forked from phoenix/litellm-mirror
* fix(ollama.py): fix get model info request Fixes https://github.com/BerriAI/litellm/issues/6703 * feat(anthropic/chat/transformation.py): support passing user id to anthropic via openai 'user' param * docs(anthropic.md): document all supported openai params for anthropic * test: fix tests * fix: fix tests * feat(jina_ai/): add rerank support Closes https://github.com/BerriAI/litellm/issues/6691 * test: handle service unavailable error * fix(handler.py): refactor together ai rerank call * test: update test to handle overloaded error * test: fix test * Litellm router trace (#6742) * feat(router.py): add trace_id to parent functions - allows tracking retry/fallbacks * feat(router.py): log trace id across retry/fallback logic allows grouping llm logs for the same request * test: fix tests * fix: fix test * fix(transformation.py): only set non-none stop_sequences * Litellm router disable fallbacks (#6743) * bump: version 1.52.6 → 1.52.7 * feat(router.py): enable dynamically disabling fallbacks Allows for enabling/disabling fallbacks per key * feat(litellm_pre_call_utils.py): support setting 'disable_fallbacks' on litellm key * test: fix test * fix(exception_mapping_utils.py): map 'model is overloaded' to internal server error * test: handle gemini error * test: fix test * fix: new run
1500 lines
52 KiB
Python
1500 lines
52 KiB
Python
#### What this tests ####
|
|
# This tests calling router with fallback models
|
|
|
|
import asyncio
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
|
|
import pytest
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
import litellm
|
|
from litellm import Router
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
|
|
|
|
class MyCustomHandler(CustomLogger):
|
|
success: bool = False
|
|
failure: bool = False
|
|
previous_models: int = 0
|
|
|
|
def log_pre_api_call(self, model, messages, kwargs):
|
|
print(f"Pre-API Call")
|
|
print(
|
|
f"previous_models: {kwargs['litellm_params']['metadata'].get('previous_models', None)}"
|
|
)
|
|
self.previous_models = len(
|
|
kwargs["litellm_params"]["metadata"].get("previous_models", [])
|
|
) # {"previous_models": [{"model": litellm_model_name, "exception_type": AuthenticationError, "exception_string": <complete_traceback>}]}
|
|
print(f"self.previous_models: {self.previous_models}")
|
|
|
|
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
|
|
print(
|
|
f"Post-API Call - response object: {response_obj}; model: {kwargs['model']}"
|
|
)
|
|
|
|
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Stream")
|
|
|
|
def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Stream")
|
|
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Success")
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Success")
|
|
|
|
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Failure")
|
|
|
|
|
|
kwargs = {
|
|
"model": "azure/gpt-3.5-turbo",
|
|
"messages": [{"role": "user", "content": "Hey, how's it going?"}],
|
|
}
|
|
|
|
|
|
def test_sync_fallbacks():
|
|
try:
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
litellm.set_verbose = True
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
response = router.completion(**kwargs)
|
|
print(f"response: {response}")
|
|
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 4
|
|
|
|
print("Passed ! Test router_fallbacks: test_sync_fallbacks()")
|
|
router.reset()
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
# test_sync_fallbacks()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_fallbacks():
|
|
litellm.set_verbose = True
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
try:
|
|
kwargs["model"] = "azure/gpt-3.5-turbo"
|
|
response = await router.acompletion(**kwargs)
|
|
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
finally:
|
|
router.reset()
|
|
|
|
|
|
# test_async_fallbacks()
|
|
|
|
|
|
def test_sync_fallbacks_embeddings():
|
|
litellm.set_verbose = False
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "bad-azure-embedding-model", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/azure-embedding-model",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "good-azure-embedding-model", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/azure-embedding-model",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"bad-azure-embedding-model": ["good-azure-embedding-model"]}],
|
|
set_verbose=False,
|
|
)
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
user_message = "Hello, how are you?"
