forked from phoenix/litellm-mirror
* use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * fix test_embedding_caching_azure_individual_items_reordered
523 lines
20 KiB
Python
523 lines
20 KiB
Python
#### What this does ####
|
|
# picks based on response time (for streaming, this is time to first token)
|
|
import random
|
|
import traceback
|
|
from datetime import datetime, timedelta
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
from pydantic import BaseModel
|
|
|
|
import litellm
|
|
from litellm import ModelResponse, token_counter, verbose_logger
|
|
from litellm.caching.caching import DualCache
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
|
|
|
|
class LiteLLMBase(BaseModel):
|
|
"""
|
|
Implements default functions, all pydantic objects should have.
|
|
"""
|
|
|
|
def json(self, **kwargs): # type: ignore
|
|
try:
|
|
return self.model_dump() # noqa
|
|
except Exception:
|
|
# if using pydantic v1
|
|
return self.dict()
|
|
|
|
|
|
class RoutingArgs(LiteLLMBase):
|
|
ttl: float = 1 * 60 * 60 # 1 hour
|
|
lowest_latency_buffer: float = 0
|
|
max_latency_list_size: int = 10
|
|
|
|
|
|
class LowestLatencyLoggingHandler(CustomLogger):
|
|
test_flag: bool = False
|
|
logged_success: int = 0
|
|
logged_failure: int = 0
|
|
|
|
def __init__(
|
|
self, router_cache: DualCache, model_list: list, routing_args: dict = {}
|
|
):
|
|
self.router_cache = router_cache
|
|
self.model_list = model_list
|
|
self.routing_args = RoutingArgs(**routing_args)
|
|
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
try:
|
|
"""
|
|
Update latency usage on success
|
|
"""
|
|
if kwargs["litellm_params"].get("metadata") is None:
|
|
pass
|
|
else:
|
|
model_group = kwargs["litellm_params"]["metadata"].get(
|
|
"model_group", None
|
|
)
|
|
|
|
id = kwargs["litellm_params"].get("model_info", {}).get("id", None)
|
|
if model_group is None or id is None:
|
|
return
|
|
elif isinstance(id, int):
|
|
id = str(id)
|
|
|
|
# ------------
|
|
# Setup values
|
|
# ------------
|
|
"""
|
|
{
|
|
{model_group}_map: {
|
|
id: {
|
|
"latency": [..]
|
|
f"{date:hour:minute}" : {"tpm": 34, "rpm": 3}
|
|
}
|
|
}
|
|
}
|
|
"""
|
|
latency_key = f"{model_group}_map"
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
|
|
response_ms: timedelta = end_time - start_time
|
|
time_to_first_token_response_time: Optional[timedelta] = None
|
|
|
|
if kwargs.get("stream", None) is not None and kwargs["stream"] is True:
|
|
# only log ttft for streaming request
|
|
time_to_first_token_response_time = (
|
|
kwargs.get("completion_start_time", end_time) - start_time
|
|
)
|
|
|
|
final_value: Union[float, timedelta] = response_ms
|
|
time_to_first_token: Optional[float] = None
|
|
total_tokens = 0
|
|
|
|
if isinstance(response_obj, ModelResponse):
|
|
_usage = getattr(response_obj, "usage", None)
|
|
if _usage is not None:
|
|
completion_tokens = _usage.completion_tokens
|
|
total_tokens = _usage.total_tokens
|
|
final_value = float(
|
|
response_ms.total_seconds() / completion_tokens
|
|
)
|
|
|
|
if time_to_first_token_response_time is not None:
|
|
time_to_first_token = float(
|
|
time_to_first_token_response_time.total_seconds()
|
|
/ completion_tokens
|
|
)
|
|
|
|
# ------------
|
|
# Update usage
|
|
# ------------
|
|
|
|
request_count_dict = self.router_cache.get_cache(key=latency_key) or {}
|
|
|
|
if id not in request_count_dict:
|
|
request_count_dict[id] = {}
|
|
|
|
## Latency
|
|
if (
|
|
len(request_count_dict[id].get("latency", []))
|
|
< self.routing_args.max_latency_list_size
|
|
):
|
|
request_count_dict[id].setdefault("latency", []).append(final_value)
|
|
else:
|
|
request_count_dict[id]["latency"] = request_count_dict[id][
|
|
"latency"
|
|
][: self.routing_args.max_latency_list_size - 1] + [final_value]
