litellm/tests/local_testing/test_function_calling.py
Krish Dholakia 5c55270740
LiteLLM Minor Fixes & Improvements (11/04/2024) (#6572)
* feat: initial commit for watsonx chat endpoint support

Closes https://github.com/BerriAI/litellm/issues/6562

* feat(watsonx/chat/handler.py): support tool calling for watsonx

Closes https://github.com/BerriAI/litellm/issues/6562

* fix(streaming_utils.py): return empty chunk instead of failing if streaming value is invalid dict

ensures streaming works for ibm watsonx

* fix(openai_like/chat/handler.py): ensure asynchttphandler is passed correctly for openai like calls

* fix: ensure exception mapping works well for watsonx calls

* fix(openai_like/chat/handler.py): handle async streaming correctly

* feat(main.py): Make it clear when a user is passing an invalid message

add validation for user content message

 Closes https://github.com/BerriAI/litellm/issues/6565

* fix: cleanup

* fix(utils.py): loosen validation check, to just make sure content types are valid

make litellm robust to future content updates

* fix: fix linting erro

* fix: fix linting errors

* fix(utils.py): make validation check more flexible

* test: handle langfuse list index out of range error

* Litellm dev 11 02 2024 (#6561)

* fix(dual_cache.py): update in-memory check for redis batch get cache

Fixes latency delay for async_batch_redis_cache

* fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set

* feat(user_api_key_auth.py): add parent otel component for auth

allows us to isolate how much latency is added by auth checks

* perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task)

reduces latency by 200ms

* feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter)

Reduces latency by 400-800ms

* fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls

reduces latency by 50-100ms

* fix: fix linting error

* fix(_service_logger.py): fix import

* fix(user_api_key_auth.py): fix service logging

* fix(dual_cache.py): don't pass 'self'

* fix: fix python3.8 error

* fix: fix init]

* bump: version 1.51.4 → 1.51.5

* build(deps): bump cookie and express in /docs/my-website (#6566)

Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together.

Updates `cookie` from 0.6.0 to 0.7.1
- [Release notes](https://github.com/jshttp/cookie/releases)
- [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1)

Updates `express` from 4.20.0 to 4.21.1
- [Release notes](https://github.com/expressjs/express/releases)
- [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md)
- [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1)

---
updated-dependencies:
- dependency-name: cookie
  dependency-type: indirect
- dependency-name: express
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* docs(virtual_keys.md): update Dockerfile reference (#6554)

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>

* (proxy fix) - call connect on prisma client when running setup (#6534)

* critical fix - call connect on prisma client when running setup

* fix test_proxy_server_prisma_setup

* fix test_proxy_server_prisma_setup

* Add 3.5 haiku (#6588)

* feat: add claude-3-5-haiku-20241022 entries

* feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models

* add missing entries, remove vision

* remove image token costs

* Litellm perf improvements 3 (#6573)

* perf: move writing key to cache, to background task

* perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils

adds 200ms on calls with pgdb connected

* fix(litellm_pre_call_utils.py'): rename call_type to actual call used

* perf(proxy_server.py): remove db logic from _get_config_from_file

was causing db calls to occur on every llm request, if team_id was set on key

* fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db

reduces latency/call by ~100ms

* fix(proxy_server.py): minor fix on existing_settings not incl alerting

* fix(exception_mapping_utils.py): map databricks exception string

* fix(auth_checks.py): fix auth check logic

* test: correctly mark flaky test

* fix(utils.py): handle auth token error for tokenizers.from_pretrained

* build: fix map

* build: fix map

* build: fix json for model map

* Litellm dev 11 02 2024 (#6561)

* fix(dual_cache.py): update in-memory check for redis batch get cache

Fixes latency delay for async_batch_redis_cache

* fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set

* feat(user_api_key_auth.py): add parent otel component for auth

allows us to isolate how much latency is added by auth checks

* perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task)

reduces latency by 200ms

* feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter)

