forked from phoenix/litellm-mirror
* use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * fix test_embedding_caching_azure_individual_items_reordered
968 lines
29 KiB
Python
968 lines
29 KiB
Python
#### What this tests ####
|
|
# This tests the router's ability to pick deployment with lowest latency
|
|
|
|
import asyncio
|
|
import os
|
|
import random
|
|
import sys
|
|
import time
|
|
import traceback
|
|
from datetime import datetime, timedelta
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import copy
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm import Router
|
|
from litellm.caching.caching import DualCache
|
|
from litellm.router_strategy.lowest_latency import LowestLatencyLoggingHandler
|
|
|
|
### UNIT TESTS FOR LATENCY ROUTING ###
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_latency_memory_leak(sync_mode):
|
|
"""
|
|
Test to make sure there's no memory leak caused by lowest latency routing
|
|
|
|
- make 10 calls -> check memory
|
|
- make 11th call -> no change in memory
|
|
"""
|
|
test_cache = DualCache()
|
|
model_list = []
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
deployment_id = "1234"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(5)
|
|
end_time = time.time()
|
|
for _ in range(10):
|
|
if sync_mode:
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
else:
|
|
await lowest_latency_logger.async_log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
latency_key = f"{model_group}_map"
|
|
cache_value = copy.deepcopy(
|
|
test_cache.get_cache(key=latency_key)
|
|
) # MAKE SURE NO MEMORY LEAK IN CACHING OBJECT
|
|
|
|
if sync_mode:
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
else:
|
|
await lowest_latency_logger.async_log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
new_cache_value = test_cache.get_cache(key=latency_key)
|
|
# Assert that the size of the cache doesn't grow unreasonably
|
|
assert get_size(new_cache_value) <= get_size(
|
|
cache_value
|
|
), f"Memory leak detected in function call! new_cache size={get_size(new_cache_value)}, old cache size={get_size(cache_value)}"
|
|
|
|
|
|
def get_size(obj, seen=None):
|
|
# From https://goshippo.com/blog/measure-real-size-any-python-object/
|
|
# Recursively finds size of objects
|
|
size = sys.getsizeof(obj)
|
|
if seen is None:
|
|
seen = set()
|
|
obj_id = id(obj)
|
|
if obj_id in seen:
|
|
return 0
|
|
seen.add(obj_id)
|
|
if isinstance(obj, dict):
|
|
size += sum([get_size(v, seen) for v in obj.values()])
|
|
size += sum([get_size(k, seen) for k in obj.keys()])
|
|
elif hasattr(obj, "__dict__"):
|
|
size += get_size(obj.__dict__, seen)
|
|
elif hasattr(obj, "__iter__") and not isinstance(obj, (str, bytes, bytearray)):
|
|
size += sum([get_size(i, seen) for i in obj])
|
|
return size
|
|
|
|
|
|
def test_latency_updated():
|
|
test_cache = DualCache()
|
|
model_list = []
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
deployment_id = "1234"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(5)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
latency_key = f"{model_group}_map"
|
|
assert (
|
|
end_time - start_time
|
|
== test_cache.get_cache(key=latency_key)[deployment_id]["latency"][0]
|
|
)
|
|
|
|
|
|
# test_tpm_rpm_updated()
|
|
|
|
|
|
def test_latency_updated_custom_ttl():
|
|
"""
|
|
Invalidate the cached request.