|
|
|
|
## Time to first token
|
|
if time_to_first_token is not None:
|
|
if (
|
|
len(request_count_dict[id].get("time_to_first_token", []))
|
|
< self.routing_args.max_latency_list_size
|
|
):
|
|
request_count_dict[id].setdefault(
|
|
"time_to_first_token", []
|
|
).append(time_to_first_token)
|
|
else:
|
|
request_count_dict[id][
|
|
"time_to_first_token"
|
|
] = request_count_dict[id]["time_to_first_token"][
|
|
: self.routing_args.max_latency_list_size - 1
|
|
] + [
|
|
time_to_first_token
|
|
]
|
|
|
|
if precise_minute not in request_count_dict[id]:
|
|
request_count_dict[id][precise_minute] = {}
|
|
|
|
## TPM
|
|
request_count_dict[id][precise_minute]["tpm"] = (
|
|
request_count_dict[id][precise_minute].get("tpm", 0) + total_tokens
|
|
)
|
|
|
|
## RPM
|
|
request_count_dict[id][precise_minute]["rpm"] = (
|
|
request_count_dict[id][precise_minute].get("rpm", 0) + 1
|
|
)
|
|
|
|
self.router_cache.set_cache(
|
|
key=latency_key, value=request_count_dict, ttl=self.routing_args.ttl
|
|
) # reset map within window
|
|
|
|
### TESTING ###
|
|
if self.test_flag:
|
|
self.logged_success += 1
|
|
except Exception as e:
|
|
verbose_logger.exception(
|
|
"litellm.proxy.hooks.prompt_injection_detection.py::async_pre_call_hook(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
pass
|
|
|
|
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
"""
|
|
Check if Timeout Error, if timeout set deployment latency -> 100
|
|
"""
|
|
try:
|
|
_exception = kwargs.get("exception", None)
|
|
if isinstance(_exception, litellm.Timeout):
|
|
if kwargs["litellm_params"].get("metadata") is None:
|
|
pass
|
|
else:
|
|
model_group = kwargs["litellm_params"]["metadata"].get(
|
|
"model_group", None
|
|
)
|
|
|
|
id = kwargs["litellm_params"].get("model_info", {}).get("id", None)
|
|
if model_group is None or id is None:
|
|
return
|
|
elif isinstance(id, int):
|
|
id = str(id)
|
|
|
|
# ------------
|
|
# Setup values
|
|
# ------------
|
|
"""
|
|
{
|
|
{model_group}_map: {
|
|
id: {
|
|
"latency": [..]
|
|
f"{date:hour:minute}" : {"tpm": 34, "rpm": 3}
|
|
}
|
|
}
|
|
}
|
|
"""
|
|
latency_key = f"{model_group}_map"
|
|
request_count_dict = (
|
|
self.router_cache.get_cache(key=latency_key) or {}
|
|
)
|
|
|
|
if id not in request_count_dict:
|
|
request_count_dict[id] = {}
|
|
|
|
## Latency - give 1000s penalty for failing
|
|
if (
|
|
len(request_count_dict[id].get("latency", []))
|
|
< self.routing_args.max_latency_list_size
|
|
):
|
|
request_count_dict[id].setdefault("latency", []).append(1000.0)
|
|
else:
|
|
request_count_dict[id]["latency"] = request_count_dict[id][
|
|
"latency"
|
|
][: self.routing_args.max_latency_list_size - 1] + [1000.0]
|
|
|
|
self.router_cache.set_cache(
|
|
key=latency_key,
|
|
value=request_count_dict,
|
|
ttl=self.routing_args.ttl,
|
|
) # reset map within window
|
|
else:
|
|
# do nothing if it's not a timeout error
|
|
return
|
|
except Exception as e:
|
|
verbose_logger.exception(
|
|
"litellm.proxy.hooks.prompt_injection_detection.py::async_pre_call_hook(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
pass
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
try:
|
|
"""
|
|
Update latency usage on success
|
|
"""
|
|
if kwargs["litellm_params"].get("metadata") is None:
|
|
pass
|
|
else:
|
|
model_group = kwargs["litellm_params"]["metadata"].get(
|
|
"model_group", None
|
|
)
|
|
|
|
id = kwargs["litellm_params"].get("model_info", {}).get("id", None)
|
|
if model_group is None or id is None:
|
|
return
|
|
elif isinstance(id, int):
|
|
id = str(id)
|
|
|
|
# ------------
|
|
# Setup values
|
|
# ------------
|
|
"""
|
|
{
|
|
{model_group}_map: {
|
|
id: {
|
|
"latency": [..]
|
|
"time_to_first_token": [..]
