litellm/tests/local_testing/test_caching_handler.py
Ishaan Jaff f724f3131d
(testing) add unit tests for LLMCachingHandler Class (#6279)
* add unit testing for test_async_set_cache

* test test_async_log_cache_hit_on_callbacks

* assert the correct response type is returned

* test_convert_cached_result_to_model_response

* unit testing for caching handler
2024-10-17 19:12:57 +05:30

343 lines
10 KiB
Python

import os
import sys
import time
import traceback
import uuid
from dotenv import load_dotenv
from test_rerank import assert_response_shape
load_dotenv()
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import asyncio
import hashlib
import random
import pytest
import litellm
from litellm import aembedding, completion, embedding
from litellm.caching.caching import Cache
from unittest.mock import AsyncMock, patch, MagicMock
from litellm.caching.caching_handler import LLMCachingHandler, CachingHandlerResponse
from litellm.caching.caching import LiteLLMCacheType
from litellm.types.utils import CallTypes
from litellm.types.rerank import RerankResponse
from litellm.types.utils import (
ModelResponse,
EmbeddingResponse,
TextCompletionResponse,
TranscriptionResponse,
Embedding,
)
from datetime import timedelta, datetime
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
from litellm._logging import verbose_logger
import logging
def setup_cache():
# Set up the cache
cache = Cache(
type=LiteLLMCacheType.REDIS,
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
litellm.cache = cache
return cache
chat_completion_response = litellm.ModelResponse(
id=str(uuid.uuid4()),
choices=[
litellm.Choices(
message=litellm.Message(
role="assistant", content="Hello, how can I help you today?"
)
)
],
)
text_completion_response = litellm.TextCompletionResponse(
id=str(uuid.uuid4()),
choices=[litellm.utils.TextChoices(text="Hello, how can I help you today?")],
)
@pytest.mark.asyncio
@pytest.mark.parametrize(
"response", [chat_completion_response, text_completion_response]
)
async def test_async_set_get_cache(response):
litellm.set_verbose = True
setup_cache()
verbose_logger.setLevel(logging.DEBUG)
caching_handler = LLMCachingHandler(
original_function=completion, request_kwargs={}, start_time=datetime.now()
)
messages = [{"role": "user", "content": f"Unique message {datetime.now()}"}]
logging_obj = LiteLLMLogging(
litellm_call_id=str(datetime.now()),
call_type=CallTypes.completion.value,
model="gpt-3.5-turbo",
messages=messages,
function_id=str(uuid.uuid4()),
stream=False,
start_time=datetime.now(),
)
result = response
print("result", result)
original_function = (
litellm.acompletion
if isinstance(response, litellm.ModelResponse)
else litellm.atext_completion
)
if isinstance(response, litellm.ModelResponse):
kwargs = {"messages": messages}
call_type = CallTypes.acompletion.value
else:
kwargs = {"prompt": f"Hello, how can I help you today? {datetime.now()}"}
call_type = CallTypes.atext_completion.value
await caching_handler.async_set_cache(
result=result, original_function=original_function, kwargs=kwargs
)
await asyncio.sleep(2)
# Verify the result was cached
cached_response = await caching_handler._async_get_cache(
model="gpt-3.5-turbo",
original_function=original_function,
logging_obj=logging_obj,
start_time=datetime.now(),
call_type=call_type,
kwargs=kwargs,
)
assert cached_response.cached_result is not None
assert cached_response.cached_result.id == result.id
@pytest.mark.asyncio
async def test_async_log_cache_hit_on_callbacks():
"""
Assert logging callbacks are called after a cache hit
"""
# Setup
caching_handler = LLMCachingHandler(
original_function=completion, request_kwargs={}, start_time=datetime.now()
)
mock_logging_obj = MagicMock()
mock_logging_obj.async_success_handler = AsyncMock()
mock_logging_obj.success_handler = MagicMock()
cached_result = "Mocked cached result"
start_time = datetime.now()
end_time = start_time + timedelta(seconds=1)
cache_hit = True
# Call the method
caching_handler._async_log_cache_hit_on_callbacks(
logging_obj=mock_logging_obj,
cached_result=cached_result,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
)
# Wait for the async task to complete
await asyncio.sleep(0.5)
print("mock logging obj methods called", mock_logging_obj.mock_calls)
# Assertions
mock_logging_obj.async_success_handler.assert_called_once_with(
cached_result, start_time, end_time, cache_hit
)
# Wait for the thread to complete
await asyncio.sleep(0.5)
mock_logging_obj.success_handler.assert_called_once_with(
cached_result, start_time, end_time, cache_hit
