LiteLLM fork
Find a file
2023-10-24 08:53:22 -07:00
.circleci Updated config.yml 2023-10-20 13:48:12 -07:00
.github Update Docker build platforms to exclude linux/386 2023-10-20 12:19:29 +08:00
cookbook (docs) litellm ollama docker image 2023-10-13 08:45:20 -07:00
dist fix(utils.py): mapping azure api version missing exception 2023-10-17 17:12:51 -07:00
docs/my-website (docs) add async embeddings 2023-10-23 15:23:23 -07:00
litellm fix(vertex_ai.py): parse out text response from response object 2023-10-24 08:53:22 -07:00
openai-proxy fix(openai-proxy/utils.py): remove print statements 2023-10-23 20:00:02 -07:00
.all-contributorsrc Create .all-contributorsrc 2023-08-28 08:52:35 -07:00
.env.example feat: added support for OPENAI_API_BASE 2023-08-28 14:57:34 +02:00
.gitattributes ignore ipynbs 2023-08-31 16:58:54 -07:00
.gitignore Add '*.pyc' to .gitignore to ignore Python compiled files 2023-10-17 22:34:39 +08:00
data_map.txt ci(test_logging): need to rewrite test_logging to work in parallel testing 2023-10-07 19:18:09 -07:00
Dockerfile (fix) proxy dockerfile 2023-10-21 16:24:35 -07:00
LICENSE Initial commit 2023-07-26 17:09:52 -07:00
litellm_results.jsonl ci(test_logging): have a change to make circle ci run our testing 2023-10-07 18:33:24 -07:00
model_prices_and_context_window.json Update model_prices_and_context_window.json 2023-10-21 14:48:51 -07:00
poetry.lock bump: version 0.8.4 → 0.8.5 2023-10-14 16:43:06 -07:00
pyproject.toml bump: version 0.12.3 → 0.12.4.dev1 2023-10-24 08:53:22 -07:00
README.md Update README.md 2023-10-24 08:09:12 -07:00
render.yaml update render.yaml 2023-10-21 17:43:06 -07:00
requirements.txt (feat) proxy server: dockerfile + req 2023-10-21 12:44:13 -07:00
secrets_template.toml feat(proxy_cli.py): optional logging 2023-10-18 16:51:47 -07:00

🚅 LiteLLM

Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, Cohere, TogetherAI, Azure, OpenAI, etc.]

Create OpenAI Proxy Server

PyPI Version CircleCI Y Combinator W23 Whatsapp Discord

LiteLLM manages

  • Translating inputs to the provider's completion and embedding endpoints
  • Guarantees consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Exception mapping - common exceptions across providers are mapped to the OpenAI exception types.

10/05/2023: LiteLLM is adopting Semantic Versioning for all commits. Learn more
10/16/2023: Self-hosted OpenAI-proxy server Learn more

Usage (Docs)

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables 
os.environ["OPENAI_API_KEY"] = "your-openai-key" 
os.environ["COHERE_API_KEY"] = "your-cohere-key" 

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)

response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
    print(chunk['choices'][0]['delta'])

# claude 2
result = completion('claude-2', messages, stream=True)
for chunk in result:
  print(chunk['choices'][0]['delta'])

Supported Provider (Docs)

Provider Completion Streaming Async Completion Async Streaming
openai
cohere
anthropic
replicate
huggingface
together_ai
openrouter
vertex_ai
palm
ai21
baseten
azure
sagemaker
bedrock
vllm
nlp_cloud
aleph alpha
petals
ollama
deepinfra

Read the Docs

Logging Observability - Log LLM Input/Output (Docs)

LiteLLM exposes pre defined callbacks to send data to LLMonitor, Langfuse, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools
os.environ["PROMPTLAYER_API_KEY"] = "your-promptlayer-key"
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["promptlayer", "llmonitor"] # log input/output to promptlayer, llmonitor, supabase

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])

Contributing

To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.

Here's how to modify the repo locally: Step 1: Clone the repo

git clone https://github.com/BerriAI/litellm.git

Step 2: Navigate into the project, and install dependencies:

cd litellm
poetry install

Step 3: Test your change:

cd litellm/tests # pwd: Documents/litellm/litellm/tests
pytest .

Step 4: Submit a PR with your changes! 🚀

  • push your fork to your GitHub repo
  • submit a PR from there

Support / talk with founders

Why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.

Contributors