|
|
f"{date:hour:minute}" : {"tpm": 34, "rpm": 3}
|
|
}
|
|
}
|
|
}
|
|
"""
|
|
latency_key = f"{model_group}_map"
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
|
|
response_ms: timedelta = end_time - start_time
|
|
time_to_first_token_response_time: Optional[timedelta] = None
|
|
if kwargs.get("stream", None) is not None and kwargs["stream"] is True:
|
|
# only log ttft for streaming request
|
|
time_to_first_token_response_time = (
|
|
kwargs.get("completion_start_time", end_time) - start_time
|
|
)
|
|
|
|
final_value: Union[float, timedelta] = response_ms
|
|
total_tokens = 0
|
|
time_to_first_token: Optional[float] = None
|
|
|
|
if isinstance(response_obj, ModelResponse):
|
|
_usage = getattr(response_obj, "usage", None)
|
|
if _usage is not None:
|
|
completion_tokens = _usage.completion_tokens
|
|
total_tokens = _usage.total_tokens
|
|
final_value = float(
|
|
response_ms.total_seconds() / completion_tokens
|
|
)
|
|
|
|
if time_to_first_token_response_time is not None:
|
|
time_to_first_token = float(
|
|
time_to_first_token_response_time.total_seconds()
|
|
/ completion_tokens
|
|
)
|
|
# ------------
|
|
# Update usage
|
|
# ------------
|
|
|
|
request_count_dict = self.router_cache.get_cache(key=latency_key) or {}
|
|
|
|
if id not in request_count_dict:
|
|
request_count_dict[id] = {}
|
|
|
|
## Latency
|
|
if (
|
|
len(request_count_dict[id].get("latency", []))
|
|
< self.routing_args.max_latency_list_size
|
|
):
|
|
request_count_dict[id].setdefault("latency", []).append(final_value)
|
|
else:
|
|
request_count_dict[id]["latency"] = request_count_dict[id][
|
|
"latency"
|
|
][: self.routing_args.max_latency_list_size - 1] + [final_value]
|
|
|
|
## Time to first token
|
|
if time_to_first_token is not None:
|
|
if (
|
|
len(request_count_dict[id].get("time_to_first_token", []))
|
|
< self.routing_args.max_latency_list_size
|
|
):
|
|
request_count_dict[id].setdefault(
|
|
"time_to_first_token", []
|
|
).append(time_to_first_token)
|
|
else:
|
|
request_count_dict[id][
|
|
"time_to_first_token"
|
|
] = request_count_dict[id]["time_to_first_token"][
|
|
: self.routing_args.max_latency_list_size - 1
|
|
] + [
|
|
time_to_first_token
|
|
]
|
|
|
|
if precise_minute not in request_count_dict[id]:
|
|
request_count_dict[id][precise_minute] = {}
|
|
|
|
## TPM
|
|
request_count_dict[id][precise_minute]["tpm"] = (
|
|
request_count_dict[id][precise_minute].get("tpm", 0) + total_tokens
|
|
)
|
|
|
|
## RPM
|
|
request_count_dict[id][precise_minute]["rpm"] = (
|
|
request_count_dict[id][precise_minute].get("rpm", 0) + 1
|
|
)
|
|
|
|
self.router_cache.set_cache(
|
|
key=latency_key, value=request_count_dict, ttl=self.routing_args.ttl
|
|
) # reset map within window
|
|
|
|
### TESTING ###
|
|
if self.test_flag:
|
|
self.logged_success += 1
|
|
except Exception as e:
|
|
verbose_logger.exception(
|
|
"litellm.router_strategy.lowest_latency.py::async_log_success_event(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
pass
|
|
|
|
def get_available_deployments(
|
|
self,
|
|
model_group: str,
|
|
healthy_deployments: list,
|
|
messages: Optional[List[Dict[str, str]]] = None,
|
|
input: Optional[Union[str, List]] = None,
|
|
request_kwargs: Optional[Dict] = None,
|
|
):
|
|
"""
|
|
Returns a deployment with the lowest latency
|
|
"""
|
|
# get list of potential deployments
|
|
latency_key = f"{model_group}_map"
|
|
_latency_per_deployment = {}
|
|
|
|
request_count_dict = self.router_cache.get_cache(key=latency_key) or {}
|
|
|
|
# -----------------------
|
|
# Find lowest used model
|
|
# ----------------------
|
|
lowest_latency = float("inf")
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
|
|
deployment = None
|
|
|
|
if request_count_dict is None: # base case
|
|
return
|
|
|
|
all_deployments = request_count_dict
|
|
