litellm/tests/local_testing/test_lowest_cost_routing.py
Ishaan Jaff 4d1b4beb3d
(refactor) caching use LLMCachingHandler for async_get_cache and set_cache (#6208)
* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered
2024-10-14 16:34:01 +05:30

206 lines
6.1 KiB
Python

#### What this tests ####
# This tests the router's ability to pick deployment with lowest cost
import sys, os, asyncio, time, random
from datetime import datetime
import traceback
from dotenv import load_dotenv
load_dotenv()
import os, copy
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
from litellm import Router
from litellm.router_strategy.lowest_cost import LowestCostLoggingHandler
from litellm.caching.caching import DualCache
### UNIT TESTS FOR cost ROUTING ###
@pytest.mark.asyncio
async def test_get_available_deployments():
test_cache = DualCache()
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "gpt-4"},
"model_info": {"id": "openai-gpt-4"},
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "groq/llama3-8b-8192"},
"model_info": {"id": "groq-llama"},
},
]
lowest_cost_logger = LowestCostLoggingHandler(
router_cache=test_cache, model_list=model_list
)
model_group = "gpt-3.5-turbo"
## CHECK WHAT'S SELECTED ##
selected_model = await lowest_cost_logger.async_get_available_deployments(
model_group=model_group, healthy_deployments=model_list
)
print("selected model: ", selected_model)
assert selected_model["model_info"]["id"] == "groq-llama"
@pytest.mark.asyncio
async def test_get_available_deployments_custom_price():
from litellm._logging import verbose_router_logger
import logging
verbose_router_logger.setLevel(logging.DEBUG)
test_cache = DualCache()
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"input_cost_per_token": 0.00003,
"output_cost_per_token": 0.00003,
},
"model_info": {"id": "chatgpt-v-experimental"},
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-1",
"input_cost_per_token": 0.000000001,
"output_cost_per_token": 0.00000001,
},
"model_info": {"id": "chatgpt-v-1"},
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-5",
"input_cost_per_token": 10,
"output_cost_per_token": 12,
},
"model_info": {"id": "chatgpt-v-5"},
},
]
lowest_cost_logger = LowestCostLoggingHandler(
router_cache=test_cache, model_list=model_list
)
model_group = "gpt-3.5-turbo"
## CHECK WHAT'S SELECTED ##
selected_model = await lowest_cost_logger.async_get_available_deployments(
model_group=model_group, healthy_deployments=model_list
)
print("selected model: ", selected_model)
assert selected_model["model_info"]["id"] == "chatgpt-v-1"
@pytest.mark.asyncio
async def test_lowest_cost_routing():
"""
Test if router, returns model with the lowest cost
"""
model_list = [
{
"model_name": "gpt-4",
"litellm_params": {"model": "gpt-4"},
"model_info": {"id": "openai-gpt-4"},
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "gpt-3.5-turbo"},
"model_info": {"id": "gpt-3.5-turbo"},
},
]
# init router
router = Router(model_list=model_list, routing_strategy="cost-based-routing")
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)
print(response)
print(
response._hidden_params["model_id"]
) # expect groq-llama, since groq/llama has lowest cost
assert "gpt-3.5-turbo" == response._hidden_params["model_id"]
async def _deploy(lowest_cost_logger, deployment_id, tokens_used, duration):
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
"deployment": "gpt-4",
},
"model_info": {"id": deployment_id},
}
}
start_time = time.time()
response_obj = {"usage": {"total_tokens": tokens_used}}
time.sleep(duration)
end_time = time.time()
await lowest_cost_logger.async_log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
@pytest.mark.parametrize(
"ans_rpm", [1, 5]
) # 1 should produce nothing, 10 should select first
@pytest.mark.asyncio
async def test_get_available_endpoints_tpm_rpm_check_async(ans_rpm):
"""
Pass in list of 2 valid models
Update cache with 1 model clearly being at tpm/rpm limit
assert that only the valid model is returned
"""
from litellm._logging import verbose_router_logger
import logging
verbose_router_logger.setLevel(logging.DEBUG)
test_cache = DualCache()
ans = "1234"
non_ans_rpm = 3
assert ans_rpm != non_ans_rpm, "invalid test"
if ans_rpm < non_ans_rpm:
ans = None
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "gpt-4"},
"model_info": {"id": "1234", "rpm": ans_rpm},
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "groq/llama3-8b-8192"},
"model_info": {"id": "5678", "rpm": non_ans_rpm},
},
]
lowest_cost_logger = LowestCostLoggingHandler(
router_cache=test_cache, model_list=model_list
)
model_group = "gpt-3.5-turbo"
d1 = [(lowest_cost_logger, "1234", 50, 0.01)] * non_ans_rpm
d2 = [(lowest_cost_logger, "5678", 50, 0.01)] * non_ans_rpm
await asyncio.gather(*[_deploy(*t) for t in [*d1, *d2]])
asyncio.sleep(3)
## CHECK WHAT'S SELECTED ##
d_ans = await lowest_cost_logger.async_get_available_deployments(
model_group=model_group, healthy_deployments=model_list
)
assert (d_ans and d_ans["model_info"]["id"]) == ans
print("selected deployment:", d_ans)