forked from phoenix/litellm-mirror
* use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * fix test_embedding_caching_azure_individual_items_reordered
1297 lines
39 KiB
Python
1297 lines
39 KiB
Python
# What this tests?
|
|
## Unit Tests for the max parallel request limiter for the proxy
|
|
|
|
import asyncio
|
|
import os
|
|
import random
|
|
import sys
|
|
import time
|
|
import traceback
|
|
from datetime import datetime
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
from datetime import datetime
|
|
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm import Router
|
|
from litellm.caching.caching import DualCache
|
|
from litellm.proxy._types import UserAPIKeyAuth
|
|
from litellm.proxy.hooks.parallel_request_limiter import (
|
|
_PROXY_MaxParallelRequestsHandler as MaxParallelRequestsHandler,
|
|
)
|
|
from litellm.proxy.utils import InternalUsageCache, ProxyLogging, hash_token
|
|
|
|
## On Request received
|
|
## On Request success
|
|
## On Request failure
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_global_max_parallel_requests():
|
|
"""
|
|
Test if ParallelRequestHandler respects 'global_max_parallel_requests'
|
|
|
|
data["metadata"]["global_max_parallel_requests"]
|
|
"""
|
|
global_max_parallel_requests = 0
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token("sk-12345")
|
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=100)
|
|
local_cache = DualCache()
|
|
parallel_request_handler = MaxParallelRequestsHandler(
|
|
internal_usage_cache=InternalUsageCache(dual_cache=local_cache)
|
|
)
|
|
|
|
for _ in range(3):
|
|
try:
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={
|
|
"metadata": {
|
|
"global_max_parallel_requests": global_max_parallel_requests
|
|
}
|
|
},
|
|
call_type="",
|
|
)
|
|
pytest.fail("Expected call to fail")
|
|
except Exception as e:
|
|
pass
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_pre_call_hook():
|
|
"""
|
|
Test if cache updated on call being received
|
|
"""
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token("sk-12345")
|
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
|
local_cache = DualCache()
|
|
parallel_request_handler = MaxParallelRequestsHandler(
|
|
internal_usage_cache=InternalUsageCache(dual_cache=local_cache)
|
|
)
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{precise_minute}::request_count"
|
|
|
|
print(
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)
|
|
)
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_pre_call_hook_rpm_limits():
|
|
"""
|
|
Test if error raised on hitting rpm limits
|
|
"""
|
|
_api_key = "sk-12345"
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key, max_parallel_requests=1, tpm_limit=9, rpm_limit=1
|
|
)
|
|
local_cache = DualCache()
|
|
parallel_request_handler = MaxParallelRequestsHandler(
|
|
internal_usage_cache=InternalUsageCache(dual_cache=local_cache)
|
|
)
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
kwargs = {"litellm_params": {"metadata": {"user_api_key": _api_key}}}
|
|
|
|
await parallel_request_handler.async_log_success_event(
|
|
kwargs=kwargs,
|
|
response_obj="",
|
|
start_time="",
|
|
end_time="",
|
|
)
|
|
|
|
## Expected cache val: {"current_requests": 0, "current_tpm": 0, "current_rpm": 1}
|
|
|
|
try:
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={},
|
|
call_type="",
|
|
)
|
|
|
|
pytest.fail(f"Expected call to fail")
|
|
except Exception as e:
|
|
assert e.status_code == 429
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_pre_call_hook_rpm_limits_retry_after():
|
|
"""
|
|
Test if rate limit error, returns 'retry_after'
|
|
"""
|
|
_api_key = "sk-12345"
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key, max_parallel_requests=1, tpm_limit=9, rpm_limit=1
|
|
)
|
|
local_cache = DualCache()
|
|
parallel_request_handler = MaxParallelRequestsHandler(
|
|
internal_usage_cache=InternalUsageCache(dual_cache=local_cache)
|
|
)
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
kwargs = {"litellm_params": {"metadata": {"user_api_key": _api_key}}}
|
|
|
|
await parallel_request_handler.async_log_success_event(
|
|
kwargs=kwargs,
|
|
response_obj="",
|
|
start_time="",
|
|
end_time="",
|
|
)
|
|
|
|
## Expected cache val: {"current_requests": 0, "current_tpm": 0, "current_rpm": 1}
|
|
|
|
try:
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={},
|
|
call_type="",
|
|
)
|
|
|
|
pytest.fail(f"Expected call to fail")
|
|
except Exception as e:
|
|
assert e.status_code == 429
|
|
assert hasattr(e, "headers")
|
|
assert "retry-after" in e.headers
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_pre_call_hook_team_rpm_limits():
|
|
"""
|
|