Reduces latency by 400-800ms

* fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls

reduces latency by 50-100ms

* fix: fix linting error

* fix(_service_logger.py): fix import

* fix(user_api_key_auth.py): fix service logging

* fix(dual_cache.py): don't pass 'self'

* fix: fix python3.8 error

* fix: fix init]

* Litellm perf improvements 3 (#6573)

* perf: move writing key to cache, to background task

* perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils

adds 200ms on calls with pgdb connected

* fix(litellm_pre_call_utils.py'): rename call_type to actual call used

* perf(proxy_server.py): remove db logic from _get_config_from_file

was causing db calls to occur on every llm request, if team_id was set on key

* fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db

reduces latency/call by ~100ms

* fix(proxy_server.py): minor fix on existing_settings not incl alerting

* fix(exception_mapping_utils.py): map databricks exception string

* fix(auth_checks.py): fix auth check logic

* test: correctly mark flaky test

* fix(utils.py): handle auth token error for tokenizers.from_pretrained

* fix ImageObject conversion (#6584)

* (fix) litellm.text_completion raises a non-blocking error on simple usage (#6546)

* unit test test_huggingface_text_completion_logprobs

* fix return TextCompletionHandler convert_chat_to_text_completion

* fix hf rest api

* fix test_huggingface_text_completion_logprobs

* fix linting errors

* fix importLiteLLMResponseObjectHandler

* fix test for LiteLLMResponseObjectHandler

* fix test text completion

* fix allow using 15 seconds for premium license check

* testing fix bedrock deprecated cohere.command-text-v14

* (feat) add `Predicted Outputs` for OpenAI  (#6594)

* bump openai to openai==1.54.0

* add 'prediction' param

* testing fix bedrock deprecated cohere.command-text-v14

* test test_openai_prediction_param.py

* test_openai_prediction_param_with_caching

* doc Predicted Outputs

* doc Predicted Output

* (fix) Vertex Improve Performance when using `image_url`  (#6593)

* fix transformation vertex

* test test_process_gemini_image

* test_image_completion_request

* testing fix - bedrock has deprecated cohere.command-text-v14

* fix vertex pdf

* bump: version 1.51.5 → 1.52.0

* fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check (#6577)

* fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check

* fix(lowest_tpm_rpm_v2.py): return headers in correct format

* test: update test

* build(deps): bump cookie and express in /docs/my-website (#6566)

Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together.

Updates `cookie` from 0.6.0 to 0.7.1
- [Release notes](https://github.com/jshttp/cookie/releases)
- [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1)

Updates `express` from 4.20.0 to 4.21.1
- [Release notes](https://github.com/expressjs/express/releases)
- [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md)
- [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1)

---
updated-dependencies:
- dependency-name: cookie
  dependency-type: indirect
- dependency-name: express
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* docs(virtual_keys.md): update Dockerfile reference (#6554)

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>

* (proxy fix) - call connect on prisma client when running setup (#6534)

* critical fix - call connect on prisma client when running setup

* fix test_proxy_server_prisma_setup

* fix test_proxy_server_prisma_setup

* Add 3.5 haiku (#6588)

* feat: add claude-3-5-haiku-20241022 entries

* feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models

* add missing entries, remove vision

* remove image token costs

* Litellm perf improvements 3 (#6573)

* perf: move writing key to cache, to background task

* perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils

adds 200ms on calls with pgdb connected

* fix(litellm_pre_call_utils.py'): rename call_type to actual call used

* perf(proxy_server.py): remove db logic from _get_config_from_file

was causing db calls to occur on every llm request, if team_id was set on key

* fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db

reduces latency/call by ~100ms

* fix(proxy_server.py): minor fix on existing_settings not incl alerting

* fix(exception_mapping_utils.py): map databricks exception string

* fix(auth_checks.py): fix auth check logic

* test: correctly mark flaky test

* fix(utils.py): handle auth token error for tokenizers.from_pretrained

* build: fix map

* build: fix map

* build: fix json for model map

* test: remove eol model

* fix(proxy_server.py): fix db config loading logic

* fix(proxy_server.py): fix order of config / db updates, to ensure fields not overwritten

