litellm/tests/local_testing/test_fine_tuning_api.py
Krish Dholakia d57be47b0f
Litellm ruff linting enforcement (#5992)
* ci(config.yml): add a 'check_code_quality' step

Addresses https://github.com/BerriAI/litellm/issues/5991

* ci(config.yml): check why circle ci doesn't pick up this test

* ci(config.yml): fix to run 'check_code_quality' tests

* fix(__init__.py): fix unprotected import

* fix(__init__.py): don't remove unused imports

* build(ruff.toml): update ruff.toml to ignore unused imports

* fix: fix: ruff + pyright - fix linting + type-checking errors

* fix: fix linting errors

* fix(lago.py): fix module init error

* fix: fix linting errors

* ci(config.yml): cd into correct dir for checks

* fix(proxy_server.py): fix linting error

* fix(utils.py): fix bare except

causes ruff linting errors

* fix: ruff - fix remaining linting errors

* fix(clickhouse.py): use standard logging object

* fix(__init__.py): fix unprotected import

* fix: ruff - fix linting errors

* fix: fix linting errors

* ci(config.yml): cleanup code qa step (formatting handled in local_testing)

* fix(_health_endpoints.py): fix ruff linting errors

* ci(config.yml): just use ruff in check_code_quality pipeline for now

* build(custom_guardrail.py): include missing file

* style(embedding_handler.py): fix ruff check
2024-10-01 19:44:20 -04:00

282 lines
9 KiB
Python

import os
import sys
import traceback
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from openai import APITimeoutError as Timeout
import litellm
litellm.num_retries = 0
import asyncio
import logging
import openai
from test_gcs_bucket import load_vertex_ai_credentials
from litellm import create_fine_tuning_job
from litellm._logging import verbose_logger
from litellm.llms.fine_tuning_apis.vertex_ai import (
FineTuningJobCreate,
VertexFineTuningAPI,
)
vertex_finetune_api = VertexFineTuningAPI()
def test_create_fine_tune_job():
try:
verbose_logger.setLevel(logging.DEBUG)
file_name = "openai_batch_completions.jsonl"
_current_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(_current_dir, file_name)
file_obj = litellm.create_file(
file=open(file_path, "rb"),
purpose="fine-tune",
custom_llm_provider="openai",
)
print("Response from creating file=", file_obj)
create_fine_tuning_response = litellm.create_fine_tuning_job(
model="gpt-3.5-turbo-0125",
training_file=file_obj.id,
)
print(
"response from litellm.create_fine_tuning_job=", create_fine_tuning_response
)
assert create_fine_tuning_response.id is not None
assert create_fine_tuning_response.model == "gpt-3.5-turbo-0125"
# list fine tuning jobs
print("listing ft jobs")
ft_jobs = litellm.list_fine_tuning_jobs(limit=2)
print("response from litellm.list_fine_tuning_jobs=", ft_jobs)
assert len(list(ft_jobs)) > 0
# delete file
litellm.file_delete(
file_id=file_obj.id,
)
# cancel ft job
response = litellm.cancel_fine_tuning_job(
fine_tuning_job_id=create_fine_tuning_response.id,
)
print("response from litellm.cancel_fine_tuning_job=", response)
assert response.status == "cancelled"
assert response.id == create_fine_tuning_response.id
pass
except openai.RateLimitError:
pass
except Exception as e:
if "Job has already completed" in str(e):
return
else:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.asyncio
async def test_create_fine_tune_jobs_async():
try:
verbose_logger.setLevel(logging.DEBUG)
file_name = "openai_batch_completions.jsonl"
_current_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(_current_dir, file_name)
file_obj = await litellm.acreate_file(
file=open(file_path, "rb"),
purpose="fine-tune",
custom_llm_provider="openai",
)
print("Response from creating file=", file_obj)
create_fine_tuning_response = await litellm.acreate_fine_tuning_job(
model="gpt-3.5-turbo-0125",
training_file=file_obj.id,
)
print(
"response from litellm.create_fine_tuning_job=", create_fine_tuning_response
)
assert create_fine_tuning_response.id is not None
assert create_fine_tuning_response.model == "gpt-3.5-turbo-0125"
# list fine tuning jobs
print("listing ft jobs")
ft_jobs = await litellm.alist_fine_tuning_jobs(limit=2)
print("response from litellm.list_fine_tuning_jobs=", ft_jobs)
assert len(list(ft_jobs)) > 0
# delete file
await litellm.afile_delete(
file_id=file_obj.id,
)
# cancel ft job
response = await litellm.acancel_fine_tuning_job(
fine_tuning_job_id=create_fine_tuning_response.id,
)
print("response from litellm.cancel_fine_tuning_job=", response)
assert response.status == "cancelled"