Test if error raised on hitting team rpm limits
|
|
"""
|
|
litellm.set_verbose = True
|
|
_api_key = "sk-12345"
|
|
_team_id = "unique-team-id"
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key,
|
|
max_parallel_requests=1,
|
|
tpm_limit=9,
|
|
rpm_limit=10,
|
|
team_rpm_limit=1,
|
|
team_id=_team_id,
|
|
)
|
|
local_cache = DualCache()
|
|
parallel_request_handler = MaxParallelRequestsHandler(
|
|
internal_usage_cache=InternalUsageCache(dual_cache=local_cache)
|
|
)
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {"user_api_key": _api_key, "user_api_key_team_id": _team_id}
|
|
}
|
|
}
|
|
|
|
await parallel_request_handler.async_log_success_event(
|
|
kwargs=kwargs,
|
|
response_obj="",
|
|
start_time="",
|
|
end_time="",
|
|
)
|
|
|
|
print(f"local_cache: {local_cache}")
|
|
|
|
## Expected cache val: {"current_requests": 0, "current_tpm": 0, "current_rpm": 1}
|
|
|
|
try:
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={},
|
|
call_type="",
|
|
)
|
|
|
|
pytest.fail(f"Expected call to fail")
|
|
except Exception as e:
|
|
assert e.status_code == 429
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_pre_call_hook_tpm_limits():
|
|
"""
|
|
Test if error raised on hitting tpm limits
|
|
"""
|
|
_api_key = "sk-12345"
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key, max_parallel_requests=1, tpm_limit=9, rpm_limit=10
|
|
)
|
|
local_cache = DualCache()
|
|
parallel_request_handler = MaxParallelRequestsHandler(
|
|
internal_usage_cache=InternalUsageCache(dual_cache=local_cache)
|
|
)
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
kwargs = {"litellm_params": {"metadata": {"user_api_key": _api_key}}}
|
|
|
|
await parallel_request_handler.async_log_success_event(
|
|
kwargs=kwargs,
|
|
response_obj=litellm.ModelResponse(usage=litellm.Usage(total_tokens=10)),
|
|
start_time="",
|
|
end_time="",
|
|
)
|
|
|
|
## Expected cache val: {"current_requests": 0, "current_tpm": 0, "current_rpm": 1}
|
|
|
|
try:
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={},
|
|
call_type="",
|
|
)
|
|
|
|
pytest.fail(f"Expected call to fail")
|
|
except Exception as e:
|
|
assert e.status_code == 429
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_pre_call_hook_user_tpm_limits():
|
|
"""
|
|
Test if error raised on hitting tpm limits
|
|
"""
|
|
local_cache = DualCache()
|
|
# create user with tpm/rpm limits
|
|
user_id = "test-user"
|
|
user_obj = {
|
|
"tpm_limit": 9,
|
|
"rpm_limit": 10,
|
|
"user_id": user_id,
|
|
"user_email": "user_email",
|
|
"max_budget": None,
|
|
}
|
|
|
|
local_cache.set_cache(key=user_id, value=user_obj)
|
|
|
|
_api_key = "sk-12345"
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key,
|
|
user_id=user_id,
|
|
)
|
|
res = dict(user_api_key_dict)
|
|
print("dict user", res)
|
|
|
|
parallel_request_handler = MaxParallelRequestsHandler(
|
|
internal_usage_cache=InternalUsageCache(dual_cache=local_cache)
|
|
)
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {"user_api_key_user_id": user_id, "user_api_key": "gm"}
|
|
}
|
|
}
|
|
|
|
await parallel_request_handler.async_log_success_event(
|
|
kwargs=kwargs,
|
|
response_obj=litellm.ModelResponse(usage=litellm.Usage(total_tokens=10)),
|
|
start_time="",
|
|
end_time="",
|
|
)
|
|
|
|
## Expected cache val: {"current_requests": 0, "current_tpm": 0, "current_rpm": 1}
|
|
|
|
try:
|
|
print("cache=local_cache", local_cache.in_memory_cache.cache_dict)
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={},
|
|
call_type="",
|
|
)
|
|
|
|
pytest.fail(f"Expected call to fail")
|
|
except Exception as e:
|
|
assert e.status_code == 429
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_success_call_hook():
|
|
"""
|
|
Test if on success, cache correctly decremented
|
|
"""
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token("sk-12345")
|
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
|
local_cache = DualCache()
|
|
parallel_request_handler = MaxParallelRequestsHandler(
|
|
internal_usage_cache=InternalUsageCache(dual_cache=local_cache)
|
|
)
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{precise_minute}::request_count"
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
kwargs = {"litellm_params": {"metadata": {"user_api_key": _api_key}}}
|
|
|
|
await parallel_request_handler.async_log_success_event(
|
|
kwargs=kwargs, response_obj="", start_time="", end_time=""
|
|
)
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 0
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_failure_call_hook():
|
|
"""
|
|
Test if on failure, cache correctly decremented
|
|
"""
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token(_api_key)