|
|
input = [user_message]
|
|
try:
|
|
kwargs = {"model": "bad-azure-embedding-model", "input": input}
|
|
response = router.embedding(**kwargs)
|
|
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
|
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 1 init call, 2 retries, 1 fallback
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
finally:
|
|
router.reset()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_fallbacks_embeddings():
|
|
litellm.set_verbose = False
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "bad-azure-embedding-model", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/azure-embedding-model",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "good-azure-embedding-model", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/azure-embedding-model",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"bad-azure-embedding-model": ["good-azure-embedding-model"]}],
|
|
set_verbose=False,
|
|
)
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
user_message = "Hello, how are you?"
|
|
input = [user_message]
|
|
try:
|
|
kwargs = {"model": "bad-azure-embedding-model", "input": input}
|
|
response = await router.aembedding(**kwargs)
|
|
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 1 init call with a bad key
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
finally:
|
|
router.reset()
|
|
|
|
|
|
def test_dynamic_fallbacks_sync():
|
|
"""
|
|
Allow setting the fallback in the router.completion() call.
|
|
"""
|
|
try:
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
router = Router(model_list=model_list, set_verbose=True)
|
|
kwargs = {}
|
|
kwargs["model"] = "azure/gpt-3.5-turbo"
|
|
kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]
|
|
kwargs["fallbacks"] = [{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}]
|
|
response = router.completion(**kwargs)
|
|
print(f"response: {response}")
|
|
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
|
|
router.reset()
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {e}")
|
|
|
|
|
|
# test_dynamic_fallbacks_sync()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_dynamic_fallbacks_async():
|
|
"""
|
|
Allow setting the fallback in the router.completion() call.
|
|
"""
|
|
try:
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
print()
|
|
print()
|
|
print()
|
|
print()
|
|
print(f"STARTING DYNAMIC ASYNC")
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
router = Router(model_list=model_list, set_verbose=True)
|
|
kwargs = {}
|
|
kwargs["model"] = "azure/gpt-3.5-turbo"
|
|
kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]
|
|
kwargs["fallbacks"] = [{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}]
|
|
response = await router.acompletion(**kwargs)
|
|
print(f"RESPONSE: {response}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
|
|
router.reset()
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {e}")
|
|
|
|
|
|
# asyncio.run(test_dynamic_fallbacks_async())
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_fallbacks_streaming():
|
|
litellm.set_verbose = False
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
try:
|
|
response = await router.acompletion(**kwargs, stream=True)
|
|
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
finally:
|
|
router.reset()
|
|
|
|
|
|
def test_sync_fallbacks_streaming():
|
|
try:
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
litellm.set_verbose = True
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
response = router.completion(**kwargs, stream=True)
|
|
print(f"response: {response}")
|
|
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
|
|
|
|
print("Passed ! Test router_fallbacks: test_sync_fallbacks()")
|
|
router.reset()
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_fallbacks_max_retries_per_request():
|
|
litellm.set_verbose = False
|
|
litellm.num_retries_per_request = 0
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