for d in healthy_deployments:
|
|
## if healthy deployment not yet used
|
|
if d["model_info"]["id"] not in all_deployments:
|
|
all_deployments[d["model_info"]["id"]] = {
|
|
"latency": [0],
|
|
precise_minute: {"tpm": 0, "rpm": 0},
|
|
}
|
|
|
|
try:
|
|
input_tokens = token_counter(messages=messages, text=input)
|
|
except Exception:
|
|
input_tokens = 0
|
|
|
|
# randomly sample from all_deployments, incase all deployments have latency=0.0
|
|
_items = all_deployments.items()
|
|
|
|
all_deployments = random.sample(list(_items), len(_items))
|
|
all_deployments = dict(all_deployments)
|
|
### GET AVAILABLE DEPLOYMENTS ### filter out any deployments > tpm/rpm limits
|
|
|
|
potential_deployments = []
|
|
for item, item_map in all_deployments.items():
|
|
## get the item from model list
|
|
_deployment = None
|
|
for m in healthy_deployments:
|
|
if item == m["model_info"]["id"]:
|
|
_deployment = m
|
|
|
|
if _deployment is None:
|
|
continue # skip to next one
|
|
|
|
_deployment_tpm = (
|
|
_deployment.get("tpm", None)
|
|
or _deployment.get("litellm_params", {}).get("tpm", None)
|
|
or _deployment.get("model_info", {}).get("tpm", None)
|
|
or float("inf")
|
|
)
|
|
|
|
_deployment_rpm = (
|
|
_deployment.get("rpm", None)
|
|
or _deployment.get("litellm_params", {}).get("rpm", None)
|
|
or _deployment.get("model_info", {}).get("rpm", None)
|
|
or float("inf")
|
|
)
|
|
item_latency = item_map.get("latency", [])
|
|
item_ttft_latency = item_map.get("time_to_first_token", [])
|
|
item_rpm = item_map.get(precise_minute, {}).get("rpm", 0)
|
|
item_tpm = item_map.get(precise_minute, {}).get("tpm", 0)
|
|
|
|
# get average latency or average ttft (depending on streaming/non-streaming)
|
|
total: float = 0.0
|
|
if (
|
|
request_kwargs is not None
|
|
and request_kwargs.get("stream", None) is not None
|
|
and request_kwargs["stream"] is True
|
|
and len(item_ttft_latency) > 0
|
|
):
|
|
for _call_latency in item_ttft_latency:
|
|
if isinstance(_call_latency, float):
|
|
total += _call_latency
|
|
else:
|
|
for _call_latency in item_latency:
|
|
if isinstance(_call_latency, float):
|
|
total += _call_latency
|
|
item_latency = total / len(item_latency)
|
|
|
|
# -------------- #
|
|
# Debugging Logic
|
|
# -------------- #
|
|
# We use _latency_per_deployment to log to langfuse, slack - this is not used to make a decision on routing
|
|
# this helps a user to debug why the router picked a specfic deployment #
|
|
_deployment_api_base = _deployment.get("litellm_params", {}).get(
|
|
"api_base", ""
|
|
)
|
|
if _deployment_api_base is not None:
|
|
_latency_per_deployment[_deployment_api_base] = item_latency
|
|
# -------------- #
|
|
# End of Debugging Logic
|
|
# -------------- #
|
|
|
|
if (
|
|
item_tpm + input_tokens > _deployment_tpm
|
|
or item_rpm + 1 > _deployment_rpm
|
|
): # if user passed in tpm / rpm in the model_list
|
|
continue
|
|
else:
|
|
potential_deployments.append((_deployment, item_latency))
|
|
|
|
if len(potential_deployments) == 0:
|
|
return None
|
|
|
|
# Sort potential deployments by latency
|
|
sorted_deployments = sorted(potential_deployments, key=lambda x: x[1])
|
|
|
|
# Find lowest latency deployment
|
|
lowest_latency = sorted_deployments[0][1]
|
|
|
|
# Find deployments within buffer of lowest latency
|
|
buffer = self.routing_args.lowest_latency_buffer * lowest_latency
|
|
|
|
valid_deployments = [
|
|
x for x in sorted_deployments if x[1] <= lowest_latency + buffer
|
|
]
|
|
|
|
# Pick a random deployment from valid deployments
|
|
random_valid_deployment = random.choice(valid_deployments)
|
|
deployment = random_valid_deployment[0]
|
|
|
|
if request_kwargs is not None and "metadata" in request_kwargs:
|
|
request_kwargs["metadata"][
|
|
"_latency_per_deployment"
|
|
] = _latency_per_deployment
|
|
return deployment
|