|
|
|
|
Test that the cache is empty
|
|
"""
|
|
test_cache = DualCache()
|
|
model_list = []
|
|
cache_time = 3
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list, routing_args={"ttl": cache_time}
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
deployment_id = "1234"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(5)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
latency_key = f"{model_group}_map"
|
|
print(f"cache: {test_cache.get_cache(key=latency_key)}")
|
|
assert isinstance(test_cache.get_cache(key=latency_key), dict)
|
|
time.sleep(cache_time)
|
|
assert test_cache.get_cache(key=latency_key) is None
|
|
|
|
|
|
def test_get_available_deployments():
|
|
test_cache = DualCache()
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "1234"},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "5678"},
|
|
},
|
|
]
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
## DEPLOYMENT 1 ##
|
|
deployment_id = "1234"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(3)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
## DEPLOYMENT 2 ##
|
|
deployment_id = "5678"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 20}}
|
|
time.sleep(2)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
print(
|
|
lowest_latency_logger.get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)
|
|
)
|
|
assert (
|
|
lowest_latency_logger.get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)["model_info"]["id"]
|
|
== "5678"
|
|
)
|
|
|
|
|
|
async def _deploy(lowest_latency_logger, deployment_id, tokens_used, duration):
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": tokens_used}}
|
|
await asyncio.sleep(duration)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
|
|
async def _gather_deploy(all_deploys):
|
|
return await asyncio.gather(*[_deploy(*t) for t in all_deploys])
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ans_rpm", [1, 5]
|
|
) # 1 should produce nothing, 10 should select first
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_get_available_endpoints_tpm_rpm_check_async(ans_rpm):
|
|
"""
|
|
Pass in list of 2 valid models
|
|
|
|
Update cache with 1 model clearly being at tpm/rpm limit
|
|
|
|
assert that only the valid model is returned
|
|
"""
|
|
test_cache = DualCache()
|
|
ans = "1234"
|
|
non_ans_rpm = 3
|
|
assert ans_rpm != non_ans_rpm, "invalid test"
|
|
if ans_rpm < non_ans_rpm:
|
|
ans = None
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "1234", "rpm": ans_rpm},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "5678", "rpm": non_ans_rpm},
|
|
},
|
|
]
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
d1 = [(lowest_latency_logger, "1234", 50, 0.01)] * non_ans_rpm
|
|
d2 = [(lowest_latency_logger, "5678", 50, 0.01)] * non_ans_rpm
|
|
asyncio.run(_gather_deploy([*d1, *d2]))
|
|
time.sleep(3)
|
|
## CHECK WHAT'S SELECTED ##
|
|
d_ans = lowest_latency_logger.get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)
|
|
print(d_ans)
|
|
assert (d_ans and d_ans["model_info"]["id"]) == ans
|
|
|
|
|
|
# test_get_available_endpoints_tpm_rpm_check_async()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ans_rpm", [1, 5]
|
|
) # 1 should produce nothing, 10 should select first
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_get_available_endpoints_tpm_rpm_check(ans_rpm):
|
|
"""
|
|
Pass in list of 2 valid models
|
|
|
|
Update cache with 1 model clearly being at tpm/rpm limit
|
|
|
|
assert that only the valid model is returned
|
|
"""
|
|
test_cache = DualCache()
|
|
ans = "1234"
|
|
non_ans_rpm = 3
|
|
assert ans_rpm != non_ans_rpm, "invalid test"
|
|
if ans_rpm < non_ans_rpm:
|
|
ans = None
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "1234", "rpm": ans_rpm},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "5678", "rpm": non_ans_rpm},
|
|
},
|
|
]
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
## DEPLOYMENT 1 ##
|
|
deployment_id = "1234"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
for _ in range(non_ans_rpm):
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(0.01)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
## DEPLOYMENT 2 ##
|
|
deployment_id = "5678"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
for _ in range(non_ans_rpm):
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 20}}
|
|
time.sleep(0.5)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
d_ans = lowest_latency_logger.get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)
|
|
print(d_ans)
|
|
assert (d_ans and d_ans["model_info"]["id"]) == ans
|
|
|
|
|
|
def test_router_get_available_deployments():
|
|
"""
|
|
Test if routers 'get_available_deployments' returns the fastest deployment
|
|
"""
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
routing_strategy="latency-based-routing",
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
## DEPLOYMENT 1 ##
|
|
deployment_id = 1
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "azure-model",
|
|
},
|
|
"model_info": {"id": 1},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(3)
|
|
end_time = time.time()
|
|
router.lowestlatency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
## DEPLOYMENT 2 ##
|
|
deployment_id = 2
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "azure-model",
|
|
},
|
|
"model_info": {"id": 2},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 20}}
