LiteLLM fork
Find a file
2023-08-08 16:20:50 -07:00
.circleci fix circle ci test 2023-08-08 11:32:31 -07:00
cookbook example with Claude+streaming 2023-08-08 16:20:50 -07:00
docs fix docs claude2 2023-08-08 15:18:53 -07:00
litellm fix anthropic streaming 2023-08-08 16:07:53 -07:00
test-results Create t1.txt 2023-08-01 15:39:19 -07:00
.DS_Store add import for co, anth 2023-08-08 10:46:20 -07:00
.env.example Expanded .env, added Poetry and basic Docstring 2023-08-02 12:05:35 +03:00
.gitignore Expanded .env, added Poetry and basic Docstring 2023-08-02 12:05:35 +03:00
.readthedocs.yaml Update .readthedocs.yaml 2023-07-29 12:54:38 -07:00
LICENSE Initial commit 2023-07-26 17:09:52 -07:00
mkdocs.yml code cleanup 2023-08-07 10:44:04 -07:00
poetry.lock Expanded .env, added Poetry and basic Docstring 2023-08-02 12:05:35 +03:00
pyproject.toml anthropic streaming 2023-08-08 16:10:52 -07:00
README.md Update README.md 2023-08-08 16:19:34 -07:00
requirements.txt remove deps datalib, pytest, tenacity, infisical 2023-08-08 10:58:43 -07:00

🚅 litellm

PyPI Version PyPI Version CircleCI Downloads litellm

Get Support / Join the community 👉

a simple & light package to call OpenAI, Azure, Cohere, Anthropic API Endpoints

litellm manages:

  • translating inputs to completion and embedding endpoints
  • guarantees consistent output, text responses will always be available at ['choices'][0]['message']['content']

usage

Read the docs - https://litellm.readthedocs.io/en/latest/

quick start

pip install litellm
from litellm import completion

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion("command-nightly", messages)

# azure openai call
response = completion("chatgpt-test", messages, azure=True)

# hugging face call
response = completion(model="stabilityai/stablecode-completion-alpha-3b-4k", messages=messages, hugging_face=True)

# openrouter call
response = completion("google/palm-2-codechat-bison", messages)

Code Sample: Getting Started Notebook

Stable version

pip install litellm==0.1.345

Streaming Queries

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response. Streaming is supported for OpenAI, Azure, Anthropic models

response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
    print(chunk['choices'][0]['delta'])
# claude 2
result = litellm.completion('claude-2', messages, stream=True)
for chunk in result:
  print(chunk['choices'][0]['delta'])

hosted version

why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI, Cohere

Support

Contact us at ishaan@berri.ai / krrish@berri.ai