forked from phoenix/litellm-mirror
* fix(litellm_logging.py): set completion_start_time_float to end_time_float if none
Fixes https://github.com/BerriAI/litellm/issues/5500
* feat(_init_.py): add new 'openai_text_completion_compatible_providers' list
Fixes https://github.com/BerriAI/litellm/issues/5558
Handles correctly routing fireworks ai calls when done via text completions
* fix: fix linting errors
* fix: fix linting errors
* fix(openai.py): fix exception raised
* fix(openai.py): fix error handling
* fix(_redis.py): allow all supported arguments for redis cluster (#5554)
* Revert "fix(_redis.py): allow all supported arguments for redis cluster (#5554)" (#5583)
This reverts commit f2191ef4cb
.
* fix(router.py): return model alias w/ underlying deployment on router.get_model_list()
Fixes https://github.com/BerriAI/litellm/issues/5524#issuecomment-2336410666
* test: handle flaky tests
---------
Co-authored-by: Jonas Dittrich <58814480+Kakadus@users.noreply.github.com>
531 lines
20 KiB
Python
531 lines
20 KiB
Python
import json
|
|
import types # type: ignore
|
|
import uuid
|
|
from typing import Any, Callable, Optional, Union
|
|
|
|
import httpx
|
|
import requests
|
|
from openai import AsyncAzureOpenAI, AzureOpenAI
|
|
|
|
import litellm
|
|
from litellm import OpenAIConfig
|
|
from litellm.utils import (
|
|
Choices,
|
|
CustomStreamWrapper,
|
|
Message,
|
|
ModelResponse,
|
|
TextCompletionResponse,
|
|
TranscriptionResponse,
|
|
convert_to_model_response_object,
|
|
)
|
|
|
|
from .base import BaseLLM
|
|
from .OpenAI.openai import OpenAITextCompletion, OpenAITextCompletionConfig
|
|
from .prompt_templates.factory import custom_prompt, prompt_factory
|
|
|
|
openai_text_completion_config = OpenAITextCompletionConfig()
|
|
|
|
|
|
class AzureOpenAIError(Exception):
|
|
def __init__(
|
|
self,
|
|
status_code,
|
|
message,
|
|
request: Optional[httpx.Request] = None,
|
|
response: Optional[httpx.Response] = None,
|
|
headers: Optional[httpx.Headers] = None,
|
|
):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.headers = headers
|
|
if request:
|
|
self.request = request
|
|
else:
|
|
self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
|
|
if response:
|
|
self.response = response
|
|
else:
|
|
self.response = httpx.Response(
|
|
status_code=status_code, request=self.request
|
|
)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class AzureOpenAIConfig(OpenAIConfig):
|
|
"""
|
|
Reference: https://platform.openai.com/docs/api-reference/chat/create
|
|
|
|
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters::
|
|
|
|
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
|
|
|
|
- `function_call` (string or object): This optional parameter controls how the model calls functions.