|
|
time.sleep(2)
|
|
end_time = time.time()
|
|
router.lowestlatency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
# print(router.lowesttpm_logger.get_available_deployments(model_group="azure-model"))
|
|
print(router.get_available_deployment(model="azure-model"))
|
|
assert (
|
|
router.get_available_deployment(model="azure-model")["model_info"]["id"] == "2"
|
|
)
|
|
|
|
|
|
# test_router_get_available_deployments()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_router_completion_streaming():
|
|
messages = [
|
|
{"role": "user", "content": "Hello, can you generate a 500 words poem?"}
|
|
]
|
|
model = "azure-model"
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
"mock_response": "Hello world",
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
"mock_response": "Hello world",
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
routing_strategy="latency-based-routing",
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
### Make 3 calls, test if 3rd call goes to fastest deployment
|
|
|
|
## CALL 1+2
|
|
tasks = []
|
|
response = None
|
|
final_response = None
|
|
for _ in range(2):
|
|
tasks.append(router.acompletion(model=model, messages=messages))
|
|
response = await asyncio.gather(*tasks)
|
|
|
|
if response is not None:
|
|
## CALL 3
|
|
await asyncio.sleep(1) # let the cache update happen
|
|
picked_deployment = router.lowestlatency_logger.get_available_deployments(
|
|
model_group=model, healthy_deployments=router.healthy_deployments
|
|
)
|
|
final_response = await router.acompletion(model=model, messages=messages)
|
|
print(f"min deployment id: {picked_deployment}")
|
|
print(f"model id: {final_response._hidden_params['model_id']}")
|
|
assert (
|
|
final_response._hidden_params["model_id"]
|
|
== picked_deployment["model_info"]["id"]
|
|
)
|
|
|
|
|
|
# asyncio.run(test_router_completion_streaming())
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_lowest_latency_routing_with_timeouts():
|
|
"""
|
|
PROD Test:
|
|
- Endpoint 1: triggers timeout errors (it takes 10+ seconds to respond)
|
|
- Endpoint 2: Responds in under 1s
|
|
- Run 5 requests to collect data on latency
|
|
- Run Wait till cache is filled with data
|
|
- Run 10 more requests
|
|
- All requests should have been routed to endpoint 2
|
|
"""
|
|
import litellm
|
|
|
|
litellm.set_verbose = True
|
|
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "openai/slow-endpoint",
|
|
"api_base": "https://exampleopenaiendpoint-production-c715.up.railway.app/", # If you are Krrish, this is OpenAI Endpoint3 on our Railway endpoint :)
|
|
"api_key": "fake-key",
|
|
},
|
|
"model_info": {"id": "slow-endpoint"},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "openai/fast-endpoint",
|
|
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
|
"api_key": "fake-key",
|
|
},
|
|
"model_info": {"id": "fast-endpoint"},
|
|
},
|
|
],
|
|
routing_strategy="latency-based-routing",
|
|
set_verbose=True,
|
|
debug_level="DEBUG",
|
|
timeout=1,
|
|
) # type: ignore
|
|
|
|
# make 4 requests
|
|
for _ in range(4):
|
|
try:
|
|
response = await router.acompletion(
|
|
model="azure-model", messages=[{"role": "user", "content": "hello"}]
|
|
)
|
|
print(response)
|
|
except Exception as e:
|
|
print("got exception", e)
|
|
|
|
await asyncio.sleep(1)
|
|
print("done sending initial requests to collect latency")
|
|
"""
|
|
Note: for debugging
|
|
- By this point: slow-endpoint should have timed out 3-4 times and should be heavily penalized :)
|
|
- The next 10 requests should all be routed to the fast-endpoint
|
|
"""
|
|
|
|
deployments = {}
|
|
# make 10 requests
|
|
for _ in range(10):
|
|
response = await router.acompletion(
|
|
model="azure-model", messages=[{"role": "user", "content": "hello"}]
|
|
)
|
|
print(response)
|
|
_picked_model_id = response._hidden_params["model_id"]
|
|
if _picked_model_id not in deployments:
|
|
deployments[_picked_model_id] = 1
|
|
else:
|
|
deployments[_picked_model_id] += 1
|
|
print("deployments", deployments)
|
|
|
|
# ALL the Requests should have been routed to the fast-endpoint
|
|
assert deployments["fast-endpoint"] == 10
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_lowest_latency_routing_first_pick():
|
|
"""
|
|
PROD Test:
|
|
- When all deployments are latency=0, it should randomly pick a deployment
|
|
- IT SHOULD NEVER PICK THE Very First deployment everytime all deployment latencies are 0
|
|
- This ensures that after the ttl window resets it randomly picks a deployment
|
|
"""
|
|
import litellm
|
|
|
|
litellm.set_verbose = True
|
|
|
|
router = Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "openai/fast-endpoint",
|
|
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
|
"api_key": "fake-key",
|
|
},
|
|
"model_info": {"id": "fast-endpoint"},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "openai/fast-endpoint-2",
|
|
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
|
"api_key": "fake-key",
|
|
},
|
|
"model_info": {"id": "fast-endpoint-2"},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "openai/fast-endpoint-2",
|
|
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
|
"api_key": "fake-key",
|
|
},
|
|
"model_info": {"id": "fast-endpoint-3"},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "openai/fast-endpoint-2",
|
|