* test: skip test if required env var is missing

* test: fix test

---------

Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com>

* test: mark flaky test

* test: handle anthropic api instability

* test: update test

* test: bump num retries on langfuse tests - their api is quite bad

---------

Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com>
2024-11-06 17:53:46 +05:30

680 lines
28 KiB
Python

import os
import sys
import traceback
from dotenv import load_dotenv
load_dotenv()
import io
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding
litellm.num_retries = 0
litellm.cache = None
# litellm.set_verbose=True
import json
# litellm.success_callback = ["langfuse"]
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps(
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
)
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
@pytest.mark.parametrize(
"model",
[
"gpt-3.5-turbo-1106",
# "mistral/mistral-large-latest",
"claude-3-haiku-20240307",
"gemini/gemini-1.5-pro",
"anthropic.claude-3-sonnet-20240229-v1:0",
# "groq/llama3-8b-8192",
],
)
@pytest.mark.flaky(retries=3, delay=1)
def test_aaparallel_function_call(model):
try:
litellm.set_verbose = True
litellm.modify_params = True
# Step 1: send the conversation and available functions to the model
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
}
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model=model,
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("Response\n", response)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
print("Expecting there to be 3 tool calls")
assert (
len(tool_calls) > 0
) # this has to call the function for SF, Tokyo and paris
# Step 2: check if the model wanted to call a function
print(f"tool_calls: {tool_calls}")
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(
response_message
) # extend conversation with assistant's reply
print("Response message\n", response_message)
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
if function_name not in available_functions:
# the model called a function that does not exist in available_functions - don't try calling anything
return
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
print(f"messages: {messages}")
second_response = litellm.completion(
model=model,
messages=messages,
temperature=0.2,
seed=22,
# tools=tools,
drop_params=True,
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
except litellm.InternalServerError as e:
print(e)
except litellm.RateLimitError as e:
print(e)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_parallel_function_call()
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
@pytest.mark.parametrize(
"model, provider",
[
(
"anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock",
),
("claude-3-haiku-20240307", "anthropic"),
],
)
@pytest.mark.parametrize(
"messages, expected_error_msg",
[
(
[
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
},
Message(
content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
index=1,
function=Function(
arguments='{"location": "San Francisco, CA", "unit": "fahrenheit"}',
name="get_current_weather",
),
id="tooluse_Jj98qn6xQlOP_PiQr-w9iA",
type="function",
)
],
function_call=None,
),
{
"tool_call_id": "tooluse_Jj98qn6xQlOP_PiQr-w9iA",
"role": "tool",
"name": "get_current_weather",
"content": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
},
],
True,
),
(
[
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
}
],
False,
),
],
)
def test_parallel_function_call_anthropic_error_msg(
model, provider, messages, expected_error_msg
):
"""
Anthropic doesn't support tool calling without `tools=` param specified.
Ensure this error is thrown when `tools=` param is not specified. But tool call requests are made.
Reference Issue: https://github.com/BerriAI/litellm/issues/5747, https://github.com/BerriAI/litellm/issues/5388
"""
try:
litellm.set_verbose = True
messages = messages
if expected_error_msg:
with pytest.raises(litellm.UnsupportedParamsError) as e:
second_response = litellm.completion(
model=model,
messages=messages,
temperature=0.2,
seed=22,
drop_params=True,
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
else:
second_response = litellm.completion(
model=model,
messages=messages,
temperature=0.2,
seed=22,
drop_params=True,
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
except litellm.InternalServerError as e:
print(e)
except litellm.RateLimitError as e:
print(e)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_parallel_function_call_stream():
try:
litellm.set_verbose = True
# Step 1: send the conversation and available functions to the model
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
}
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