assert response.id == create_fine_tuning_response.id
except openai.RateLimitError:
pass
except Exception as e:
if "Job has already completed" in str(e):
return
else:
pytest.fail(f"Error occurred: {e}")
pass
@pytest.mark.asyncio
async def test_azure_create_fine_tune_jobs_async():
try:
verbose_logger.setLevel(logging.DEBUG)
file_name = "azure_fine_tune.jsonl"
_current_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(_current_dir, file_name)
file_id = "file-5e4b20ecbd724182b9964f3cd2ab7212"
create_fine_tuning_response = await litellm.acreate_fine_tuning_job(
model="gpt-35-turbo-1106",
training_file=file_id,
custom_llm_provider="azure",
api_base="https://exampleopenaiendpoint-production.up.railway.app",
)
print(
"response from litellm.create_fine_tuning_job=", create_fine_tuning_response
)
assert create_fine_tuning_response.id is not None
# response from Example/mocked endpoint
assert create_fine_tuning_response.model == "davinci-002"
# list fine tuning jobs
print("listing ft jobs")
ft_jobs = await litellm.alist_fine_tuning_jobs(
limit=2,
custom_llm_provider="azure",
api_base="https://exampleopenaiendpoint-production.up.railway.app",
)
print("response from litellm.list_fine_tuning_jobs=", ft_jobs)
# cancel ft job
response = await litellm.acancel_fine_tuning_job(
fine_tuning_job_id=create_fine_tuning_response.id,
custom_llm_provider="azure",
api_key=os.getenv("AZURE_SWEDEN_API_KEY"),
api_base="https://exampleopenaiendpoint-production.up.railway.app",
)
print("response from litellm.cancel_fine_tuning_job=", response)
assert response.status == "cancelled"
assert response.id == create_fine_tuning_response.id
except openai.RateLimitError:
pass
except Exception as e:
if "Job has already completed" in str(e):
pass
else:
pytest.fail(f"Error occurred: {e}")
pass
@pytest.mark.asyncio()
@pytest.mark.skip(reason="skipping until we can cancel fine tuning jobs")
async def test_create_vertex_fine_tune_jobs():
try:
verbose_logger.setLevel(logging.DEBUG)
load_vertex_ai_credentials()
vertex_credentials = os.getenv("GCS_PATH_SERVICE_ACCOUNT")
print("creating fine tuning job")
create_fine_tuning_response = await litellm.acreate_fine_tuning_job(
model="gemini-1.0-pro-002",
custom_llm_provider="vertex_ai",
training_file="gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl",
vertex_project="adroit-crow-413218",
vertex_location="us-central1",
vertex_credentials=vertex_credentials,
)
print("vertex ai create fine tuning response=", create_fine_tuning_response)
assert create_fine_tuning_response.id is not None
assert create_fine_tuning_response.model == "gemini-1.0-pro-002"
assert create_fine_tuning_response.object == "fine_tuning.job"
except Exception:
pass
# Testing OpenAI -> Vertex AI param mapping
def test_convert_openai_request_to_vertex_basic():
openai_data = FineTuningJobCreate(
training_file="gs://bucket/train.jsonl",
validation_file="gs://bucket/val.jsonl",
model="text-davinci-002",
hyperparameters={"n_epochs": 3, "learning_rate_multiplier": 0.1},
suffix="my_fine_tuned_model",
)
result = vertex_finetune_api.convert_openai_request_to_vertex(openai_data)
print("converted vertex ai result=", result)
assert result["baseModel"] == "text-davinci-002"
assert result["tunedModelDisplayName"] == "my_fine_tuned_model"
assert (
result["supervisedTuningSpec"]["training_dataset_uri"]
== "gs://bucket/train.jsonl"
)
assert (
result["supervisedTuningSpec"]["validation_dataset"] == "gs://bucket/val.jsonl"
)
assert result["supervisedTuningSpec"]["epoch_count"] == 3
assert result["supervisedTuningSpec"]["learning_rate_multiplier"] == 0.1
def test_convert_openai_request_to_vertex_with_adapter_size():
openai_data = FineTuningJobCreate(
training_file="gs://bucket/train.jsonl",
model="text-davinci-002",
hyperparameters={"n_epochs": 5, "learning_rate_multiplier": 0.2},
suffix="custom_model",
)
result = vertex_finetune_api.convert_openai_request_to_vertex(
openai_data, adapter_size="SMALL"
)
print("converted vertex ai result=", result)
assert result["baseModel"] == "text-davinci-002"
assert result["tunedModelDisplayName"] == "custom_model"
assert (
result["supervisedTuningSpec"]["training_dataset_uri"]
== "gs://bucket/train.jsonl"
)
assert result["supervisedTuningSpec"]["validation_dataset"] is None
assert result["supervisedTuningSpec"]["epoch_count"] == 5
assert result["supervisedTuningSpec"]["learning_rate_multiplier"] == 0.2
assert result["supervisedTuningSpec"]["adapter_size"] == "SMALL"