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
|
"api_key": "fake-key",
|
|
},
|
|
"model_info": {"id": "fast-endpoint-4"},
|
|
},
|
|
],
|
|
routing_strategy="latency-based-routing",
|
|
routing_strategy_args={"ttl": 0.0000000001},
|
|
set_verbose=True,
|
|
debug_level="DEBUG",
|
|
) # type: ignore
|
|
|
|
deployments = {}
|
|
for _ in range(10):
|
|
response = await router.acompletion(
|
|
model="azure-model", messages=[{"role": "user", "content": "hello"}]
|
|
)
|
|
print(response)
|
|
_picked_model_id = response._hidden_params["model_id"]
|
|
if _picked_model_id not in deployments:
|
|
deployments[_picked_model_id] = 1
|
|
else:
|
|
deployments[_picked_model_id] += 1
|
|
await asyncio.sleep(0.000000000005)
|
|
|
|
print("deployments", deployments)
|
|
|
|
# assert that len(deployments) >1
|
|
assert len(deployments) > 1
|
|
|
|
|
|
@pytest.mark.parametrize("buffer", [0, 1])
|
|
@pytest.mark.asyncio
|
|
async def test_lowest_latency_routing_buffer(buffer):
|
|
"""
|
|
Allow shuffling calls within a certain latency buffer
|
|
"""
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
routing_strategy="latency-based-routing",
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
routing_strategy_args={"lowest_latency_buffer": buffer},
|
|
) # type: ignore
|
|
|
|
## DEPLOYMENT 1 ##
|
|
deployment_id = 1
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "azure-model",
|
|
},
|
|
"model_info": {"id": 1},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(3)
|
|
end_time = time.time()
|
|
router.lowestlatency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
## DEPLOYMENT 2 ##
|
|
deployment_id = 2
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "azure-model",
|
|
},
|
|
"model_info": {"id": 2},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 20}}
|
|
time.sleep(2)
|
|
end_time = time.time()
|
|
router.lowestlatency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
# print(router.lowesttpm_logger.get_available_deployments(model_group="azure-model"))
|
|
selected_deployments = {}
|
|
for _ in range(50):
|
|
print(router.get_available_deployment(model="azure-model"))
|
|
selected_deployments[
|
|
router.get_available_deployment(model="azure-model")["model_info"]["id"]
|
|
] = 1
|
|
|
|
if buffer == 0:
|
|
assert len(selected_deployments.keys()) == 1
|
|
else:
|
|
assert len(selected_deployments.keys()) == 2
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_lowest_latency_routing_time_to_first_token(sync_mode):
|
|
"""
|
|
If a deployment has
|
|
- a fast time to first token
|
|
- slow latency/output token
|
|
|
|
test if:
|
|
- for streaming, the deployment with fastest time to first token is picked
|
|
- for non-streaming, fastest overall deployment is picked
|
|
"""
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
routing_strategy="latency-based-routing",
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
## DEPLOYMENT 1 ##
|
|
deployment_id = 1
|
|
start_time = datetime.now()
|
|
one_second_later = start_time + timedelta(seconds=1)
|
|
|
|
# Compute 3 seconds after the current time
|
|
three_seconds_later = start_time + timedelta(seconds=3)
|
|
four_seconds_later = start_time + timedelta(seconds=4)
|
|
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "azure-model",
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
"stream": True,
|
|
"completion_start_time": one_second_later,
|
|
}
|
|
|
|
response_obj = litellm.ModelResponse(
|
|
usage=litellm.Usage(completion_tokens=50, total_tokens=50)
|
|
)
|
|
end_time = four_seconds_later
|
|
|
|
if sync_mode:
|
|
router.lowestlatency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
else:
|
|
await router.lowestlatency_logger.async_log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
## DEPLOYMENT 2 ##
|
|
deployment_id = 2
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "azure-model",
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
"stream": True,
|
|
"completion_start_time": three_seconds_later,
|
|
}
|
|
response_obj = litellm.ModelResponse(
|
|
usage=litellm.Usage(completion_tokens=50, total_tokens=50)
|
|
)
|
|
end_time = three_seconds_later
|
|
if sync_mode:
|
|
router.lowestlatency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
else:
|
|
await router.lowestlatency_logger.async_log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
"""
|
|
TESTING
|
|
|
|
- expect deployment 1 to be picked for streaming
|
|
- expect deployment 2 to be picked for non-streaming
|
|
"""
|
|
# print(router.lowesttpm_logger.get_available_deployments(model_group="azure-model"))
|
|
selected_deployments = {}
|
|
for _ in range(3):
|
|
print(router.get_available_deployment(model="azure-model"))
|
|
## for non-streaming
|
|
selected_deployments[
|
|
router.get_available_deployment(model="azure-model")["model_info"]["id"]
|
|
] = 1
|
|
|
|
assert len(selected_deployments.keys()) == 1
|
|
assert "2" in list(selected_deployments.keys())
|
|
|
|
selected_deployments = {}
|
|
for _ in range(50):
|
|
print(router.get_available_deployment(model="azure-model"))
|
|
## for non-streaming
|
|
selected_deployments[
|
|
router.get_available_deployment(
|
|
model="azure-model", request_kwargs={"stream": True}
|
|
)["model_info"]["id"]
|
|
] = 1
|
|
|
|
assert len(selected_deployments.keys()) == 1
|
|
assert "1" in list(selected_deployments.keys())
|