try:
|
|
try:
|
|
response = await router.acompletion(**kwargs, stream=True)
|
|
except Exception:
|
|
pass
|
|
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 0 # 0 retries, 0 fallback
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
finally:
|
|
router.reset()
|
|
|
|
|
|
def test_ausage_based_routing_fallbacks():
|
|
try:
|
|
import litellm
|
|
|
|
litellm.set_verbose = False
|
|
# [Prod Test]
|
|
# IT tests Usage Based Routing with fallbacks
|
|
# The Request should fail azure/gpt-4-fast. Then fallback -> "azure/gpt-4-basic" -> "openai-gpt-4"
|
|
# It should work with "openai-gpt-4"
|
|
import os
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
import litellm
|
|
from litellm import Router
|
|
|
|
load_dotenv()
|
|
|
|
# Constants for TPM and RPM allocation
|
|
AZURE_FAST_RPM = 1
|
|
AZURE_BASIC_RPM = 1
|
|
OPENAI_RPM = 0
|
|
ANTHROPIC_RPM = 10
|
|
|
|
def get_azure_params(deployment_name: str):
|
|
params = {
|
|
"model": f"azure/{deployment_name}",
|
|
"api_key": os.environ["AZURE_API_KEY"],
|
|
"api_version": os.environ["AZURE_API_VERSION"],
|
|
"api_base": os.environ["AZURE_API_BASE"],
|
|
}
|
|
return params
|
|
|
|
def get_openai_params(model: str):
|
|
params = {
|
|
"model": model,
|
|
"api_key": os.environ["OPENAI_API_KEY"],
|
|
}
|
|
return params
|
|
|
|
def get_anthropic_params(model: str):
|
|
params = {
|
|
"model": model,
|
|
"api_key": os.environ["ANTHROPIC_API_KEY"],
|
|
}
|
|
return params
|
|
|
|
model_list = [
|
|
{
|
|
"model_name": "azure/gpt-4-fast",
|
|
"litellm_params": get_azure_params("chatgpt-v-2"),
|
|
"model_info": {"id": 1},
|
|
"rpm": AZURE_FAST_RPM,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-4-basic",
|
|
"litellm_params": get_azure_params("chatgpt-v-2"),
|
|
"model_info": {"id": 2},
|
|
"rpm": AZURE_BASIC_RPM,
|
|
},
|
|
{
|
|
"model_name": "openai-gpt-4",
|
|
"litellm_params": get_openai_params("gpt-3.5-turbo"),
|
|
"model_info": {"id": 3},
|
|
"rpm": OPENAI_RPM,
|
|
},
|
|
{
|
|
"model_name": "anthropic-claude-3-5-haiku-20241022",
|
|
"litellm_params": get_anthropic_params("claude-3-5-haiku-20241022"),
|
|
"model_info": {"id": 4},
|
|
"rpm": ANTHROPIC_RPM,
|
|
},
|
|
]
|
|
# litellm.set_verbose=True
|
|
fallbacks_list = [
|
|
{"azure/gpt-4-fast": ["azure/gpt-4-basic"]},
|
|
{"azure/gpt-4-basic": ["openai-gpt-4"]},
|
|
{"openai-gpt-4": ["anthropic-claude-3-5-haiku-20241022"]},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=fallbacks_list,
|
|
set_verbose=True,
|
|
debug_level="DEBUG",
|
|
routing_strategy="usage-based-routing-v2",
|
|
redis_host=os.environ["REDIS_HOST"],
|
|
redis_port=int(os.environ["REDIS_PORT"]),
|
|
num_retries=0,
|
|
)
|
|
|
|
messages = [
|
|
{"content": "Tell me a joke.", "role": "user"},
|
|
]
|
|
response = router.completion(
|
|
model="azure/gpt-4-fast",
|
|
messages=messages,
|
|
timeout=5,
|
|
mock_response="very nice to meet you",
|
|
)
|
|
print("response: ", response)
|
|
print(f"response._hidden_params: {response._hidden_params}")
|
|
# in this test, we expect azure/gpt-4 fast to fail, then azure-gpt-4 basic to fail and then openai-gpt-4 to pass
|
|
# the token count of this message is > AZURE_FAST_TPM, > AZURE_BASIC_TPM
|
|
assert response._hidden_params["model_id"] == "1"
|
|
|
|
for i in range(10):
|
|
# now make 100 mock requests to OpenAI - expect it to fallback to anthropic-claude-3-5-haiku-20241022
|
|
response = router.completion(
|
|
model="azure/gpt-4-fast",
|
|
messages=messages,
|
|
timeout=5,
|
|
mock_response="very nice to meet you",
|
|
)
|
|
print("response: ", response)
|
|
print("response._hidden_params: ", response._hidden_params)
|
|
if i == 9:
|
|
assert response._hidden_params["model_id"] == "4"
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred {e}")
|
|
|
|
|
|
def test_custom_cooldown_times():
|
|
try:
|
|
# set, custom_cooldown. Failed model in cooldown_models, after custom_cooldown, the failed model is no longer in cooldown_models
|