|
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
|
local_cache = DualCache()
|
|
parallel_request_handler = MaxParallelRequestsHandler(
|
|
internal_usage_cache=InternalUsageCache(dual_cache=local_cache)
|
|
)
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{precise_minute}::request_count"
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
kwargs = {
|
|
"litellm_params": {"metadata": {"user_api_key": _api_key}},
|
|
"exception": Exception(),
|
|
}
|
|
|
|
await parallel_request_handler.async_log_failure_event(
|
|
kwargs=kwargs, response_obj="", start_time="", end_time=""
|
|
)
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 0
|
|
)
|
|
|
|
|
|
"""
|
|
Test with Router
|
|
- normal call
|
|
- streaming call
|
|
- bad call
|
|
"""
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_normal_router_call():
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token(_api_key)
|
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{precise_minute}::request_count"
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
# normal call
|
|
response = await router.acompletion(
|
|
model="azure-model",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
metadata={"user_api_key": _api_key},
|
|
mock_response="hello",
|
|
)
|
|
await asyncio.sleep(1) # success is done in a separate thread
|
|
print(f"response: {response}")
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 0
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_normal_router_tpm_limit():
|
|
import logging
|
|
|
|
from litellm._logging import verbose_proxy_logger
|
|
|
|
verbose_proxy_logger.setLevel(level=logging.DEBUG)
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token("sk-12345")
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key, max_parallel_requests=10, tpm_limit=10
|
|
)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{precise_minute}::request_count"
|
|
print("Test: Checking current_requests for precise_minute=", precise_minute)
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
# normal call
|
|
response = await router.acompletion(
|
|
model="azure-model",
|
|
messages=[{"role": "user", "content": "Write me a paragraph on the moon"}],
|
|
metadata={"user_api_key": _api_key},
|
|
mock_response="hello",
|
|
)
|
|
await asyncio.sleep(1) # success is done in a separate thread
|
|
print(f"response: {response}")
|
|
|
|
try:
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_tpm"]
|
|
> 0
|
|
)
|
|
|
|
except Exception as e:
|
|
print("Exception on test_normal_router_tpm_limit", e)
|
|
assert e.status_code == 429
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_streaming_router_call():
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token("sk-12345")
|
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{precise_minute}::request_count"
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
# streaming call
|
|
response = await router.acompletion(
|
|
model="azure-model",
|
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
|
stream=True,
|
|
metadata={"user_api_key": _api_key},
|
|
mock_response="hello",
|
|
)
|
|
async for chunk in response:
|
|
continue
|
|
await asyncio.sleep(1) # success is done in a separate thread
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 0
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_streaming_router_tpm_limit():
|
|
litellm.set_verbose = True
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token("sk-12345")
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key, max_parallel_requests=10, tpm_limit=10
|
|
)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{precise_minute}::request_count"
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
# normal call
|
|
response = await router.acompletion(
|
|
model="azure-model",
|
|
messages=[{"role": "user", "content": "Write me a paragraph on the moon"}],
|
|
stream=True,
|
|
metadata={"user_api_key": _api_key},
|
|
mock_response="hello",
|
|
)
|
|
async for chunk in response:
|
|
continue
|
|
await asyncio.sleep(5) # success is done in a separate thread
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_tpm"]
|
|
> 0
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_bad_router_call():
|
|
litellm.set_verbose = True
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token(_api_key)
|
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{precise_minute}::request_count"
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache( # type: ignore
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
# bad streaming call
|
|
try:
|
|
response = await router.acompletion(
|
|
model="azure-model",
|
|
messages=[{"role": "user2", "content": "Hey, how's it going?"}],
