litellm/litellm/tests/test_lunary.py
2024-05-03 17:42:50 +01:00

121 lines
3.1 KiB
Python

import sys
import os
import io
sys.path.insert(0, os.path.abspath("../.."))
from litellm import completion
import litellm
litellm.failure_callback = ["lunary"]
litellm.success_callback = ["lunary"]
litellm.set_verbose = True
def test_lunary_logging():
try:
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
user="test-user",
)
print(response)
except Exception as e:
print(e)
# test_lunary_logging()
def test_lunary_template():
import lunary
try:
template = lunary.render_template("test-template", {"question": "Hello!"})
response = completion(**template)
print(response)
except Exception as e:
print(e)
# test_lunary_template()
def test_lunary_logging_with_metadata():
try:
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
metadata={
"run_name": "litellmRUN",
"project_name": "litellm-completion",
},
)
print(response)
except Exception as e:
print(e)
#test_lunary_logging_with_metadata()
def test_lunary_with_tools():
import litellm
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
response_message = response.choices[0].message
print("\nLLM Response:\n", response.choices[0].message)
#test_lunary_with_tools()
def test_lunary_logging_with_streaming_and_metadata():
try:
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
metadata={
"run_name": "litellmRUN",
"project_name": "litellm-completion",
},
stream=True,
)
for chunk in response:
continue
except Exception as e:
print(e)
# test_lunary_logging_with_streaming_and_metadata()