|
|
|
|
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
|
|
|
|
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
|
|
|
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
|
|
|
|
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
|
|
|
|
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
|
|
|
|
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
|
|
|
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
|
|
|
|
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
frequency_penalty: Optional[int] = None,
|
|
function_call: Optional[Union[str, dict]] = None,
|
|
functions: Optional[list] = None,
|
|
logit_bias: Optional[dict] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
presence_penalty: Optional[int] = None,
|
|
stop: Optional[Union[str, list]] = None,
|
|
temperature: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
) -> None:
|
|
super().__init__(
|
|
frequency_penalty,
|
|
function_call,
|
|
functions,
|
|
logit_bias,
|
|
max_tokens,
|
|
n,
|
|
presence_penalty,
|
|
stop,
|
|
temperature,
|
|
top_p,
|
|
)
|
|
|
|
|
|
def select_azure_base_url_or_endpoint(azure_client_params: dict):
|
|
# azure_client_params = {
|
|
# "api_version": api_version,
|
|
# "azure_endpoint": api_base,
|
|
# "azure_deployment": model,
|
|
# "http_client": litellm.client_session,
|
|
# "max_retries": max_retries,
|
|
# "timeout": timeout,
|
|
# }
|
|
azure_endpoint = azure_client_params.get("azure_endpoint", None)
|
|
if azure_endpoint is not None:
|
|
# see : https://github.com/openai/openai-python/blob/3d61ed42aba652b547029095a7eb269ad4e1e957/src/openai/lib/azure.py#L192
|
|
if "/openai/deployments" in azure_endpoint:
|
|
# this is base_url, not an azure_endpoint
|
|
azure_client_params["base_url"] = azure_endpoint
|
|
azure_client_params.pop("azure_endpoint")
|
|
|
|
return azure_client_params
|
|
|
|
|
|
class AzureTextCompletion(BaseLLM):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def validate_environment(self, api_key, azure_ad_token):
|
|
headers = {
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key is not None:
|
|
headers["api-key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
headers["Authorization"] = f"Bearer {azure_ad_token}"
|
|
return headers
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
api_key: str,
|
|
api_base: str,
|
|
api_version: str,
|
|
api_type: str,
|
|
azure_ad_token: str,
|
|
print_verbose: Callable,
|
|
timeout,
|
|
logging_obj,
|
|
optional_params,
|
|
litellm_params,
|
|
logger_fn,
|
|
acompletion: bool = False,
|
|
headers: Optional[dict] = None,
|
|
client=None,
|
|
):
|
|
super().completion()
|
|
try:
|
|
if model is None or messages is None:
|
|
raise AzureOpenAIError(
|
|
status_code=422, message="Missing model or messages"
|
|
)
|
|
|
|
max_retries = optional_params.pop("max_retries", 2)
|
|
prompt = prompt_factory(
|
|
messages=messages, model=model, custom_llm_provider="azure_text"
|
|
)
|
|
|
|
### CHECK IF CLOUDFLARE AI GATEWAY ###
|
|
### if so - set the model as part of the base url
|
|
if "gateway.ai.cloudflare.com" in api_base:
|
|
## build base url - assume api base includes resource name
|
|
if client is None:
|
|
if not api_base.endswith("/"):
|
|
api_base += "/"
|
|
api_base += f"{model}"
|
|
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"base_url": f"{api_base}",
|
|
"http_client": litellm.client_session,
|
|
"max_retries": max_retries,
|
|
"timeout": timeout,
|
|
}
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
|
|
if acompletion is True:
|
|
client = AsyncAzureOpenAI(**azure_client_params)
|
|
else:
|
|
client = AzureOpenAI(**azure_client_params)
|
|
|
|
data = {"model": None, "prompt": prompt, **optional_params}
|
|
else:
|
|
data = {
|
|
"model": model, # type: ignore
|
|
"prompt": prompt,
|
|
**optional_params,
|
|
}
|
|
|
|
if acompletion is True:
|
|
if optional_params.get("stream", False):
|
|
return self.async_streaming(
|
|
logging_obj=logging_obj,
|
|
api_base=api_base,
|
|
data=data,
|
|
model=model,
|
|
api_key=api_key,
|
|
api_version=api_version,
|
|
azure_ad_token=azure_ad_token,
|
|
timeout=timeout,
|
|
client=client,
|
|
)
|
|
else:
|
|
return self.acompletion(