|
|
stream=True,
|
|
metadata={"user_api_key": _api_key},
|
|
)
|
|
except Exception:
|
|
pass
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache( # type: ignore
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 0
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_bad_router_tpm_limit():
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token(_api_key)
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key, max_parallel_requests=10, tpm_limit=10
|
|
)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{precise_minute}::request_count"
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
# bad call
|
|
try:
|
|
response = await router.acompletion(
|
|
model="azure-model",
|
|
messages=[{"role": "user2", "content": "Write me a paragraph on the moon"}],
|
|
stream=True,
|
|
metadata={"user_api_key": _api_key},
|
|
)
|
|
except Exception:
|
|
pass
|
|
await asyncio.sleep(1) # success is done in a separate thread
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_tpm"]
|
|
== 0
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_bad_router_tpm_limit_per_model():
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token(_api_key)
|
|
model = "azure-model"
|
|
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key,
|
|
max_parallel_requests=10,
|
|
tpm_limit=10,
|
|
metadata={
|
|
"model_rpm_limit": {model: 5},
|
|
"model_tpm_limit": {model: 5},
|
|
},
|
|
)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={"model": model},
|
|
call_type="",
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{model}::{precise_minute}::request_count"
|
|
|
|
print(
|
|
"internal usage cache: ",
|
|
parallel_request_handler.internal_usage_cache.dual_cache.in_memory_cache.cache_dict,
|
|
)
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_requests"]
|
|
== 1
|
|
)
|
|
|
|
# bad call
|
|
try:
|
|
response = await router.acompletion(
|
|
model=model,
|
|
messages=[{"role": "user2", "content": "Write me a paragraph on the moon"}],
|
|
stream=True,
|
|
metadata={
|
|
"user_api_key": _api_key,
|
|
"user_api_key_metadata": {
|
|
"model_rpm_limit": {model: 5},
|
|
"model_tpm_limit": {model: 5},
|
|
},
|
|
},
|
|
)
|
|
except Exception:
|
|
pass
|
|
await asyncio.sleep(1) # success is done in a separate thread
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_tpm"]
|
|
== 0
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_pre_call_hook_rpm_limits_per_model():
|
|
"""
|
|
Test if error raised on hitting rpm limits for a given model
|
|
"""
|
|
import logging
|
|
|
|
from litellm._logging import (
|
|
verbose_logger,
|
|
verbose_proxy_logger,
|
|
verbose_router_logger,
|
|
)
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
verbose_proxy_logger.setLevel(logging.DEBUG)
|
|
verbose_router_logger.setLevel(logging.DEBUG)
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token(_api_key)
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key,
|
|
max_parallel_requests=100,
|
|
tpm_limit=900000,
|
|
rpm_limit=100000,
|
|
metadata={
|
|
"model_rpm_limit": {"azure-model": 1},
|
|
},
|
|
)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
|
)
|
|
|
|
model = "azure-model"
|
|
|
|
kwargs = {
|
|
"model": model,
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"user_api_key": _api_key,
|
|
"model_group": model,
|
|
"user_api_key_metadata": {"model_rpm_limit": {"azure-model": 1}},
|
|
},
|
|
},
|
|
}
|
|
|
|
await parallel_request_handler.async_log_success_event(
|
|
kwargs=kwargs,
|
|
response_obj="",
|
|
start_time="",
|
|
end_time="",
|
|
)
|
|
|
|
## Expected cache val: {"current_requests": 0, "current_tpm": 0, "current_rpm": 1}
|
|
|
|
try:
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={"model": model},
|
|
call_type="",
|
|
)
|
|
|
|
pytest.fail(f"Expected call to fail")
|
|
except Exception as e:
|
|
assert e.status_code == 429
|
|
print("got error=", e)
|
|
assert (
|
|
"limit reached Hit RPM limit for model: azure-model on api_key: c11e7177eb60c80cf983ddf8ca98f2dc1272d4c612204ce9bedd2460b18939cc"
|
|
in str(e)
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_pre_call_hook_tpm_limits_per_model():
|
|
"""
|
|
Test if error raised on hitting tpm limits for a given model
|
|
"""
|
|
import logging
|
|
|
|
from litellm._logging import (
|
|
verbose_logger,
|
|
verbose_proxy_logger,
|
|
verbose_router_logger,
|
|
)
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
verbose_proxy_logger.setLevel(logging.DEBUG)
|
|
verbose_router_logger.setLevel(logging.DEBUG)
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token(_api_key)
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key,
|
|
