litellm/tests/llm_translation/test_xai.py
Ishaan Jaff 5652c375b3
(feat) add XAI ChatCompletion Support (#6373)
* init commit for XAI

* add full logic for xai chat completion

* test_completion_xai

* docs xAI

* add xai/grok-beta

* test_xai_chat_config_get_openai_compatible_provider_info

* test_xai_chat_config_map_openai_params

* add xai streaming test
2024-11-01 20:37:09 +05:30

146 lines
4.5 KiB
Python

import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse, EmbeddingResponse, Usage
from litellm import completion
from unittest.mock import patch
from litellm.llms.xai.chat.xai_transformation import XAIChatConfig, XAI_API_BASE
def test_xai_chat_config_get_openai_compatible_provider_info():
config = XAIChatConfig()
# Test with default values
api_base, api_key = config._get_openai_compatible_provider_info(
api_base=None, api_key=None
)
assert api_base == XAI_API_BASE
assert api_key == os.environ.get("XAI_API_KEY")
# Test with custom API key
custom_api_key = "test_api_key"
api_base, api_key = config._get_openai_compatible_provider_info(
api_base=None, api_key=custom_api_key
)
assert api_base == XAI_API_BASE
assert api_key == custom_api_key
# Test with custom environment variables for api_base and api_key
with patch.dict(
"os.environ",
{"XAI_API_BASE": "https://env.x.ai/v1", "XAI_API_KEY": "env_api_key"},
):
api_base, api_key = config._get_openai_compatible_provider_info(None, None)
assert api_base == "https://env.x.ai/v1"
assert api_key == "env_api_key"
def test_xai_chat_config_map_openai_params():
"""
XAI is OpenAI compatible*
Does not support all OpenAI parameters:
- max_completion_tokens -> max_tokens
"""
config = XAIChatConfig()
# Test mapping of parameters
non_default_params = {
"max_completion_tokens": 100,
"frequency_penalty": 0.5,
"logit_bias": {"50256": -100},
"logprobs": 5,
"messages": [{"role": "user", "content": "Hello"}],
"model": "xai/grok-beta",
"n": 2,
"presence_penalty": 0.2,
"response_format": {"type": "json_object"},
"seed": 42,
"stop": ["END"],
"stream": True,
"stream_options": {},
"temperature": 0.7,
"tool_choice": "auto",
"tools": [{"type": "function", "function": {"name": "get_weather"}}],
"top_logprobs": 3,
"top_p": 0.9,
"user": "test_user",
"unsupported_param": "value",
}
optional_params = {}
model = "xai/grok-beta"
result = config.map_openai_params(non_default_params, optional_params, model)
# Assert all supported parameters are present in the result
assert result["max_tokens"] == 100 # max_completion_tokens -> max_tokens
assert result["frequency_penalty"] == 0.5
assert result["logit_bias"] == {"50256": -100}
assert result["logprobs"] == 5
assert result["messages"] == [{"role": "user", "content": "Hello"}]
assert result["model"] == "xai/grok-beta"
assert result["n"] == 2
assert result["presence_penalty"] == 0.2
assert result["response_format"] == {"type": "json_object"}
assert result["seed"] == 42
assert result["stop"] == ["END"]
assert result["stream"] is True
assert result["stream_options"] == {}
assert result["temperature"] == 0.7
assert result["tool_choice"] == "auto"
assert result["tools"] == [
{"type": "function", "function": {"name": "get_weather"}}
]
assert result["top_logprobs"] == 3
assert result["top_p"] == 0.9
assert result["user"] == "test_user"
# Assert unsupported parameter is not in the result
assert "unsupported_param" not in result
@pytest.mark.parametrize("stream", [False, True])
def test_completion_xai(stream):
try:
litellm.set_verbose = True
messages = [
{"role": "system", "content": "You're a good bot"},
{
"role": "user",
"content": "Hey",
},
]
response = completion(
model="xai/grok-beta",
messages=messages,
stream=stream,
)
print(response)
if stream is True:
for chunk in response:
print(chunk)
assert chunk is not None
assert isinstance(chunk, litellm.ModelResponse)
assert isinstance(chunk.choices[0], litellm.utils.StreamingChoices)
else:
assert response is not None
assert isinstance(response, litellm.ModelResponse)
assert response.choices[0].message.content is not None
except Exception as e:
pytest.fail(f"Error occurred: {e}")