forked from phoenix/litellm-mirror
* use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * fix test_embedding_caching_azure_individual_items_reordered
143 lines
5.1 KiB
Python
143 lines
5.1 KiB
Python
# +-------------------------------------------------------------+
|
|
#
|
|
# Llama Guard
|
|
# https://huggingface.co/meta-llama/LlamaGuard-7b/tree/main
|
|
#
|
|
# LLM for Content Moderation
|
|
# +-------------------------------------------------------------+
|
|
# Thank you users! We ❤️ you! - Krrish & Ishaan
|
|
|
|
import sys, os
|
|
from collections.abc import Iterable
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
from typing import Optional, Literal, Union
|
|
import litellm, traceback, sys, uuid
|
|
from litellm.caching.caching import DualCache
|
|
from litellm.proxy._types import UserAPIKeyAuth
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
from fastapi import HTTPException
|
|
from litellm._logging import verbose_proxy_logger
|
|
from litellm.types.utils import (
|
|
ModelResponse,
|
|
EmbeddingResponse,
|
|
ImageResponse,
|
|
StreamingChoices,
|
|
Choices,
|
|
)
|
|
from datetime import datetime
|
|
import aiohttp, asyncio
|
|
|
|
litellm.set_verbose = True
|
|
|
|
|
|
class _ENTERPRISE_LlamaGuard(CustomLogger):
|
|
# Class variables or attributes
|
|
def __init__(self, model_name: Optional[str] = None):
|
|
_model = model_name or litellm.llamaguard_model_name
|
|
if _model is None:
|
|
raise ValueError("model_name not set for LlamaGuard")
|
|
self.model = _model
|
|
file_path = litellm.llamaguard_unsafe_content_categories
|
|
data = None
|
|
|
|
if file_path is not None:
|
|
try:
|
|
with open(file_path, "r") as file:
|
|
data = file.read()
|
|
except FileNotFoundError:
|
|
raise Exception(f"File not found. file_path={file_path}")
|
|
except Exception as e:
|
|
raise Exception(f"An error occurred: {str(e)}, file_path={file_path}")
|
|
|
|
self.unsafe_content_categories = data
|
|
|
|
verbose_proxy_logger.debug(
|
|
f"self.unsafe_content_categories: {self.unsafe_content_categories}"
|
|
)
|
|
|
|
def print_verbose(self, print_statement):
|
|
try:
|
|
verbose_proxy_logger.debug(print_statement)
|
|
if litellm.set_verbose:
|
|
print(print_statement) # noqa
|
|
except Exception:
|
|
pass
|
|
|
|
def set_custom_prompt_template(self, messages: list):
|
|
if self.unsafe_content_categories is not None and self.model is not None:
|
|
role = "Agent" if len(messages) % 2 == 0 else "User"
|
|
litellm.register_prompt_template(
|
|
model=self.model,
|
|
initial_prompt_value=f"""[INST] Task: Check if there is unsafe content in '{role}' messages in conversations according our safety policy with the below categories.
|
|
|
|
<BEGIN UNSAFE CONTENT CATEGORIES>
|
|
{self.unsafe_content_categories}
|
|
<END UNSAFE CONTENT CATEGORIES>
|
|
|
|
<BEGIN CONVERSATION>
|
|
|
|
""",
|
|
roles={
|
|
"system": {
|
|
"pre_message": "User: ", # [OPTIONAL]
|
|
"post_message": "\n\n", # [OPTIONAL]
|
|
},
|
|
"user": {
|
|
"pre_message": "User: ", # [OPTIONAL]
|
|
"post_message": "\n\n", # [OPTIONAL]
|
|
},
|
|
"assistant": {
|
|
"pre_message": "Agent: ", # [OPTIONAL]
|
|
"post_message": "\n\n", # [OPTIONAL]
|
|
},
|
|
},
|
|
final_prompt_value="""<END CONVERSATION>
|
|
|
|
Provide your safety assessment for {role} in the above conversation:
|
|
- First line must read 'safe' or 'unsafe'.
|
|
- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]""",
|
|
)
|
|
|
|
async def async_moderation_hook(
|
|
self,
|
|
data: dict,
|
|
user_api_key_dict: UserAPIKeyAuth,
|
|
call_type: Literal[
|
|
"completion",
|
|
"embeddings",
|
|
"image_generation",
|
|
"moderation",
|
|
"audio_transcription",
|
|
],
|
|
):
|
|
"""
|
|
- Calls the Llama Guard Endpoint
|
|
- Rejects request if it fails safety check
|
|
|
|
The llama guard prompt template is applied automatically in factory.py
|
|
"""
|
|
if "messages" in data:
|
|
safety_check_messages = data["messages"][
|
|
-1
|
|
] # get the last response - llama guard has a 4k token limit
|
|
response = await litellm.acompletion(
|
|
model=self.model,
|
|
messages=[safety_check_messages],
|
|
hf_model_name="meta-llama/LlamaGuard-7b",
|
|
)
|
|
|
|
if (
|
|
isinstance(response, ModelResponse)
|
|
and isinstance(response.choices[0], Choices)
|
|
and response.choices[0].message.content is not None
|
|
and isinstance(response.choices[0].message.content, Iterable)
|
|
and "unsafe" in response.choices[0].message.content
|
|
):
|
|
raise HTTPException(
|
|
status_code=400, detail={"error": "Violated content safety policy"}
|
|
)
|
|
|
|
return data
|