max_parallel_requests=100,
|
|
tpm_limit=900000,
|
|
rpm_limit=100000,
|
|
metadata={
|
|
"model_tpm_limit": {"azure-model": 1},
|
|
"model_rpm_limit": {"azure-model": 100},
|
|
},
|
|
)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
model = "azure-model"
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={"model": model},
|
|
call_type="",
|
|
)
|
|
|
|
kwargs = {
|
|
"model": model,
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"user_api_key": _api_key,
|
|
"model_group": model,
|
|
"user_api_key_metadata": {
|
|
"model_tpm_limit": {"azure-model": 1},
|
|
"model_rpm_limit": {"azure-model": 100},
|
|
},
|
|
}
|
|
},
|
|
}
|
|
|
|
await parallel_request_handler.async_log_success_event(
|
|
kwargs=kwargs,
|
|
response_obj=litellm.ModelResponse(usage=litellm.Usage(total_tokens=11)),
|
|
start_time="",
|
|
end_time="",
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{model}::{precise_minute}::request_count"
|
|
|
|
print(
|
|
"internal usage cache: ",
|
|
parallel_request_handler.internal_usage_cache.dual_cache.in_memory_cache.cache_dict,
|
|
)
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_tpm"]
|
|
== 11
|
|
)
|
|
|
|
assert (
|
|
parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)["current_rpm"]
|
|
== 1
|
|
)
|
|
|
|
## Expected cache val: {"current_requests": 0, "current_tpm": 11, "current_rpm": "1"}
|
|
|
|
try:
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={"model": model},
|
|
call_type="",
|
|
)
|
|
|
|
pytest.fail(f"Expected call to fail")
|
|
except Exception as e:
|
|
assert e.status_code == 429
|
|
print("got error=", e)
|
|
assert (
|
|
"request limit reached Hit TPM limit for model: azure-model on api_key"
|
|
in str(e)
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=6, delay=1)
|
|
async def test_post_call_success_hook_rpm_limits_per_model():
|
|
"""
|
|
Test if openai-compatible x-ratelimit-* headers are added to the response
|
|
"""
|
|
import logging
|
|
from litellm import ModelResponse
|
|
|
|
from litellm._logging import (
|
|
verbose_logger,
|
|
verbose_proxy_logger,
|
|
verbose_router_logger,
|
|
)
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
verbose_proxy_logger.setLevel(logging.DEBUG)
|
|
verbose_router_logger.setLevel(logging.DEBUG)
|
|
|
|
_api_key = "sk-12345"
|
|
_api_key = hash_token(_api_key)
|
|
user_api_key_dict = UserAPIKeyAuth(
|
|
api_key=_api_key,
|
|
max_parallel_requests=100,
|
|
tpm_limit=900000,
|
|
rpm_limit=100000,
|
|
metadata={
|
|
"model_tpm_limit": {"azure-model": 1},
|
|
"model_rpm_limit": {"azure-model": 100},
|
|
},
|
|
)
|
|
local_cache = DualCache()
|
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
|
pl._init_litellm_callbacks()
|
|
print(f"litellm callbacks: {litellm.callbacks}")
|
|
parallel_request_handler = pl.max_parallel_request_limiter
|
|
model = "azure-model"
|
|
|
|
await parallel_request_handler.async_pre_call_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
cache=local_cache,
|
|
data={"model": model},
|
|
call_type="",
|
|
)
|
|
|
|
kwargs = {
|
|
"model": model,
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"user_api_key": _api_key,
|
|
"model_group": model,
|
|
"user_api_key_metadata": {
|
|
"model_tpm_limit": {"azure-model": 1},
|
|
"model_rpm_limit": {"azure-model": 100},
|
|
},
|
|
}
|
|
},
|
|
}
|
|
|
|
await parallel_request_handler.async_log_success_event(
|
|
kwargs=kwargs,
|
|
response_obj=litellm.ModelResponse(usage=litellm.Usage(total_tokens=11)),
|
|
start_time="",
|
|
end_time="",
|
|
)
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d")
|
|
current_hour = datetime.now().strftime("%H")
|
|
current_minute = datetime.now().strftime("%M")
|
|
precise_minute = f"{current_date}-{current_hour}-{current_minute}"
|
|
request_count_api_key = f"{_api_key}::{model}::{precise_minute}::request_count"
|
|
|
|
print(f"request_count_api_key: {request_count_api_key}")
|
|
current_cache = parallel_request_handler.internal_usage_cache.get_cache(
|
|
key=request_count_api_key
|
|
)
|
|
print("current cache: ", current_cache)
|
|
|
|
response = ModelResponse()
|
|
await parallel_request_handler.async_post_call_success_hook(
|
|
data={}, user_api_key_dict=user_api_key_dict, response=response
|
|
)
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
|
print(hidden_params)
|
|
assert "additional_headers" in hidden_params
|
|
assert "x-ratelimit-limit-requests" in hidden_params["additional_headers"]
|
|
assert "x-ratelimit-remaining-requests" in hidden_params["additional_headers"]
|
|
assert "x-ratelimit-limit-tokens" in hidden_params["additional_headers"]
|
|
assert "x-ratelimit-remaining-tokens" in hidden_params["additional_headers"]
|