|
|
api_base=api_base,
|
|
data=data,
|
|
model_response=model_response,
|
|
api_key=api_key,
|
|
api_version=api_version,
|
|
model=model,
|
|
azure_ad_token=azure_ad_token,
|
|
timeout=timeout,
|
|
client=client,
|
|
logging_obj=logging_obj,
|
|
)
|
|
elif "stream" in optional_params and optional_params["stream"] == True:
|
|
return self.streaming(
|
|
logging_obj=logging_obj,
|
|
api_base=api_base,
|
|
data=data,
|
|
model=model,
|
|
api_key=api_key,
|
|
api_version=api_version,
|
|
azure_ad_token=azure_ad_token,
|
|
timeout=timeout,
|
|
client=client,
|
|
)
|
|
else:
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"headers": {
|
|
"api_key": api_key,
|
|
"azure_ad_token": azure_ad_token,
|
|
},
|
|
"api_version": api_version,
|
|
"api_base": api_base,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
if not isinstance(max_retries, int):
|
|
raise AzureOpenAIError(
|
|
status_code=422, message="max retries must be an int"
|
|
)
|
|
# init AzureOpenAI Client
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"azure_endpoint": api_base,
|
|
"azure_deployment": model,
|
|
"http_client": litellm.client_session,
|
|
"max_retries": max_retries,
|
|
"timeout": timeout,
|
|
}
|
|
azure_client_params = select_azure_base_url_or_endpoint(
|
|
azure_client_params=azure_client_params
|
|
)
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
if client is None:
|
|
azure_client = AzureOpenAI(**azure_client_params)
|
|
else:
|
|
azure_client = client
|
|
if api_version is not None and isinstance(
|
|
azure_client._custom_query, dict
|
|
):
|
|
# set api_version to version passed by user
|
|
azure_client._custom_query.setdefault(
|
|
"api-version", api_version
|
|
)
|
|
|
|
raw_response = azure_client.completions.with_raw_response.create(
|
|
**data, timeout=timeout
|
|
)
|
|
response = raw_response.parse()
|
|
stringified_response = response.model_dump()
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
original_response=stringified_response,
|
|
additional_args={
|
|
"headers": headers,
|
|
"api_version": api_version,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
return (
|
|
openai_text_completion_config.convert_to_chat_model_response_object(
|
|
response_object=TextCompletionResponse(**stringified_response),
|
|
model_response_object=model_response,
|
|
)
|
|
)
|
|
except AzureOpenAIError as e:
|
|
raise e
|
|
except Exception as e:
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
raise AzureOpenAIError(
|
|
status_code=status_code, message=str(e), headers=error_headers
|
|
)
|
|
|
|
async def acompletion(
|
|
self,
|
|
api_key: str,
|
|
api_version: str,
|
|
model: str,
|
|
api_base: str,
|
|
data: dict,
|
|
timeout: Any,
|
|
model_response: ModelResponse,
|
|
azure_ad_token: Optional[str] = None,
|
|
client=None, # this is the AsyncAzureOpenAI
|
|
logging_obj=None,
|
|
):
|
|
response = None
|
|
try:
|
|
max_retries = data.pop("max_retries", 2)
|
|
if not isinstance(max_retries, int):
|
|
raise AzureOpenAIError(
|
|
status_code=422, message="max retries must be an int"
|
|
)
|
|
|
|
# init AzureOpenAI Client
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"azure_endpoint": api_base,
|
|
"azure_deployment": model,
|
|
"http_client": litellm.client_session,
|
|
"max_retries": max_retries,
|
|
"timeout": timeout,
|
|
}
|
|
azure_client_params = select_azure_base_url_or_endpoint(
|
|
azure_client_params=azure_client_params
|
|
)
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
|
|
# setting Azure client
|
|
if client is None:
|
|
azure_client = AsyncAzureOpenAI(**azure_client_params)
|
|
else:
|
|
azure_client = client
|
|
if api_version is not None and isinstance(
|
|
azure_client._custom_query, dict
|
|
):
|
|
# set api_version to version passed by user
|
|
azure_client._custom_query.setdefault("api-version", api_version)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data["prompt"],
|
|
api_key=azure_client.api_key,
|
|
additional_args={
|
|
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
|
"api_base": azure_client._base_url._uri_reference,
|
|
"acompletion": True,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