)
@pytest.mark.parametrize(
"call_type, cached_result, expected_type",
[
(
CallTypes.completion.value,
{
"id": "test",
"choices": [{"message": {"role": "assistant", "content": "Hello"}}],
},
ModelResponse,
),
(
CallTypes.text_completion.value,
{"id": "test", "choices": [{"text": "Hello"}]},
TextCompletionResponse,
),
(
CallTypes.embedding.value,
{"data": [{"embedding": [0.1, 0.2, 0.3]}]},
EmbeddingResponse,
),
(
CallTypes.rerank.value,
{"id": "test", "results": [{"index": 0, "score": 0.9}]},
RerankResponse,
),
(
CallTypes.transcription.value,
{"text": "Hello, world!"},
TranscriptionResponse,
),
],
)
def test_convert_cached_result_to_model_response(
call_type, cached_result, expected_type
):
"""
Assert that the cached result is converted to the correct type
"""
caching_handler = LLMCachingHandler(
original_function=lambda: None, request_kwargs={}, start_time=datetime.now()
)
logging_obj = LiteLLMLogging(
litellm_call_id=str(datetime.now()),
call_type=call_type,
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how can I help you today?"}],
function_id=str(uuid.uuid4()),
stream=False,
start_time=datetime.now(),
)
result = caching_handler._convert_cached_result_to_model_response(
cached_result=cached_result,
call_type=call_type,
kwargs={},
logging_obj=logging_obj,
model="test-model",
args=(),
)
assert isinstance(result, expected_type)
assert result is not None
def test_combine_cached_embedding_response_with_api_result():
"""
If the cached response has [cache_hit, None, cache_hit]
result should be [cache_hit, api_result, cache_hit]
"""
# Setup
caching_handler = LLMCachingHandler(
original_function=lambda: None, request_kwargs={}, start_time=datetime.now()
)
start_time = datetime.now()
end_time = start_time + timedelta(seconds=1)
# Create a CachingHandlerResponse with some cached and some None values
cached_response = EmbeddingResponse(
data=[
Embedding(embedding=[0.1, 0.2, 0.3], index=0, object="embedding"),
None,
Embedding(embedding=[0.7, 0.8, 0.9], index=2, object="embedding"),
]
)
caching_handler_response = CachingHandlerResponse(
final_embedding_cached_response=cached_response
)
# Create an API EmbeddingResponse for the missing value
api_response = EmbeddingResponse(
data=[Embedding(embedding=[0.4, 0.5, 0.6], index=1, object="embedding")]
)
# Call the method
result = caching_handler._combine_cached_embedding_response_with_api_result(
_caching_handler_response=caching_handler_response,
embedding_response=api_response,
start_time=start_time,
end_time=end_time,
)
# Assertions
assert isinstance(result, EmbeddingResponse)
assert len(result.data) == 3
assert result.data[0].embedding == [0.1, 0.2, 0.3]
assert result.data[1].embedding == [0.4, 0.5, 0.6]
assert result.data[2].embedding == [0.7, 0.8, 0.9]
assert result._hidden_params["cache_hit"] == True
assert isinstance(result._response_ms, float)
assert result._response_ms > 0
def test_combine_cached_embedding_response_multiple_missing_values():
"""
If the cached response has [cache_hit, None, None, cache_hit, None]
result should be [cache_hit, api_result, api_result, cache_hit, api_result]
"""
# Setup
caching_handler = LLMCachingHandler(
original_function=lambda: None, request_kwargs={}, start_time=datetime.now()
)
start_time = datetime.now()
end_time = start_time + timedelta(seconds=1)
# Create a CachingHandlerResponse with some cached and some None values
cached_response = EmbeddingResponse(
data=[
Embedding(embedding=[0.1, 0.2, 0.3], index=0, object="embedding"),
None,
None,
Embedding(embedding=[0.7, 0.8, 0.9], index=3, object="embedding"),
None,
]
)
caching_handler_response = CachingHandlerResponse(
final_embedding_cached_response=cached_response
)
# Create an API EmbeddingResponse for the missing values
api_response = EmbeddingResponse(
data=[
Embedding(embedding=[0.4, 0.5, 0.6], index=1, object="embedding"),
Embedding(embedding=[0.4, 0.5, 0.6], index=2, object="embedding"),
Embedding(embedding=[0.4, 0.5, 0.6], index=4, object="embedding"),
]
)
# Call the method
result = caching_handler._combine_cached_embedding_response_with_api_result(
_caching_handler_response=caching_handler_response,
embedding_response=api_response,
start_time=start_time,
end_time=end_time,
)
# Assertions
assert isinstance(result, EmbeddingResponse)
assert len(result.data) == 5
assert result.data[0].embedding == [0.1, 0.2, 0.3]
assert result.data[1].embedding == [0.4, 0.5, 0.6]
assert result.data[2].embedding == [0.4, 0.5, 0.6]
assert result.data[3].embedding == [0.7, 0.8, 0.9]