litellm/litellm/llms/mistral/mistral_chat_transformation.py
Ishaan Jaff 9d20c19e0c
(fix) OpenAI's optional messages[].name does not work with Mistral API (#6701)
* use helper for _transform_messages mistral

* add test_message_with_name to base LLMChat test

* fix linting
2024-11-11 18:03:41 -08:00

207 lines
8.2 KiB
Python

"""
Transformation logic from OpenAI /v1/chat/completion format to Mistral's /chat/completion format.
Why separate file? Make it easy to see how transformation works
Docs - https://docs.mistral.ai/api/
"""
import types
from typing import List, Literal, Optional, Tuple, Union
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
class MistralConfig:
"""
Reference: https://docs.mistral.ai/api/
The class `MistralConfig` provides configuration for the Mistral's Chat API interface. Below are the parameters:
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2. API Default - 0.7.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling. API Default - 1.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion. API Default - null.
- `tools` (list or null): A list of available tools for the model. Use this to specify functions for which the model can generate JSON inputs.
- `tool_choice` (string - 'auto'/'any'/'none' or null): Specifies if/how functions are called. If set to none the model won't call a function and will generate a message instead. If set to auto the model can choose to either generate a message or call a function. If set to any the model is forced to call a function. Default - 'auto'.
- `stop` (string or array of strings): Stop generation if this token is detected. Or if one of these tokens is detected when providing an array
- `random_seed` (integer or null): The seed to use for random sampling. If set, different calls will generate deterministic results.
- `safe_prompt` (boolean): Whether to inject a safety prompt before all conversations. API Default - 'false'.
- `response_format` (object or null): An object specifying the format that the model must output. Setting to { "type": "json_object" } enables JSON mode, which guarantees the message the model generates is in JSON. When using JSON mode you MUST also instruct the model to produce JSON yourself with a system or a user message.
"""
temperature: Optional[int] = None
top_p: Optional[int] = None
max_tokens: Optional[int] = None
tools: Optional[list] = None
tool_choice: Optional[Literal["auto", "any", "none"]] = None
random_seed: Optional[int] = None
safe_prompt: Optional[bool] = None
response_format: Optional[dict] = None
stop: Optional[Union[str, list]] = None
def __init__(
self,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
max_tokens: Optional[int] = None,
tools: Optional[list] = None,
tool_choice: Optional[Literal["auto", "any", "none"]] = None,
random_seed: Optional[int] = None,
safe_prompt: Optional[bool] = None,
response_format: Optional[dict] = None,
stop: Optional[Union[str, list]] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return [
"stream",
"temperature",
"top_p",
"max_tokens",
"tools",
"tool_choice",
"seed",
"stop",
"response_format",
]
def _map_tool_choice(self, tool_choice: str) -> str:
if tool_choice == "auto" or tool_choice == "none":
return tool_choice
elif tool_choice == "required":
return "any"
else: # openai 'tool_choice' object param not supported by Mistral API
return "any"
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "tools":
optional_params["tools"] = value
if param == "stream" and value is True:
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "stop":
optional_params["stop"] = value
if param == "tool_choice" and isinstance(value, str):
optional_params["tool_choice"] = self._map_tool_choice(
tool_choice=value
)
if param == "seed":
optional_params["extra_body"] = {"random_seed": value}
if param == "response_format":
optional_params["response_format"] = value
return optional_params
def _get_openai_compatible_provider_info(
self, api_base: Optional[str], api_key: Optional[str]
) -> Tuple[Optional[str], Optional[str]]:
# mistral is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.mistral.ai
api_base = (
api_base
or get_secret_str("MISTRAL_AZURE_API_BASE") # for Azure AI Mistral
or "https://api.mistral.ai/v1"
) # type: ignore
# if api_base does not end with /v1 we add it
if api_base is not None and not api_base.endswith(
"/v1"
): # Mistral always needs a /v1 at the end
api_base = api_base + "/v1"
dynamic_api_key = (
api_key
or get_secret_str("MISTRAL_AZURE_API_KEY") # for Azure AI Mistral
or get_secret_str("MISTRAL_API_KEY")
)
return api_base, dynamic_api_key
@classmethod
def _transform_messages(cls, messages: List[AllMessageValues]):
"""
- handles scenario where content is list and not string
- content list is just text, and no images
- if image passed in, then just return as is (user-intended)
- if `name` is passed, then drop it for mistral API: https://github.com/BerriAI/litellm/issues/6696
Motivation: mistral api doesn't support content as a list
"""
new_messages = []
for m in messages:
special_keys = ["role", "content", "tool_calls", "function_call"]
extra_args = {}
if isinstance(m, dict):
for k, v in m.items():
if k not in special_keys:
extra_args[k] = v
texts = ""
_content = m.get("content")
if _content is not None and isinstance(_content, list):
for c in _content:
_text: Optional[str] = c.get("text")
if c["type"] == "image_url":
return messages
elif c["type"] == "text" and isinstance(_text, str):
texts += _text
elif _content is not None and isinstance(_content, str):
texts = _content
new_m = {"role": m["role"], "content": texts, **extra_args}
if m.get("tool_calls"):
new_m["tool_calls"] = m.get("tool_calls")
new_m = cls._handle_name_in_message(new_m)
new_messages.append(new_m)
return new_messages
@classmethod
def _handle_name_in_message(cls, message: dict) -> dict:
"""
Mistral API only supports `name` in tool messages
If role == tool, then we keep `name`
Otherwise, we drop `name`
"""
if message.get("name") is not None:
if message["role"] == "tool":
message["name"] = message.get("name")
else:
message.pop("name", None)
return message