litellm/tests/local_testing/test_datadog.py
Ishaan Jaff 4d1b4beb3d
(refactor) caching use LLMCachingHandler for async_get_cache and set_cache (#6208)
* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered
2024-10-14 16:34:01 +05:30

246 lines
8 KiB
Python

import io
import os
import sys
sys.path.insert(0, os.path.abspath("../.."))
import asyncio
import gzip
import json
import logging
import time
from unittest.mock import AsyncMock, patch
import pytest
import litellm
from litellm import completion
from litellm._logging import verbose_logger
from litellm.integrations.datadog.types import DatadogPayload
verbose_logger.setLevel(logging.DEBUG)
@pytest.mark.asyncio
async def test_datadog_logging_http_request():
"""
- Test that the HTTP request is made to Datadog
- sent to the /api/v2/logs endpoint
- the payload is batched
- each element in the payload is a DatadogPayload
- each element in a DatadogPayload.message contains all the valid fields
"""
try:
from litellm.integrations.datadog.datadog import DataDogLogger
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
os.environ["DD_API_KEY"] = "anything"
dd_logger = DataDogLogger()
litellm.callbacks = [dd_logger]
litellm.set_verbose = True
# Create a mock for the async_client's post method
mock_post = AsyncMock()
mock_post.return_value.status_code = 202
mock_post.return_value.text = "Accepted"
dd_logger.async_client.post = mock_post
# Make the completion call
for _ in range(5):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
mock_response="Accepted",
)
print(response)
# Wait for 5 seconds
await asyncio.sleep(6)
# Assert that the mock was called
assert mock_post.called, "HTTP request was not made"
# Get the arguments of the last call
args, kwargs = mock_post.call_args
print("CAll args and kwargs", args, kwargs)
# Print the request body
# You can add more specific assertions here if needed
# For example, checking if the URL is correct
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
body = kwargs["data"]
# use gzip to unzip the body
with gzip.open(io.BytesIO(body), "rb") as f:
body = f.read().decode("utf-8")
print(body)
# body is string parse it to dict
body = json.loads(body)
print(body)
assert len(body) == 5 # 5 logs should be sent to DataDog
# Assert that the first element in body has the expected fields and shape
assert isinstance(body[0], dict), "First element in body should be a dictionary"
# Get the expected fields and their types from DatadogPayload
expected_fields = DatadogPayload.__annotations__
# Assert that all elements in body have the fields of DatadogPayload with correct types
for log in body:
assert isinstance(log, dict), "Each log should be a dictionary"
for field, expected_type in expected_fields.items():
assert field in log, f"Field '{field}' is missing from the log"
assert isinstance(
log[field], expected_type
), f"Field '{field}' has incorrect type. Expected {expected_type}, got {type(log[field])}"
# Additional assertion to ensure no extra fields are present
for log in body:
assert set(log.keys()) == set(
expected_fields.keys()
), f"Log contains unexpected fields: {set(log.keys()) - set(expected_fields.keys())}"
# Parse the 'message' field as JSON and check its structure
message = json.loads(body[0]["message"])
expected_message_fields = [
"id",
"call_type",
"cache_hit",
"start_time",
"end_time",
"response_time",
"model",
"user",
"model_parameters",
"spend",
"messages",
"response",
"usage",
"metadata",
]
for field in expected_message_fields:
assert field in message, f"Field '{field}' is missing from the message"
# Check specific fields
assert message["call_type"] == "acompletion"
assert message["model"] == "gpt-3.5-turbo"
assert isinstance(message["model_parameters"], dict)
assert "temperature" in message["model_parameters"]
assert "max_tokens" in message["model_parameters"]
assert isinstance(message["response"], dict)
assert isinstance(message["usage"], dict)
assert isinstance(message["metadata"], dict)
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
async def test_datadog_log_redis_failures():
"""
Test that poorly configured Redis is logged as Warning on DataDog
"""
try:
from litellm.caching.caching import Cache
from litellm.integrations.datadog.datadog import DataDogLogger
litellm.cache = Cache(
type="redis", host="badhost", port="6379", password="badpassword"
)
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
os.environ["DD_API_KEY"] = "anything"
dd_logger = DataDogLogger()
litellm.callbacks = [dd_logger]
litellm.service_callback = ["datadog"]
litellm.set_verbose = True
# Create a mock for the async_client's post method
mock_post = AsyncMock()
mock_post.return_value.status_code = 202
mock_post.return_value.text = "Accepted"
dd_logger.async_client.post = mock_post
# Make the completion call
for _ in range(3):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
mock_response="Accepted",
)
print(response)
# Wait for 5 seconds
await asyncio.sleep(6)
# Assert that the mock was called
assert mock_post.called, "HTTP request was not made"
# Get the arguments of the last call
args, kwargs = mock_post.call_args
print("CAll args and kwargs", args, kwargs)
# For example, checking if the URL is correct
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
body = kwargs["data"]
# use gzip to unzip the body
with gzip.open(io.BytesIO(body), "rb") as f:
body = f.read().decode("utf-8")
print(body)
# body is string parse it to dict
body = json.loads(body)
print(body)
failure_events = [log for log in body if log["status"] == "warning"]
assert len(failure_events) > 0, "No failure events logged"
print("ALL FAILURE/WARN EVENTS", failure_events)
for event in failure_events:
message = json.loads(event["message"])
assert (
event["status"] == "warning"
), f"Event status is not 'warning': {event['status']}"
assert (
message["service"] == "redis"
), f"Service is not 'redis': {message['service']}"
assert "error" in message, "No 'error' field in the message"
assert message["error"], "Error field is empty"
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
@pytest.mark.skip(reason="local-only test, to test if everything works fine.")
async def test_datadog_logging():
try:
litellm.success_callback = ["datadog"]
litellm.set_verbose = True
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
)
print(response)
await asyncio.sleep(5)
except Exception as e:
print(e)