|
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 24000000,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 1,
|
|
},
|
|
]
|
|
|
|
litellm.set_verbose = False
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
set_verbose=True,
|
|
debug_level="INFO",
|
|
cooldown_time=0.1,
|
|
redis_host=os.getenv("REDIS_HOST"),
|
|
redis_password=os.getenv("REDIS_PASSWORD"),
|
|
redis_port=int(os.getenv("REDIS_PORT")),
|
|
)
|
|
|
|
# make a request - expect it to fail
|
|
try:
|
|
response = router.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"content": "Tell me a joke.",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
except Exception:
|
|
pass
|
|
|
|
# expect 1 model to be in cooldown models
|
|
cooldown_deployments = router._get_cooldown_deployments()
|
|
print("cooldown_deployments after failed call: ", cooldown_deployments)
|
|
assert (
|
|
len(cooldown_deployments) == 1
|
|
), "Expected 1 model to be in cooldown models"
|
|
|
|
selected_cooldown_model = cooldown_deployments[0]
|
|
|
|
# wait for 1/2 of cooldown time
|
|
time.sleep(router.cooldown_time / 2)
|
|
|
|
# expect cooldown model to still be in cooldown models
|
|
cooldown_deployments = router._get_cooldown_deployments()
|
|
print(
|
|
"cooldown_deployments after waiting 1/2 of cooldown: ", cooldown_deployments
|
|
)
|
|
assert (
|
|
len(cooldown_deployments) == 1
|
|
), "Expected 1 model to be in cooldown models"
|
|
|
|
# wait for 1/2 of cooldown time again, now we've waited for full cooldown
|
|
time.sleep(router.cooldown_time / 2)
|
|
|
|
# expect cooldown model to be removed from cooldown models
|
|
cooldown_deployments = router._get_cooldown_deployments()
|
|
print(
|
|
"cooldown_deployments after waiting cooldown time: ", cooldown_deployments
|
|
)
|
|
assert (
|
|
len(cooldown_deployments) == 0
|
|
), "Expected 0 models to be in cooldown models"
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_service_unavailable_fallbacks(sync_mode):
|
|
"""
|
|
Initial model - openai
|
|
Fallback - azure
|
|
|
|
Error - 503, service unavailable
|
|
"""
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "gpt-3.5-turbo-012",
|
|
"litellm_params": {
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": "anything",
|
|
"api_base": "http://0.0.0.0:8080",
|
|
},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-0125-preview",
|
|
"litellm_params": {
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
},
|
|
],
|
|
fallbacks=[{"gpt-3.5-turbo-012": ["gpt-3.5-turbo-0125-preview"]}],
|
|
)
|
|
|
|
if sync_mode:
|
|
response = router.completion(
|
|
model="gpt-3.5-turbo-012",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
else:
|
|
response = await router.acompletion(
|
|
model="gpt-3.5-turbo-012",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
|
|
assert response.model == "gpt-35-turbo"
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.parametrize("litellm_module_fallbacks", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_default_model_fallbacks(sync_mode, litellm_module_fallbacks):
|
|
"""
|
|
Related issue - https://github.com/BerriAI/litellm/issues/3623
|
|
|
|
If model misconfigured, setup a default model for generic fallback
|
|
"""
|
|
if litellm_module_fallbacks:
|
|
litellm.default_fallbacks = ["my-good-model"]
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "bad-model",
|
|
"litellm_params": {
|
|
"model": "openai/my-bad-model",
|
|
"api_key": "my-bad-api-key",
|
|
},
|
|
},
|
|
{
|
|
"model_name": "my-good-model",
|
|
"litellm_params": {
|
|
"model": "gpt-4o",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
},
|
|
],
|
|
default_fallbacks=(
|
|
["my-good-model"] if litellm_module_fallbacks is False else None
|
|
),
|
|
)
|
|
|
|
if sync_mode:
|
|
response = router.completion(
|
|
model="bad-model",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
