litellm/tests/local_testing/test_mem_leak.py
Krish Dholakia f79365df6e
LiteLLM Minor Fixes & Improvements (10/30/2024) (#6519)
* refactor: move gemini translation logic inside the transformation.py file

easier to isolate the gemini translation logic

* fix(gemini-transformation): support multiple tool calls in message body

Merges https://github.com/BerriAI/litellm/pull/6487/files

* test(test_vertex.py): add remaining tests from https://github.com/BerriAI/litellm/pull/6487

* fix(gemini-transformation): return tool calls for multiple tool calls

* fix: support passing logprobs param for vertex + gemini

* feat(vertex_ai): add logprobs support for gemini calls

* fix(anthropic/chat/transformation.py): fix disable parallel tool use flag

* fix: fix linting error

* fix(_logging.py): log stacktrace information in json logs

Closes https://github.com/BerriAI/litellm/issues/6497

* fix(utils.py): fix mem leak for async stream + completion

Uses a global executor pool instead of creating a new thread on each request

Fixes https://github.com/BerriAI/litellm/issues/6404

* fix(factory.py): handle tool call + content in assistant message for bedrock

* fix: fix import

* fix(factory.py): maintain support for content as a str in assistant response

* fix: fix import

* test: cleanup test

* fix(vertex_and_google_ai_studio/): return none for content if no str value

* test: retry flaky tests

* (UI) Fix viewing members, keys in a team + added testing  (#6514)

* fix listing teams on ui

* LiteLLM Minor Fixes & Improvements (10/28/2024)  (#6475)

* fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param

Fixes https://github.com/BerriAI/litellm/issues/6456

* feat(anthropic/chat/transformation.py): support anthropic computer tool use

Closes https://github.com/BerriAI/litellm/issues/6427

* fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai

Fixes issue when trying to call vertex from vercel sdk

* fix(main.py): add 'extra_headers' support for azure on all translation endpoints

Fixes https://github.com/BerriAI/litellm/issues/6465

* fix: fix linting errors

* fix(transformation.py): handle no beta headers for anthropic

* test: cleanup test

* fix: fix linting error

* fix: fix linting errors

* fix: fix linting errors

* fix(transformation.py): handle dummy tool call

* fix(main.py): fix linting error

* fix(azure.py): pass required param

* LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441)

* fix(azure.py): handle /openai/deployment in azure api base

* fix(factory.py): fix faulty anthropic tool result translation check

Fixes https://github.com/BerriAI/litellm/issues/6422

* fix(gpt_transformation.py): add support for parallel_tool_calls to azure

Fixes https://github.com/BerriAI/litellm/issues/6440

* fix(factory.py): support anthropic prompt caching for tool results

* fix(vertex_ai/common_utils): don't pop non-null required field

Fixes https://github.com/BerriAI/litellm/issues/6426

* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini

Closes https://github.com/BerriAI/litellm/issues/6434

* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models

Closes https://github.com/BerriAI/litellm/issues/6437

* fix(types/utils.py): fix linting

* test: update test to include required fields

* test: fix test

* test: handle flaky test

* test: remove e2e test - hitting gemini rate limits

* Litellm dev 10 26 2024 (#6472)

* docs(exception_mapping.md): add missing exception types

Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183

* fix(main.py): register custom model pricing with specific key

Ensure custom model pricing is registered to the specific model+provider key combination

* test: make testing more robust for custom pricing

* fix(redis_cache.py): instrument otel logging for sync redis calls

ensures complete coverage for all redis cache calls

* (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected  (#6471)

* test test_dual_cache_get_set

* unit testing for dual cache

* fix async_set_cache_sadd

* test_dual_cache_local_only

* redis otel tracing + async support for latency routing (#6452)

* docs(exception_mapping.md): add missing exception types

Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183

* fix(main.py): register custom model pricing with specific key

Ensure custom model pricing is registered to the specific model+provider key combination