stream=True,
tool_choice="auto", # auto is default, but we'll be explicit
complete_response=True,
)
print("Response\n", response)
# for chunk in response:
# print(chunk)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
print("length of tool calls", len(tool_calls))
print("Expecting there to be 3 tool calls")
assert (
len(tool_calls) > 1
) # this has to call the function for SF, Tokyo and parise
# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(
response_message
) # extend conversation with assistant's reply
print("Response message\n", response_message)
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
print(f"messages: {messages}")
second_response = litellm.completion(
model="gpt-3.5-turbo-1106", messages=messages, temperature=0.2, seed=22
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
return second_response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_parallel_function_call_stream()
@pytest.mark.skip(
reason="Flaky test. Groq function calling is not reliable for ci/cd testing."
)
def test_groq_parallel_function_call():
litellm.set_verbose = True
try:
# Step 1: send the conversation and available functions to the model
messages = [
{
"role": "system",
"content": "You are a function calling LLM that uses the data extracted from get_current_weather to answer questions about the weather in San Francisco.",
},
{
"role": "user",
"content": "What's the weather like in San Francisco?",
},
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="groq/llama2-70b-4096",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("Response\n", response)
response_message = response.choices[0].message
if hasattr(response_message, "tool_calls"):
tool_calls = response_message.tool_calls
assert isinstance(
response.choices[0].message.tool_calls[0].function.name, str
)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
print("length of tool calls", len(tool_calls))
# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(
response_message
) # extend conversation with assistant's reply
print("Response message\n", response_message)
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
print(f"messages: {messages}")
second_response = litellm.completion(
model="groq/llama2-70b-4096", messages=messages
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"model",
[
"anthropic.claude-3-sonnet-20240229-v1:0",
"claude-3-haiku-20240307",
],
)
def test_anthropic_function_call_with_no_schema(model):
"""
Relevant Issue: https://github.com/BerriAI/litellm/issues/6012
"""
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in New York",
},
}
]
messages = [
{"role": "user", "content": "What is the current temperature in New York?"}
]
completion(model=model, messages=messages, tools=tools, tool_choice="auto")
@pytest.mark.parametrize(
"model",
[
"anthropic/claude-3-5-sonnet-20241022",
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
],
)
def test_passing_tool_result_as_list(model):
litellm.set_verbose = True
messages = [
{
"content": [
{
"type": "text",
"text": "You are a helpful assistant that have the ability to interact with a computer to solve tasks.",
}
],
"role": "system",
},
{
"content": [
{
"type": "text",
"text": "Write a git commit message for the current staging area and commit the changes.",
}
],
"role": "user",
},
{
"content": [
{
"type": "text",
"text": "I'll help you commit the changes. Let me first check the git status to see what changes are staged.",
}
],
"role": "assistant",
"tool_calls": [
{
"index": 1,
"function": {
"arguments": '{"command": "git status", "thought": "Checking git status to see staged changes"}',
"name": "execute_bash",
},
"id": "toolu_01V1paXrun4CVetdAGiQaZG5",
"type": "function",
}
],
},
{
"content": [
{
"type": "text",
"text": 'OBSERVATION:\nOn branch master\r\n\r\nNo commits yet\r\n\r\nChanges to be committed:\r\n (use "git rm --cached <file>..." to unstage)\r\n\tnew file: hello.py\r\n\r\n\r\n[Python Interpreter: /openhands/poetry/openhands-ai-5O4_aCHf-py3.12/bin/python]\nroot@openhands-workspace:/workspace # \n[Command finished with exit code 0]',
}
],
"role": "tool",
"tool_call_id": "toolu_01V1paXrun4CVetdAGiQaZG5",
"name": "execute_bash",
"cache_control": {"type": "ephemeral"},
},
]
tools = [
{
"type": "function",
"function": {
"name": "execute_bash",
"description": 'Execute a bash command in the terminal.\n* Long running commands: For commands that may run indefinitely, it should be run in the background and the output should be redirected to a file, e.g. command = `python3 app.py > server.log 2>&1 &`.\n* Interactive: If a bash command returns exit code `-1`, this means the process is not yet finished. The assistant must then send a second call to terminal with an empty `command` (which will retrieve any additional logs), or it can send additional text (set `command` to the text) to STDIN of the running process, or it can send command=`ctrl+c` to interrupt the process.\n* Timeout: If a command execution result says "Command timed out. Sending SIGINT to the process", the assistant should retry running the command in the background.\n',
