litellm/tests/local_testing/test_whisper.py
Ishaan Jaff 4d1b4beb3d
(refactor) caching use LLMCachingHandler for async_get_cache and set_cache (#6208)
* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered
2024-10-14 16:34:01 +05:30

197 lines
5.5 KiB
Python

# What is this?
## Tests `litellm.transcription` endpoint. Outside litellm module b/c of audio file used in testing (it's ~700kb).
import asyncio
import logging
import os
import sys
import time
import traceback
from typing import Optional
import aiohttp
import dotenv
import pytest
from dotenv import load_dotenv
from openai import AsyncOpenAI
import litellm
from litellm.integrations.custom_logger import CustomLogger
# Get the current directory of the file being run
pwd = os.path.dirname(os.path.realpath(__file__))
print(pwd)
file_path = os.path.join(pwd, "gettysburg.wav")
audio_file = open(file_path, "rb")
file2_path = os.path.join(pwd, "eagle.wav")
audio_file2 = open(file2_path, "rb")
load_dotenv()
sys.path.insert(
0, os.path.abspath("../")
) # Adds the parent directory to the system path
import litellm
from litellm import Router
@pytest.mark.parametrize(
"model, api_key, api_base",
[
("whisper-1", None, None),
# ("groq/whisper-large-v3", None, None),
(
"azure/azure-whisper",
os.getenv("AZURE_EUROPE_API_KEY"),
"https://my-endpoint-europe-berri-992.openai.azure.com/",
),
],
)
@pytest.mark.parametrize("response_format", ["json", "vtt"])
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_transcription(model, api_key, api_base, response_format, sync_mode):
if sync_mode:
transcript = litellm.transcription(
model=model,
file=audio_file,
api_key=api_key,
api_base=api_base,
response_format=response_format,
drop_params=True,
)
else:
transcript = await litellm.atranscription(
model=model,
file=audio_file,
api_key=api_key,
api_base=api_base,
response_format=response_format,
drop_params=True,
)
print(f"transcript: {transcript.model_dump()}")
print(f"transcript: {transcript._hidden_params}")
assert transcript.text is not None
# This file includes the custom callbacks for LiteLLM Proxy
# Once defined, these can be passed in proxy_config.yaml
class MyCustomHandler(CustomLogger):
def __init__(self):
self.openai_client = None
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
# init logging config
print("logging a transcript kwargs: ", kwargs)
print("openai client=", kwargs.get("client"))
self.openai_client = kwargs.get("client")
except Exception:
pass
proxy_handler_instance = MyCustomHandler()
# Set litellm.callbacks = [proxy_handler_instance] on the proxy
# need to set litellm.callbacks = [proxy_handler_instance] # on the proxy
@pytest.mark.asyncio
async def test_transcription_on_router():
litellm.set_verbose = True
litellm.callbacks = [proxy_handler_instance]
print("\n Testing async transcription on router\n")
try:
model_list = [
{
"model_name": "whisper",
"litellm_params": {
"model": "whisper-1",
},
},
{
"model_name": "whisper",
"litellm_params": {
"model": "azure/azure-whisper",
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com/",
"api_key": os.getenv("AZURE_EUROPE_API_KEY"),
"api_version": "2024-02-15-preview",
},
},
]
router = Router(model_list=model_list)
router_level_clients = []
for deployment in router.model_list:
_deployment_openai_client = router._get_client(
deployment=deployment,
kwargs={"model": "whisper-1"},
client_type="async",
)
router_level_clients.append(str(_deployment_openai_client))
response = await router.atranscription(
model="whisper",
file=audio_file,
)
print(response)
# PROD Test
# Ensure we ONLY use OpenAI/Azure client initialized on the router level
await asyncio.sleep(5)
print("OpenAI Client used= ", proxy_handler_instance.openai_client)
print("all router level clients= ", router_level_clients)
assert proxy_handler_instance.openai_client in router_level_clients
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred: {e}")
@pytest.mark.asyncio()
async def test_transcription_caching():
import litellm
from litellm.caching.caching import Cache
litellm.set_verbose = True
litellm.cache = Cache()
# make raw llm api call
response_1 = await litellm.atranscription(
model="whisper-1",
file=audio_file,
)
await asyncio.sleep(5)
# cache hit
response_2 = await litellm.atranscription(
model="whisper-1",
file=audio_file,
)
print("response_1", response_1)
print("response_2", response_2)
print("response2 hidden params", response_2._hidden_params)
assert response_2._hidden_params["cache_hit"] is True
# cache miss
response_3 = await litellm.atranscription(
model="whisper-1",
file=audio_file2,
)
print("response_3", response_3)
print("response3 hidden params", response_3._hidden_params)
assert response_3._hidden_params.get("cache_hit") is not True
assert response_3.text != response_2.text
litellm.cache = None