* test: make testing more robust for custom pricing

* fix(redis_cache.py): instrument otel logging for sync redis calls

ensures complete coverage for all redis cache calls

* refactor: pass parent_otel_span for redis caching calls in router

allows for more observability into what calls are causing latency issues

* test: update tests with new params

* refactor: ensure e2e otel tracing for router

* refactor(router.py): add more otel tracing acrosss router

catch all latency issues for router requests

* fix: fix linting error

* fix(router.py): fix linting error

* fix: fix test

* test: fix tests

* fix(dual_cache.py): pass ttl to redis cache

* fix: fix param

* fix(dual_cache.py): set default value for parent_otel_span

* fix(transformation.py): support 'response_format' for anthropic calls

* fix(transformation.py): check for cache_control inside 'function' block

* fix: fix linting error

* fix: fix linting errors

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>

* ui new build

* Add retry strat (#6520)

Signed-off-by: dbczumar <corey.zumar@databricks.com>

* (fix) slack alerting - don't spam the failed cost tracking alert for the same model  (#6543)

* fix use failing_model as cache key for failed_tracking_alert

* fix use standard logging payload for getting response cost

* fix  kwargs.get("response_cost")

* fix getting response cost

* (feat) add XAI ChatCompletion Support  (#6373)

* init commit for XAI

* add full logic for xai chat completion

* test_completion_xai

* docs xAI

* add xai/grok-beta

* test_xai_chat_config_get_openai_compatible_provider_info

* test_xai_chat_config_map_openai_params

* add xai streaming test

---------

Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
2024-11-02 00:44:32 +05:30

243 lines
8.5 KiB
Python

# import io
# import os
# import sys
# sys.path.insert(0, os.path.abspath("../.."))
# import litellm
# from memory_profiler import profile
# from litellm.utils import (
# ModelResponseIterator,
# ModelResponseListIterator,
# CustomStreamWrapper,
# )
# from litellm.types.utils import ModelResponse, Choices, Message
# import time
# import pytest
# # @app.post("/debug")
# # async def debug(body: ExampleRequest) -> str:
# # return await main_logic(body.query)
# def model_response_list_factory():
# chunks = [
# {
# "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
# "choices": [
# {
# "delta": {"content": "", "role": "assistant"},
# "finish_reason": None,
# "index": 0,
# }
# ],
# "created": 1716563849,
# "model": "gpt-4o-2024-05-13",
# "object": "chat.completion.chunk",
# "system_fingerprint": "fp_5f4bad809a",
# },
# {
# "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
# "choices": [
# {"delta": {"content": "This"}, "finish_reason": None, "index": 0}
# ],
# "created": 1716563849,
# "model": "gpt-4o-2024-05-13",
# "object": "chat.completion.chunk",
# "system_fingerprint": "fp_5f4bad809a",
# },
# {
# "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
# "choices": [
# {"delta": {"content": " is"}, "finish_reason": None, "index": 0}
# ],
# "created": 1716563849,
# "model": "gpt-4o-2024-05-13",
# "object": "chat.completion.chunk",
# "system_fingerprint": "fp_5f4bad809a",
# },
# {
# "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
# "choices": [
# {"delta": {"content": " a"}, "finish_reason": None, "index": 0}
# ],
# "created": 1716563849,
# "model": "gpt-4o-2024-05-13",
# "object": "chat.completion.chunk",
# "system_fingerprint": "fp_5f4bad809a",
# },
# {
# "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
# "choices": [
# {"delta": {"content": " dummy"}, "finish_reason": None, "index": 0}
# ],
# "created": 1716563849,
# "model": "gpt-4o-2024-05-13",
# "object": "chat.completion.chunk",
# "system_fingerprint": "fp_5f4bad809a",
# },
# {
# "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
# "choices": [
# {
# "delta": {"content": " response"},
# "finish_reason": None,
# "index": 0,
# }
# ],
# "created": 1716563849,
# "model": "gpt-4o-2024-05-13",
# "object": "chat.completion.chunk",