"parameters": {
"type": "object",
"properties": {
"thought": {
"type": "string",
"description": "Reasoning about the action to take.",
},
"command": {
"type": "string",
"description": "The bash command to execute. Can be empty to view additional logs when previous exit code is `-1`. Can be `ctrl+c` to interrupt the currently running process.",
},
},
"required": ["command"],
},
},
},
{
"type": "function",
"function": {
"name": "finish",
"description": "Finish the interaction.\n* Do this if the task is complete.\n* Do this if the assistant cannot proceed further with the task.\n",
},
},
{
"type": "function",
"function": {
"name": "str_replace_editor",
"description": "Custom editing tool for viewing, creating and editing files\n* State is persistent across command calls and discussions with the user\n* If `path` is a file, `view` displays the result of applying `cat -n`. If `path` is a directory, `view` lists non-hidden files and directories up to 2 levels deep\n* The `create` command cannot be used if the specified `path` already exists as a file\n* If a `command` generates a long output, it will be truncated and marked with `<response clipped>`\n* The `undo_edit` command will revert the last edit made to the file at `path`\n\nNotes for using the `str_replace` command:\n* The `old_str` parameter should match EXACTLY one or more consecutive lines from the original file. Be mindful of whitespaces!\n* If the `old_str` parameter is not unique in the file, the replacement will not be performed. Make sure to include enough context in `old_str` to make it unique\n* The `new_str` parameter should contain the edited lines that should replace the `old_str`\n",
"parameters": {
"type": "object",
"properties": {
"command": {
"description": "The commands to run. Allowed options are: `view`, `create`, `str_replace`, `insert`, `undo_edit`.",
"enum": [
"view",
"create",
"str_replace",
"insert",
"undo_edit",
],
"type": "string",
},
"path": {
"description": "Absolute path to file or directory, e.g. `/repo/file.py` or `/repo`.",
"type": "string",
},
"file_text": {
"description": "Required parameter of `create` command, with the content of the file to be created.",
"type": "string",
},
"old_str": {
"description": "Required parameter of `str_replace` command containing the string in `path` to replace.",
"type": "string",
},
"new_str": {
"description": "Optional parameter of `str_replace` command containing the new string (if not given, no string will be added). Required parameter of `insert` command containing the string to insert.",
"type": "string",
},
"insert_line": {
"description": "Required parameter of `insert` command. The `new_str` will be inserted AFTER the line `insert_line` of `path`.",
"type": "integer",
},
"view_range": {
"description": "Optional parameter of `view` command when `path` points to a file. If none is given, the full file is shown. If provided, the file will be shown in the indicated line number range, e.g. [11, 12] will show lines 11 and 12. Indexing at 1 to start. Setting `[start_line, -1]` shows all lines from `start_line` to the end of the file.",
"items": {"type": "integer"},
"type": "array",
},
},
"required": ["command", "path"],
},
},
},
]
for _ in range(2):
resp = completion(model=model, messages=messages, tools=tools)
print(resp)
if model == "claude-3-5-sonnet-20241022":
assert resp.usage.prompt_tokens_details.cached_tokens > 0
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_watsonx_tool_choice(sync_mode):
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
import json
from litellm import acompletion, completion
litellm.set_verbose = True
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What is the weather in San Francisco?"}]
client = HTTPHandler() if sync_mode else AsyncHTTPHandler()
with patch.object(client, "post", return_value=MagicMock()) as mock_completion:
if sync_mode:
resp = completion(
model="watsonx/meta-llama/llama-3-1-8b-instruct",
messages=messages,
tools=tools,
tool_choice="auto",
client=client,
)
else:
resp = await acompletion(
model="watsonx/meta-llama/llama-3-1-8b-instruct",
messages=messages,
tools=tools,
tool_choice="auto",
client=client,
stream=True,
)
print(resp)
mock_completion.assert_called_once()
print(mock_completion.call_args.kwargs)
json_data = json.loads(mock_completion.call_args.kwargs["data"])
json_data["tool_choice_options"] == "auto"