mock_testing_fallbacks=True,
|
|
mock_response="Hey! nice day",
|
|
)
|
|
else:
|
|
response = await router.acompletion(
|
|
model="bad-model",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
mock_testing_fallbacks=True,
|
|
mock_response="Hey! nice day",
|
|
)
|
|
|
|
assert isinstance(response, litellm.ModelResponse)
|
|
assert response.model is not None and response.model == "gpt-4o"
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_client_side_fallbacks_list(sync_mode):
|
|
"""
|
|
|
|
Tests Client Side Fallbacks
|
|
|
|
User can pass "fallbacks": ["gpt-3.5-turbo"] and this should work
|
|
|
|
"""
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "bad-model",
|
|
"litellm_params": {
|
|
"model": "openai/my-bad-model",
|
|
"api_key": "my-bad-api-key",
|
|
},
|
|
},
|
|
{
|
|
"model_name": "my-good-model",
|
|
"litellm_params": {
|
|
"model": "gpt-4o",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
},
|
|
],
|
|
)
|
|
|
|
if sync_mode:
|
|
response = router.completion(
|
|
model="bad-model",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
fallbacks=["my-good-model"],
|
|
mock_testing_fallbacks=True,
|
|
mock_response="Hey! nice day",
|
|
)
|
|
else:
|
|
response = await router.acompletion(
|
|
model="bad-model",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
fallbacks=["my-good-model"],
|
|
mock_testing_fallbacks=True,
|
|
mock_response="Hey! nice day",
|
|
)
|
|
|
|
assert isinstance(response, litellm.ModelResponse)
|
|
assert response.model is not None and response.model == "gpt-4o"
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.parametrize("content_filter_response_exception", [True, False])
|
|
@pytest.mark.parametrize("fallback_type", ["model-specific", "default"])
|
|
@pytest.mark.asyncio
|
|
async def test_router_content_policy_fallbacks(
|
|
sync_mode, content_filter_response_exception, fallback_type
|
|
):
|
|
os.environ["LITELLM_LOG"] = "DEBUG"
|
|
|
|
if content_filter_response_exception:
|
|
mock_response = Exception("content filtering policy")
|
|
else:
|
|
mock_response = litellm.ModelResponse(
|
|
choices=[litellm.Choices(finish_reason="content_filter")],
|
|
model="gpt-3.5-turbo",
|
|
usage=litellm.Usage(prompt_tokens=10, completion_tokens=0, total_tokens=10),
|
|
)
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "claude-2.1",
|
|
"litellm_params": {
|
|
"model": "claude-2.1",
|
|
"api_key": "",
|
|
"mock_response": mock_response,
|
|
},
|
|
},
|
|
{
|
|
"model_name": "my-fallback-model",
|
|
"litellm_params": {
|
|
"model": "openai/my-fake-model",
|
|
"api_key": "",
|
|
"mock_response": "This works!",
|
|
},
|
|
},
|
|
{
|
|
"model_name": "my-default-fallback-model",
|
|
"litellm_params": {
|
|
"model": "openai/my-fake-model",
|
|
"api_key": "",
|
|
"mock_response": "This works 2!",
|
|
},
|
|
},
|
|
{
|
|
"model_name": "my-general-model",
|
|
"litellm_params": {
|
|
"model": "claude-2.1",
|
|
"api_key": "",
|
|
"mock_response": Exception("Should not have called this."),
|
|
},
|
|
},
|
|
{
|
|
"model_name": "my-context-window-model",
|
|
"litellm_params": {
|
|
"model": "claude-2.1",
|
|
"api_key": "",
|
|
"mock_response": Exception("Should not have called this."),
|
|
},
|
|
},
|
|
],
|
|
content_policy_fallbacks=(
|
|
[{"claude-2.1": ["my-fallback-model"]}]
|
|
if fallback_type == "model-specific"
|
|
else None
|
|
),
|
|
default_fallbacks=(
|
|
["my-default-fallback-model"] if fallback_type == "default" else None
|
|
),
|
|
)
|
|
|
|
if sync_mode is True:
|
|
response = router.completion(
|
|
model="claude-2.1",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
else:
|
|
response = await router.acompletion(
|
|
model="claude-2.1",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
|
|
assert response.model == "my-fake-model"
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [False, True])
|
|
@pytest.mark.asyncio
|
|
async def test_using_default_fallback(sync_mode):
