|
|
|
with patch.object(redis_client, "expire", return_value=None) as mock_expire:
|
|
await cache_obj._set_cache_sadd_helper(
|
|
redis_client=redis_client, key="test_key", value=["test_value"], ttl=None
|
|
)
|
|
print(f"expected_timedelta: {expected_timedelta}")
|
|
assert mock_expire.call_args.args[1] == expected_timedelta
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_dual_cache_caching_batch_get_cache():
|
|
"""
|
|
- check redis cache called for initial batch get cache
|
|
- check redis cache not called for consecutive batch get cache with same keys
|
|
"""
|
|
from litellm.caching.dual_cache import DualCache
|
|
from litellm.caching.redis_cache import RedisCache
|
|
|
|
dc = DualCache(redis_cache=MagicMock(spec=RedisCache))
|
|
|
|
with patch.object(
|
|
dc.redis_cache,
|
|
"async_batch_get_cache",
|
|
new=AsyncMock(
|
|
return_value={"test_key1": "test_value1", "test_key2": "test_value2"}
|
|
),
|
|
) as mock_async_get_cache:
|
|
await dc.async_batch_get_cache(keys=["test_key1", "test_key2"])
|
|
|
|
assert mock_async_get_cache.call_count == 1
|
|
|
|
await dc.async_batch_get_cache(keys=["test_key1", "test_key2"])
|
|
|
|
assert mock_async_get_cache.call_count == 1
|