raw_response = await azure_client.completions.with_raw_response.create(
|
|
**data, timeout=timeout
|
|
)
|
|
response = raw_response.parse()
|
|
return openai_text_completion_config.convert_to_chat_model_response_object(
|
|
response_object=response.model_dump(),
|
|
model_response_object=model_response,
|
|
)
|
|
except AzureOpenAIError as e:
|
|
raise e
|
|
except Exception as e:
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
raise AzureOpenAIError(
|
|
status_code=status_code, message=str(e), headers=error_headers
|
|
)
|
|
|
|
def streaming(
|
|
self,
|
|
logging_obj,
|
|
api_base: str,
|
|
api_key: str,
|
|
api_version: str,
|
|
data: dict,
|
|
model: str,
|
|
timeout: Any,
|
|
azure_ad_token: Optional[str] = None,
|
|
client=None,
|
|
):
|
|
max_retries = data.pop("max_retries", 2)
|
|
if not isinstance(max_retries, int):
|
|
raise AzureOpenAIError(
|
|
status_code=422, message="max retries must be an int"
|
|
)
|
|
# init AzureOpenAI Client
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"azure_endpoint": api_base,
|
|
"azure_deployment": model,
|
|
"http_client": litellm.client_session,
|
|
"max_retries": max_retries,
|
|
"timeout": timeout,
|
|
}
|
|
azure_client_params = select_azure_base_url_or_endpoint(
|
|
azure_client_params=azure_client_params
|
|
)
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
if client is None:
|
|
azure_client = AzureOpenAI(**azure_client_params)
|
|
else:
|
|
azure_client = client
|
|
if api_version is not None and isinstance(azure_client._custom_query, dict):
|
|
# set api_version to version passed by user
|
|
azure_client._custom_query.setdefault("api-version", api_version)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data["prompt"],
|
|
api_key=azure_client.api_key,
|
|
additional_args={
|
|
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
|
"api_base": azure_client._base_url._uri_reference,
|
|
"acompletion": True,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
raw_response = azure_client.completions.with_raw_response.create(
|
|
**data, timeout=timeout
|
|
)
|
|
response = raw_response.parse()
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=response,
|
|
model=model,
|
|
custom_llm_provider="azure_text",
|
|
logging_obj=logging_obj,
|
|
)
|
|
return streamwrapper
|
|
|
|
async def async_streaming(
|
|
self,
|
|
logging_obj,
|
|
api_base: str,
|
|
api_key: str,
|
|
api_version: str,
|
|
data: dict,
|
|
model: str,
|
|
timeout: Any,
|
|
azure_ad_token: Optional[str] = None,
|
|
client=None,
|
|
):
|
|
try:
|
|
# init AzureOpenAI Client
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"azure_endpoint": api_base,
|
|
"azure_deployment": model,
|
|
"http_client": litellm.client_session,
|
|
"max_retries": data.pop("max_retries", 2),
|
|
"timeout": timeout,
|
|
}
|
|
azure_client_params = select_azure_base_url_or_endpoint(
|
|
azure_client_params=azure_client_params
|
|
)
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
if client is None:
|
|
azure_client = AsyncAzureOpenAI(**azure_client_params)
|
|
else:
|
|
azure_client = client
|
|
if api_version is not None and isinstance(
|
|
azure_client._custom_query, dict
|
|
):
|
|
# set api_version to version passed by user
|
|
azure_client._custom_query.setdefault("api-version", api_version)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data["prompt"],
|
|
api_key=azure_client.api_key,
|
|
additional_args={
|
|
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
|
"api_base": azure_client._base_url._uri_reference,
|
|
"acompletion": True,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
raw_response = await azure_client.completions.with_raw_response.create(
|
|
**data, timeout=timeout
|
|
)
|
|
response = raw_response.parse()
|
|
# return response
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=response,
|
|
model=model,
|
|
custom_llm_provider="azure_text",
|
|
logging_obj=logging_obj,
|
|
)
|
|
return streamwrapper ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails
|
|
except Exception as e:
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
raise AzureOpenAIError(
|
|
status_code=status_code, message=str(e), headers=error_headers
|
|
)
|