litellm/enterprise/enterprise_hooks/openai_moderation.py
Ishaan Jaff 4d1b4beb3d
(refactor) caching use LLMCachingHandler for async_get_cache and set_cache (#6208)
* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered
2024-10-14 16:34:01 +05:30

74 lines
2.3 KiB
Python

# +-------------------------------------------------------------+
#
# Use OpenAI /moderations for your LLM calls
#
# +-------------------------------------------------------------+
# Thank you users! We ❤️ you! - Krrish & Ishaan
import sys, os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from typing import Optional, Literal, Union
import litellm, traceback, sys, uuid
from litellm.caching.caching import DualCache
from litellm.proxy._types import UserAPIKeyAuth
from litellm.integrations.custom_logger import CustomLogger
from fastapi import HTTPException
from litellm._logging import verbose_proxy_logger
from litellm.utils import (
ModelResponse,
EmbeddingResponse,
ImageResponse,
StreamingChoices,
)
from datetime import datetime
import aiohttp, asyncio
from litellm._logging import verbose_proxy_logger
litellm.set_verbose = True
class _ENTERPRISE_OpenAI_Moderation(CustomLogger):
def __init__(self):
self.model_name = (
litellm.openai_moderations_model_name or "text-moderation-latest"
) # pass the model_name you initialized on litellm.Router()
pass
#### CALL HOOKS - proxy only ####
async def async_moderation_hook( ### 👈 KEY CHANGE ###
self,
data: dict,
user_api_key_dict: UserAPIKeyAuth,
call_type: Literal[
"completion",
"embeddings",
"image_generation",
"moderation",
"audio_transcription",
],
):
text = ""
if "messages" in data and isinstance(data["messages"], list):
for m in data["messages"]: # assume messages is a list
if "content" in m and isinstance(m["content"], str):
text += m["content"]
from litellm.proxy.proxy_server import llm_router
if llm_router is None:
return
moderation_response = await llm_router.amoderation(
model=self.model_name, input=text
)
verbose_proxy_logger.debug("Moderation response: %s", moderation_response)
if moderation_response.results[0].flagged is True:
raise HTTPException(
status_code=403, detail={"error": "Violated content safety policy"}
)
pass