|
|
litellm.set_verbose = True
|
|
|
|
import logging
|
|
|
|
from litellm._logging import verbose_logger, verbose_router_logger
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
verbose_router_logger.setLevel(logging.DEBUG)
|
|
litellm.default_fallbacks = ["very-bad-model"]
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "openai/*",
|
|
"litellm_params": {
|
|
"model": "openai/*",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
},
|
|
],
|
|
)
|
|
try:
|
|
if sync_mode:
|
|
response = router.completion(
|
|
model="openai/foo",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
else:
|
|
response = await router.acompletion(
|
|
model="openai/foo",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
print("got response=", response)
|
|
pytest.fail(f"Expected call to fail we passed model=openai/foo")
|
|
except Exception as e:
|
|
print("got exception = ", e)
|
|
assert "BadRequestError" in str(e)
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [False])
|
|
@pytest.mark.asyncio
|
|
async def test_using_default_working_fallback(sync_mode):
|
|
litellm.set_verbose = True
|
|
|
|
import logging
|
|
|
|
from litellm._logging import verbose_logger, verbose_router_logger
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
verbose_router_logger.setLevel(logging.DEBUG)
|
|
litellm.default_fallbacks = ["openai/gpt-3.5-turbo"]
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "openai/*",
|
|
"litellm_params": {
|
|
"model": "openai/*",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
},
|
|
],
|
|
)
|
|
|
|
if sync_mode:
|
|
response = router.completion(
|
|
model="openai/foo",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
else:
|
|
response = await router.acompletion(
|
|
model="openai/foo",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
print("got response=", response)
|
|
assert response is not None
|
|
|
|
|
|
# asyncio.run(test_acompletion_gemini_stream())
|
|
def mock_post_streaming(url, **kwargs):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 529
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.return_value = {"detail": "Overloaded!"}
|
|
|
|
return mock_response
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_streaming_fallbacks(sync_mode):
|
|
litellm.set_verbose = True
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
|
|
if sync_mode:
|
|
client = HTTPHandler(concurrent_limit=1)
|
|
else:
|
|
client = AsyncHTTPHandler(concurrent_limit=1)
|
|
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "anthropic/claude-3-5-sonnet-20240620",
|
|
"litellm_params": {
|
|
"model": "anthropic/claude-3-5-sonnet-20240620",
|
|
},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {
|
|
"model": "gpt-3.5-turbo",
|
|
"mock_response": "Hey, how's it going?",
|
|
},
|
|
},
|
|
],
|
|
fallbacks=[{"anthropic/claude-3-5-sonnet-20240620": ["gpt-3.5-turbo"]}],
|
|
num_retries=0,
|
|
)
|
|
|
|
with patch.object(client, "post", side_effect=mock_post_streaming) as mock_client:
|
|
chunks = []
|
|
if sync_mode:
|
|
response = router.completion(
|
|
model="anthropic/claude-3-5-sonnet-20240620",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
stream=True,
|
|
client=client,
|
|
)
|
|
for chunk in response:
|
|
print(chunk)
|
|
chunks.append(chunk)
|
|
else:
|
|
response = await router.acompletion(
|
|
model="anthropic/claude-3-5-sonnet-20240620",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
stream=True,
|
|
client=client,
|
|
)
|
|
async for chunk in response:
|
|
print(chunk)
|
|
chunks.append(chunk)
|
|
print(f"RETURNED response: {response}")
|
|
|
|
mock_client.assert_called_once()
|
|
print(chunks)
|
|
assert len(chunks) > 0
|
|
|
|
|
|
def test_router_fallbacks_with_custom_model_costs():
|
|
"""
|
|
Tests prod use-case where a custom model is registered with a different provider + custom costs.
|
|
|
|
Goal: make sure custom model doesn't override default model costs.