# "system_fingerprint": "fp_5f4bad809a",
# },
# {
# "id": "",
# "choices": [
# {
# "finish_reason": None,
# "index": 0,
# "content_filter_offsets": {
# "check_offset": 35159,
# "start_offset": 35159,
# "end_offset": 36150,
# },
# "content_filter_results": {
# "hate": {"filtered": False, "severity": "safe"},
# "self_harm": {"filtered": False, "severity": "safe"},
# "sexual": {"filtered": False, "severity": "safe"},
# "violence": {"filtered": False, "severity": "safe"},
# },
# }
# ],
# "created": 0,
# "model": "",
# "object": "",
# },
# {
# "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
# "choices": [{"delta": {"content": "."}, "finish_reason": None, "index": 0}],
# "created": 1716563849,
# "model": "gpt-4o-2024-05-13",
# "object": "chat.completion.chunk",
# "system_fingerprint": "fp_5f4bad809a",
# },
# {
# "id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
# "choices": [{"delta": {}, "finish_reason": "stop", "index": 0}],
# "created": 1716563849,
# "model": "gpt-4o-2024-05-13",
# "object": "chat.completion.chunk",
# "system_fingerprint": "fp_5f4bad809a",
# },
# {
# "id": "",
# "choices": [
# {
# "finish_reason": None,
# "index": 0,
# "content_filter_offsets": {
# "check_offset": 36150,
# "start_offset": 36060,
# "end_offset": 37029,
# },
# "content_filter_results": {
# "hate": {"filtered": False, "severity": "safe"},
# "self_harm": {"filtered": False, "severity": "safe"},
# "sexual": {"filtered": False, "severity": "safe"},
# "violence": {"filtered": False, "severity": "safe"},
# },
# }
# ],
# "created": 0,
# "model": "",
# "object": "",
# },
# ]
# chunk_list = []
# for chunk in chunks:
# new_chunk = litellm.ModelResponse(stream=True, id=chunk["id"])
# if "choices" in chunk and isinstance(chunk["choices"], list):
# new_choices = []
# for choice in chunk["choices"]:
# if isinstance(choice, litellm.utils.StreamingChoices):
# _new_choice = choice
# elif isinstance(choice, dict):
# _new_choice = litellm.utils.StreamingChoices(**choice)
# new_choices.append(_new_choice)
# new_chunk.choices = new_choices
# chunk_list.append(new_chunk)
# return ModelResponseListIterator(model_responses=chunk_list)
# async def mock_completion(*args, **kwargs):
# completion_stream = model_response_list_factory()
# return litellm.CustomStreamWrapper(
# completion_stream=completion_stream,
# model="gpt-4-0613",
# custom_llm_provider="cached_response",
# logging_obj=litellm.Logging(
# model="gpt-4-0613",
# messages=[{"role": "user", "content": "Hey"}],
# stream=True,
# call_type="completion",
# start_time=time.time(),
# litellm_call_id="12345",
# function_id="1245",
# ),
# )
# @profile
# async def main_logic() -> str:
# stream = await mock_completion()
# result = ""
# async for chunk in stream:
# result += chunk.choices[0].delta.content or ""
# return result
# import asyncio
# for _ in range(100):
# asyncio.run(main_logic())
# # @pytest.mark.asyncio
# # def test_memory_profile(capsys):
# # # Run the async function
# # result = asyncio.run(main_logic())
# # # Verify the result
# # assert result == "This is a dummy response."
# # # Capture the output
# # captured = capsys.readouterr()
# # # Print memory output for debugging
# # print("Memory Profiler Output:")
# # print(f"captured out: {captured.out}")
# # # Basic memory leak checks
# # for idx, line in enumerate(captured.out.split("\n")):
# # if idx % 2 == 0 and "MiB" in line:
# # print(f"line: {line}")
# # # mem_lines = [line for line in captured.out.split("\n") if "MiB" in line]
# # print(mem_lines)
# # # Ensure we have some memory lines
# # assert len(mem_lines) > 0, "No memory profiler output found"
# # # Optional: Add more specific memory leak detection
# # for line in mem_lines:
# # # Extract memory increment
# # parts = line.split()
# # if len(parts) >= 3:
# # try:
# # mem_increment = float(parts[2].replace("MiB", ""))
# # # Assert that memory increment is below a reasonable threshold
# # assert mem_increment < 1.0, f"Potential memory leak detected: {line}"
# # except (ValueError, IndexError):
# # pass # Skip lines that don't match expected format