forked from phoenix/litellm-mirror
* fix(ollama.py): fix get model info request Fixes https://github.com/BerriAI/litellm/issues/6703 * feat(anthropic/chat/transformation.py): support passing user id to anthropic via openai 'user' param * docs(anthropic.md): document all supported openai params for anthropic * test: fix tests * fix: fix tests * feat(jina_ai/): add rerank support Closes https://github.com/BerriAI/litellm/issues/6691 * test: handle service unavailable error * fix(handler.py): refactor together ai rerank call * test: update test to handle overloaded error * test: fix test * Litellm router trace (#6742) * feat(router.py): add trace_id to parent functions - allows tracking retry/fallbacks * feat(router.py): log trace id across retry/fallback logic allows grouping llm logs for the same request * test: fix tests * fix: fix test * fix(transformation.py): only set non-none stop_sequences * Litellm router disable fallbacks (#6743) * bump: version 1.52.6 → 1.52.7 * feat(router.py): enable dynamically disabling fallbacks Allows for enabling/disabling fallbacks per key * feat(litellm_pre_call_utils.py): support setting 'disable_fallbacks' on litellm key * test: fix test * fix(exception_mapping_utils.py): map 'model is overloaded' to internal server error * test: handle gemini error * test: fix test * fix: new run
176 lines
5.7 KiB
Python
176 lines
5.7 KiB
Python
#### What this tests ####
|
|
# This tests utils used by llm router -> like llmrouter.get_settings()
|
|
|
|
import sys, os, time
|
|
import traceback, asyncio
|
|
import pytest
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import litellm
|
|
from litellm import Router
|
|
from litellm.router import Deployment, LiteLLM_Params, ModelInfo
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from collections import defaultdict
|
|
from dotenv import load_dotenv
|
|
from unittest.mock import patch, MagicMock, AsyncMock
|
|
|
|
load_dotenv()
|
|
|
|
|
|
def test_returned_settings():
|
|
# this tests if the router raises an exception when invalid params are set
|
|
# in this test both deployments have bad keys - Keep this test. It validates if the router raises the most recent exception
|
|
litellm.set_verbose = True
|
|
import openai
|
|
|
|
try:
|
|
print("testing if router raises an exception")
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { #
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": "bad-key",
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
redis_host=os.getenv("REDIS_HOST"),
|
|
redis_password=os.getenv("REDIS_PASSWORD"),
|
|
redis_port=int(os.getenv("REDIS_PORT")),
|
|
routing_strategy="latency-based-routing",
|
|
routing_strategy_args={"ttl": 10},
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
retry_after=5,
|
|
allowed_fails=1,
|
|
cooldown_time=30,
|
|
) # type: ignore
|
|
|
|
settings = router.get_settings()
|
|
print(settings)
|
|
|
|
"""
|
|
routing_strategy: "simple-shuffle"
|
|
routing_strategy_args: {"ttl": 10} # Average the last 10 calls to compute avg latency per model
|
|
allowed_fails: 1
|
|
num_retries: 3
|
|
retry_after: 5 # seconds to wait before retrying a failed request
|
|
cooldown_time: 30 # seconds to cooldown a deployment after failure
|
|
"""
|
|
assert settings["routing_strategy"] == "latency-based-routing"
|
|
assert settings["routing_strategy_args"]["ttl"] == 10
|
|
assert settings["allowed_fails"] == 1
|
|
assert settings["num_retries"] == 3
|
|
assert settings["retry_after"] == 5
|
|
assert settings["cooldown_time"] == 30
|
|
|
|
except Exception:
|
|
print(traceback.format_exc())
|
|
pytest.fail("An error occurred - " + traceback.format_exc())
|
|
|
|
|
|
from litellm.types.utils import CallTypes
|
|
|
|
|
|
def test_update_kwargs_before_fallbacks_unit_test():
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
}
|
|
],
|
|
)
|
|
|
|
kwargs = {"messages": [{"role": "user", "content": "write 1 sentence poem"}]}
|
|
|
|
router._update_kwargs_before_fallbacks(
|
|
model="gpt-3.5-turbo",
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
assert kwargs["litellm_trace_id"] is not None
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"call_type",
|
|
[
|
|
CallTypes.acompletion,
|
|
CallTypes.atext_completion,
|
|
CallTypes.aembedding,
|
|
CallTypes.arerank,
|
|
CallTypes.atranscription,
|
|
],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_update_kwargs_before_fallbacks(call_type):
|
|
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
}
|
|
],
|
|
)
|
|
|
|
if call_type.value.startswith("a"):
|
|
with patch.object(router, "async_function_with_fallbacks") as mock_client:
|
|
if call_type.value == "acompletion":
|
|
input_kwarg = {
|
|
"messages": [{"role": "user", "content": "Hello, how are you?"}],
|
|
}
|
|
elif (
|
|
call_type.value == "atext_completion"
|
|
or call_type.value == "aimage_generation"
|
|
):
|
|
input_kwarg = {
|
|
"prompt": "Hello, how are you?",
|
|
}
|
|
elif call_type.value == "aembedding" or call_type.value == "arerank":
|
|
input_kwarg = {
|
|
"input": "Hello, how are you?",
|
|
}
|
|
elif call_type.value == "atranscription":
|
|
input_kwarg = {
|
|
"file": "path/to/file",
|
|
}
|
|
else:
|
|
input_kwarg = {}
|
|
|
|
await getattr(router, call_type.value)(
|
|
model="gpt-3.5-turbo",
|
|
**input_kwarg,
|
|
)
|
|
|
|
mock_client.assert_called_once()
|
|
|
|
print(mock_client.call_args.kwargs)
|
|
assert mock_client.call_args.kwargs["litellm_trace_id"] is not None
|