|
|
"""
|
|
model_list = [
|
|
{
|
|
"model_name": "claude-3-5-sonnet-20240620",
|
|
"litellm_params": {
|
|
"model": "claude-3-5-sonnet-20240620",
|
|
"api_key": os.environ["ANTHROPIC_API_KEY"],
|
|
"input_cost_per_token": 30,
|
|
"output_cost_per_token": 60,
|
|
},
|
|
},
|
|
{
|
|
"model_name": "claude-3-5-sonnet-aihubmix",
|
|
"litellm_params": {
|
|
"model": "openai/claude-3-5-sonnet-20240620",
|
|
"input_cost_per_token": 0.000003, # 3$/M
|
|
"output_cost_per_token": 0.000015, # 15$/M
|
|
"api_base": "https://exampleopenaiendpoint-production.up.railway.app",
|
|
"api_key": "my-fake-key",
|
|
},
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"claude-3-5-sonnet-20240620": ["claude-3-5-sonnet-aihubmix"]}],
|
|
)
|
|
|
|
router.completion(
|
|
model="claude-3-5-sonnet-aihubmix",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
|
|
model_info = litellm.get_model_info(model="claude-3-5-sonnet-20240620")
|
|
|
|
print(f"key: {model_info['key']}")
|
|
|
|
assert model_info["litellm_provider"] == "anthropic"
|
|
|
|
response = router.completion(
|
|
model="claude-3-5-sonnet-20240620",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
|
|
print(f"response_cost: {response._hidden_params['response_cost']}")
|
|
|
|
assert response._hidden_params["response_cost"] > 10
|
|
|
|
model_info = litellm.get_model_info(model="claude-3-5-sonnet-20240620")
|
|
|
|
print(f"key: {model_info['key']}")
|
|
|
|
assert model_info["input_cost_per_token"] == 30
|
|
assert model_info["output_cost_per_token"] == 60
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_router_fallbacks_default_and_model_specific_fallbacks(sync_mode):
|
|
"""
|
|
Tests to ensure there is not an infinite fallback loop when there is a default fallback and model specific fallback.
|
|
"""
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "bad-model",
|
|
"litellm_params": {
|
|
"model": "openai/my-bad-model",
|
|
"api_key": "my-bad-api-key",
|
|
},
|
|
},
|
|
{
|
|
"model_name": "my-bad-model-2",
|
|
"litellm_params": {
|
|
"model": "gpt-4o",
|
|
"api_key": "bad-key",
|
|
},
|
|
},
|
|
],
|
|
fallbacks=[{"bad-model": ["my-bad-model-2"]}],
|
|
default_fallbacks=["bad-model"],
|
|
)
|
|
|
|
with pytest.raises(Exception) as exc_info:
|
|
if sync_mode:
|
|
resp = router.completion(
|
|
model="bad-model",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
|
|
print(f"resp: {resp}")
|
|
else:
|
|
await router.acompletion(
|
|
model="bad-model",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
)
|
|
assert isinstance(
|
|
exc_info.value, litellm.AuthenticationError
|
|
), f"Expected AuthenticationError, but got {type(exc_info.value).__name__}"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_router_disable_fallbacks_dynamically():
|
|
from litellm.router import run_async_fallback
|
|
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "bad-model",
|
|
"litellm_params": {
|
|
"model": "openai/my-bad-model",
|
|
"api_key": "my-bad-api-key",
|
|
},
|
|
},
|
|
{
|
|
"model_name": "good-model",
|
|
"litellm_params": {
|
|
"model": "gpt-4o",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
},
|
|
],
|
|
fallbacks=[{"bad-model": ["good-model"]}],
|
|
default_fallbacks=["good-model"],
|
|
)
|
|
|
|
with patch.object(
|
|
router,
|
|
"log_retry",
|
|
new=MagicMock(return_value=None),
|
|
) as mock_client:
|
|
try:
|
|
resp = await router.acompletion(
|
|
model="bad-model",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
disable_fallbacks=True,
|
|
)
|
|
print(resp)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
mock_client.assert_not_called()
|